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Abstract

Alcoholism causes various maladaptations in the central nervous system, including the 

neuroimmune system. Studies of alcohol-induced dysregulation of the neuroimmune system 

generally focus on alcohol dependence and brain damage, but our previous research indicates 

that repetitive binge-like consumption perturbs cytokines independent of cell death. This paper 

extends that research by examining the impact of binge-like consumption on microglia in the 

hippocampus and the amygdala. Microglia were assessed using immunohistochemistry following 

binge-like ethanol consumption based on Drinking-in-the-Dark model. Immunohistochemistry 

results showed that binge-like ethanol consumption caused an increase in Iba-1 immunoreactivity 

and the number of Iba-1+ cells after one Drinking-in-the-Dark cycle. However, after three 

Drinking-in-the-Darkcycles, the number of microglia decreased in the hippocampus. We showed 

that in the dentate gyrus, the average immunoreactivity/cell was increased following ethanol 

exposure despite the decrease in number after three cycles. Likewise, Ox-42, an indicator 

of microglia activation, was upregulated after ethanol consumption. No significant effects on 

microglia number or immunoreactivity (Iba-1 nor Ox-42) were observed in the amygdala. Finally, 

ethanol caused an increase in the expression of the microglial gene Aif-1 during intoxication and 

ten days into abstinence, suggesting persistence of ethanol-induced upregulation of microglial 

genes. Altogether, these findings indicate that repetitive binge-like ethanol is sufficient to 
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elicit changes in microglial reactivity. This altered neuroimmune state may contribute to the 

development of alcohol use disorders.

Keywords

Alcohol use disorder; Microglia; Neuroimmune; Amygdala; Hippocampus; Binge-like drinking

1. Introduction

Excessive alcohol consumption has been linked to many social and health consequences, 

including the development of alcohol use disorders (AUDs) [1, 2]. The term AUDs is 

an umbrella term that includes a variety of problematic drinking behaviors like alcohol 

dependence, repetitive binge drinking, and any ethanol consumption by at-risk populations 

(e.g., pregnant women or underage individuals). However, most of the societal problems 

associated with AUDs occur due to binge drinking [3]. Binge drinking is a form of heavy 

ethanol consumption that results in blood ethanol concentrations (BECs) greater than 80 

mg/dL [4]. This is normally achieved with 4–5 drinks within two hours. Many theorize that 

repetitive binge drinking fundamentally changes normal neurobiological functions altering 

the pharmacological properties of alcohol and contributing to the development of alcohol 

dependence [5–7]. Manipulating the neuroplastic changes that occur due to binge drinking 

may be vital in curbing excessive alcohol consumption and reducing the propensity of 

AUD development. Although alcohol abuse can elicit maladaptation in various biologic 

systems, our work focuses on alcohol-induced microglial reactivity after repetitive binge-

like alcohol consumption in the Drinking-in-the-Dark (DID) model to recapitulate human 

binge consumption [8].

Microglia are often called the “central nervous system macrophages” because they 

have a shared hematopoietic lineage with peripheral macrophages and have phagocytic 

activity within the brain [9]. Microglia were traditionally studied as responsive agents 

to infections that could mediate neurodegeneration and cell death [10]. However, the 

continuum of microglial activation and the corresponding variety of their homeostatic 

contributions to maintaining and/or restoring neuronal function has continued to rise 

in the literature [11, 12]. We now recognize that microglia have various functions 

independent of neurodegeneration in the healthy brain, including contributions to synaptic 

pruning [13] and constant surveillance of micro-environmental fluctuations [14, 15]. In 

the AUD field, most studies examining the microglial response to alcohol have focused 

on models of alcohol dependence [16, 17] and/or alcohol-induced neurodegeneration [18–

21]. However, most people who binge drink neither experience dependence nor have 

evidence of neurodegeneration [22]. Determining the unique maladaptation from binge 

drinking is necessary as they are often distinct from those observed in dependence [23, 

24]. For example, many postulate that the drive to consume alcohol switches from positive 

to negative reinforcement as individuals become more dependent on alcohol [25, 26]. 

Similarly changes in the microglial response may initially alter one function in the central 

nervous system during binge drinking but engage in more proinflammatory actions during 

dependence. Understanding the effects of alcohol on microglia under different types/stages 
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of an AUD is crucial to determine the role of microglia within alcohol misuse and how 

microglia contribute to alcohol addiction.

The DID model is uniquely suited to capture the window of binge-like alcohol 

consumption before dependence-like phenotypes and without evidence of alcohol-induced 

neurodegeneration [8, 27]. For example, following multiple weeks of ethanol exposure 

in the DID model, it has been reported that there are no indices of withdrawal or other 

phenotypes associated with alcohol dependence [28, 29]. Using a self-administration model 

of binge-like consumption, this rodent model repeatedly achieves BECs comparable to those 

observed in human binge drinkers [30, 31]. The term “binge-like” is used in the manuscript 

when referring to animal ethanol consumption considering the limitations inherent in 

preclinical studies to truly reflect the multi-faceted conditions of binge drinking in humans 

[32, 33]. This work extends our previous findings on alcohol-induced upregulation of a 

proinflammatory cytokine milieu in the amygdala and hippocampus following acute binge-

like consumption by determining the impact of alcohol exposure in the DID model on 

microglia [34, 35]. The hippocampus and amygdala have been chosen as the focal points 

because they are integral parts of the neurocircuitry that mediate binge drinking [36, 37].

2. Materials and methods

2.1 Animals

Male C57BL/6J mice (Jackson Laboratory; Bar Harbor, ME, USA) were individually 

housed in a reversed 12:12 hour light: dark cycle vivarium maintained at 22 °C. During 

experiments, animals had ad libitum access to water and Teklad Diet® 7912X (Harlan 

Laboratories Inc.; Indianapolis, IN, USA) unless otherwise indicated [38]. All animals were 

ordered at seven weeks old and given at least a week to acclimate to the environment 

before starting experimentation at eight weeks. These procedures were all approved by 

both High Point University and North Carolina Central’s Institutional Animal Care and Use 

Committees following the Guidelines for the Care and Use of Laboratory Animals [39].

2.2 “Drinking in the Dark” procedures

Binge drinking was modeled using a 4-day DID paradigm as previously described [27, 

28]. Briefly, home cage water bottles were removed three hours into the dark cycle. Mice 

received access to a single ball-bearing volumetric bottle of 20% (v/v) ethanol solution or a 

control solution of either 3% (w/v) sucrose or water; the presence of the ball-bearings limits 

leakage during administration. For the first three days of each cycle, mice had two hours of 

access, but on the fourth-day consumption (g/kg) was measured over four hours. Mice went 

through the DID procedure for 1 (H2O, n = 5; Sucrose, n = 8; Ethanol n = 10) or 3 cycles 

(H2O, n = 5; Sucrose, n = 9; Ethanol, n = 7) with each 4-day DID cycle separated by three 

days. In the PCR studies, mice underwent 1 or 3 cycles with water (n = 8/group) or 1 or 3 

cycles with ethanol (N =61). The ethanol animals were further split into six groups that were 

euthanized immediately (1 cycle, n = 10; 3 cycle, n = 10), 1 day (1 cycle, n = 10; 3 cycle, 

n = 10), or 10 days (1 cycle, n = 11; 3 cycle, n = 10), after ethanol exposure [40]. For more 

details, see the methodology schematic in Fig. 1.
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Tail blood samples (≈60 μL) were taken immediately following the final DID procedure 

to determine BECs. In the qRT-PCR studies, blood samples were not taken in the mice 

euthanized after 1 or 10 days because previous studies indicate that restraint stress can 

impact neuroimmune genes. However, for animals euthanized immediately after the DID 

procedure, trunk blood was taken. Serum was obtained through centrifugation and run-in 

duplicates using the EnzyChrom™ Ethanol Assay Kit (BioAssay Systems; Hay-ward, CA, 

USA) [41–43].

2.3 Immunohistochemistry & immunoreactivity quantification

IHC was conducted to characterize the alcohol-induced microglial response within the 

amygdala and hippocampus. Following anesthetization with IP administration (0.1 mL) of 

a ketamine/xylazine cocktail (66.7 mg/mL; 6.7 mg/mL), mice used in IHC experiments 

were euthanized immediately after 1 or 3 cycles of DID by transcardial perfusion(0.1 M 

phosphate buffer saline (PBS) and 4% paraformaldehyde in PBS, pH = 7.4). The microglia-

specific antibody against Iba-1 was similar to previously published studies [18, 19, 44]. 

Briefly, every fourth section was rinsed in a 0.1M PBS (pH = 7.4) three times for 5-minutes 

before a 30-minute incubation in 0.6% H2O2. After additional PBS washes, the sections 

were blocked using goat serum (3% goat serum/0.1% triton-X/PBS) and incubated in the 

rabbit anti-Iba-1 primary antibody (Wako, Richmond, VA, USA; 1:1000) or rat-anti-Ox-42 

(Invitrogen, Camarillo, CA, USA; 1:500) for 48 hours at 4 °C. The primary antibody was 

removed with a series of PBS washes before incubation with goat anti-rabbit or goat-anti-

rat secondary (1:2000; Vector Labs; Burlingame, CA, USA) for an hour. To amplify and 

visualize the antibody, a conjugate of avidin-biotin-peroxidase complex (ABC elite kit, 

Vector Labs) and the chromagen 3,3’-diaminobenzidine tetrahydrochloride (Poly-sciences; 

Warrington, PA, USA) was formed. Processed sections were mounted onto glass slides and 

coverslipped with SHUR/Mount™ (Triangle Biomedical Sciences; Durham, NC, USA).

Images of the hippocampus and amygdala were captured with a 10× objective using an 

Olympus DP73 (Olympus, Center Valley, PA, USA) attached to a Nikon Eclipse 80i 

microscope (Iba-1) or a B120 microscope (AmScope, Irvine, CA, USA) with an attached 

digital camera (MU500; Am-Scope, Ox-42). For all images, experimental bias was avoided 

by coding the image file before quantification. The subregions of the hippocampus (DG, 

CA1, and CA2/3; between Bregma −1.06 mm and −2.80 mm) and amygdala (BLA 

and CeA; between Bregma −0.58 mm and −2.36 mm) were individually traced [45]. 

Immunoreactivity was measured with the open-source software Qupath 0.2.3 (University 

of Edinburg, Edinburg, UK) using experimenter-determined optical density thresholds [46]. 

Immunoreactivity is expressed as percent area (immunoreactive positive area/total area of 

ROI) [47]. Microglia were also assessed using profile cell counts of Iba-1 and are expressed 

as Iba-1+ cells/section [18].

2.4 qRT-PCR

Quantitative polymerase chain reaction (qRT-PCR) was performed similarly to our previous 

report [47]. Briefly, un-anesthetized mice were euthanized by rapid decapitation, and 

the hippocampus and amygdala were microdis-sected out and snap-frozen. RNA was 

extracted from homogenized hippocampal or amygdala tissue using TRIzol™ reagent 
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(200 μL; Invitrogen). RNA concentration was normalized to 1.5 μg/μL following analysis 

with a Qubit® 3.0 Fluorometer (Invitrogen). Samples were then transcribed to cDNA 

Synthesis using Maxima™ H Minus cDNA (Thermo-Scientific; Waltham MA). TaqMan® 

assays (ThermoScientific) were used to determine the relative mRNA expression of 

Aif-1(Mm00479862_g1) and Itgam (Mm00434455_m1) compared with an internal control 

PPIA (Mm02342430_g1). Itgam (Integrin Subunit Alpha M), also known as Cd11b, is 

upregulated in proinflammatory microglial activation, whereas Aif-1 is associated with all 

microglia [48]. Measurements were compared to the water groups using the ddCT method 

and are expressed as the fold change, similar to previous reports [47, 49].

2.5 Statistical analysis

Data were analyzed and graphed using GraphPad Prism Version 7 (GraphPad Software, Inc. 

La Jolla, CA, USA). ANOVAs were used to assess consumption, BECs, immunoreactivity, 

and cell counts. Posthoc Bonferroni tests were only done if a significant interaction or 

main effect of ethanol was found. All data are reported as the mean ± standard error and 

considered significantly different if p < 0.05, two-tailed.

3. Results

3.1 Ethanol consumption consistent across groups

Binge-like drinking was not significantly different among the groups used in these 

experiments (see Table 1). The ethanol consumption data for qRT-PCR animals were 

collapsed across different time points (e.g., 0-day and 10-day), but BECs only represent 

animals in the 0-day or primary time point (Table 1). Previous studies have suggested 

that restraint necessary for BEC measurements may confound neuroimmune messenger 

ribonucleic acid (mRNA) expression due to stress [40]. Two-way analysis of variances 

(ANOVAs; Experimental cohort × Number of DID cycles) indicated no interaction or main 

effects of the experimental cohort (qRT-PCR vs. IHC) or number of cylce on either ethanol 

or water consumption. Importantly, the average BEC (μ = 117. ± 38.8) for ethanol-treated 

animals after four hours of consumption was above the threshold of binge-like consumption. 

A two-way ANOVA (Experimental cohort × Number of DID cycles) did not indicate that the 

BECs were significantly different between the groups.

3.2 Binge-like consumption has regionally specific Iba-1 immunoreactivity effects

Microglial activation results in morphological changes, which can be assessed using 

densitometric analysis of immunohistochemical markers like ionized calcium-binding 

adaptor 1 (Iba-1) [19, 48]. Two-way ANOVAs (Treatment × Number of Cycles) indicated 

that there was no interaction or main effects of treatment or number of DID cycles on Iba-1 

density in the cornu amonis (CA) 1 or CA2/3 regions; however, in the dentate gyrus (DG), 

an interaction [F(2,43) = 3.57, p = 0.037] and the main effect of treatment [F(2,43) = 4.68, p 
= 0.015] but no main effect of number of cycles was observed. Posthoc analyses indicated a 

significant increase in immunoreactivity in the ethanol group after three cycles (Fig. 2H).

Because immunoreactivity can also be changed by the number of microglia and not 

just microglial morphological variations, Iba-1+ cells were also counted. The number of 
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microglia seemed to be more sensitive to alcohol exposure than immunoreactivity. Two 

way ANOVAs (Treatment × Number of Cycles) indicated an interaction between number 

of cycles and treatment in the DG [F(2,43) = 16.46, p < 0.0001], CA1 [F(2,43) = 21.81, p < 

0.0001], and in the CA2/3 fields [F(2,43) = 8.53, p < 0.001]. Posthoc Dunnet’s tests indicated 

an increase in the number of microglia in the DG, CA1, and CA2/3 regions after one cycle 

of ethanol; however, a decrease after three cycles was observed among ethanol animals 

in each of the hippocampal subregions (Fig. 2K–M). After ethanol exposure (Fig. 2F, G), 

photomicrographs show that hippocampal Iba-1+ cells appear to have a more activated 

morphology than water controls (Fig. 2E). The immunoreactivity per cell was calculated 

(Table 2). Two-way ANOVAs (Treatment × Number of Cycles) indicated no interaction 

or main effects on immunoreactivity per cell in either the CA2/3 or the CA1, but in the 

DG, there was a main effect of ethanol [F(2,43) = 14.56, p < 0.0001]. Post-hoc Dunnet’s 

test indicated that after 1 and 3 cycles of ethanol, there was a significant increase in the 

immunoreactivity/cell compared with the water control group.

There was no effect of ethanol on the microglia of the amygdala. No interaction or main 

effects of either treatment or number of cycles was observed on Iba-1 immunoreactivity in 

the basolateral amygdala (BLA) or central amygdala (CeA; Fig. 3). Likewise, a two-way 

ANOVA indicated no significant influence of ethanol on the microglia number in the BLA 

or CeA (Fig. 3).

3.3 Increased CR3 expression in microglia after binge-like consumption

Iba-1 is a cytoskeletal protein in microglia whose upregulation suggests morphological 

changes or increased numbers. However, Ox-42 recognizes the transmembrane complement 

receptor 3. Its upregulation is purported to indicate increased microglial adhesion to 

damaged cells and pathogens [19, 50]. Two-way ANOVAs (Treatment × Number of Cycles) 

indicated that there was no interaction or main effects of treatment or number of DID cycles 

on Ox-42 immunoreactivity in the CA1 or CA2/3 regions; however, in the DG an interaction 

[F(2,43)= 3.58, p = 0.037] and main effect of treatment [F(2,43)= 53.6, p < 0.0001] were 

observed without a no main effect of number of cycles was observed. Posthoc analyses 

indicated a significant increase in immunoreactivity in the ethanol group after both one and 

three cycles of ethanol (Fig. 4E).

3.4 Repeated binge-Like consumption causes persisting changes in microglial mRNA

To further explore the changes in microglial reactivity to binge-like consumption, qRT-PCR 

was used to determine if changes persisted into abstinence. A two-way ANOVA (Treatment 

group × Number of Cycles) indicated that there was no interaction or main effects of ethanol 

or time on Itgam expression (Fig. 5B); however, an analysis of Aif-1 mRNA indicated 

there was an interaction [F(3,69)= 3.39, p = 0.023] and main effect of the number of cycles 

[F(1,69)= 4.79, p =0.032]. Posthoc Dunnet’s test indicated an increase in Aif-1 expression 

during intoxication after both 1 and 3-DID cycles; however, only after three cycles of 

ethanol was a significant increase in Aif-1 expression observed during abstinence (Fig. 5A).
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4. Discussion

Our previous studies have examined the effects of repetitive binge-like consumption on 

cytokines and astrocytes [34, 35, 47]. However, this manuscript extends those studies by 

examining the impact of ethanol consumption in the DID model on microglia. Given 

the critical role of microglia in modulating psycho-neuroimmune and neuroinflammatory 

responses [51, 52], highlighting the specific effects of binge-like alcohol consumption 

on microglia is critical to fully understanding the neuroimmune response associated with 

excessive alcohol use. The major findings of this paper are that: (1) binge-like ethanol 

consumption results in changes in the number, morphology, and immunological status of 

microglia, (2) the hippocampus is more sensitive to alcohol-induced microglial effects than 

the amygdala, and (3) repeated exposure results in a persistent change in microglial gene 

expression.

The hippocampus has been repeatedly shown to be susceptible to ethanol abuse affecting 

important neurologic functions, including neurogenesis [53], memory [54, 55], and 

neurodegeneration [56, 57]. The interesting thing about neuroimmune dysregulation is 

that it can impact the afore-mentioned alcohol-induced effects in the hippocampus [53, 

58]. Our results uniquely show that the DID model induces changes in microglia of the 

hippocampus. Immunohistochemistry analysis initially revealed that binge-like consumption 

increased immunoreactivity only after three cycles in the DG. Iba-1 immunoreactivity 

analysis is usually purported to be a sign of microglial activation [59, 60]; however, our 

qualitative observations of the microglial morphology led us to believe that after one 

cycle of ethanol exposure, microglia still appeared activated despite the overall decrease 

in immunoreactivity. We estimated the immunoreactivity per cell by counting the total 

number of cells, which we believe translates closely to the average microglial size. Our 

data suggest that after both 1 and 3-DID cycles of ethanol exposure, the immunoreactivity/

cell increases. Changes in the morphological presentation of microglia are usually thought 

to indicate microglial activation. The increase in Ox-42 further supported binge-alcohol-

induced microglial activation after the DID. Ox-42 upregulation indicates that the microglia 

are immunologically active. The differential pattern Iba-1 and Ox-42 observed may suggest 

that microglia populations remained primed despite less robust morphological presentations 

[18, 61]. Our findings concur with other studies indicating that alcohol can induce increases 

in Iba-1 and Ox-42 immunoreactivity, including models of alcohol dependence [62–64], 

alcohol-induced neurodegeneration [18, 21], and fetal alcohol spectrum disorders [65, 66], 

but our results have uniquely shown the effects of alcohol before dependence and at much 

lower BECs.

We also observed a change in microglia number after the DID paradigm. After one cycle of 

ethanol, there was an increase in microglia throughout the hippocampus. Alcohol-dependent 

models with higher BECs have reported that microglia begin to proliferate after a period 

of alcohol abstinence [44, 67], but other rodent models with BECs below binge levels 

did not observe proliferating microglia even after 7 weeks [68]. Together, these data 

suggest something unique occurs after binge-like consumption that initially increases the 

number of microglia compared with other alcohol exposure models. We did not determine 

whether the increase in microglia was due to a migration of microglia to the hippocampus 
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or microglial cell proliferation. After additional ethanol exposure, our data indicated a 

significant decrease in the number of microglia in the hippocampus. We did not directly 

elucidate whether microglia were damaged by repeated exposure, but previous reports have 

also seen decreases in microglia number in alcohol-related brain damage models [18, 69]. 

It is important to denote that microglia proliferation and loss are sex-dependent [69, 70], 

and we only focused on male mice. A decrease in microglia number as alcohol exposure 

increases may align with the human condition. Imaging studies of alcoholics have shown 

that a down-regulation in the microglial markers for translocator protein (TSPO) correlates 

with the dependence severity [71, 72]. An important caveat to consider is that a recent paper 

[73] observed opposing effects between in vivo imaging and autoradiography using TSPO 

markers. The loss discovered after just three weeks of repetitive binge-like consumption in 

a model of non-dependence may be the precursor to the glial changes that occur during 

alcohol-dependence.

Our studies found no effects of DID ethanol consumption on the microglia of the amygdala. 

This was surprising given that microglia are the initial responders in a neuroimmune 

response. We have previously found that binge-like consumption is associated with a more 

proinflammatory cytokine environment in the BLA [34, 35]. Because the hippocampus 

and amygdala are both susceptible to alcohol-induced neuroplasticity, we expected similar 

findings between the hippocampus and the amygdala [73, 74]. However, the differences 

observed herein between the regions may indicate that withdrawal and/or chronic ethanol 

exposure is integral for changes in the amygdala. Our data only looked at microglia during 

intoxication in the amygdala. It is also possible that the lack of changes in the amygdala may 

be associated with the lower density of Iba-1 in the region compared with the hippocampus. 

A recent meta-analysis attempted to determine the relative density of microglia in the mouse 

brain. Still, there was insufficient evidence for any strong conclusions concerning microglia 

in the amygdala compared with other regions [75]. However, in the hippocampus, the DG 

and CA1 regions, where the microglia appear to be most susceptible to alcohol, have a 

greater density of microglial cells than the CA2/3 region [75, 76]. Moreover, in pathologies 

like aging, hippocampal microglia appear more reactive than other brain regions [77]. Our 

recent work suggests that excessive alcohol intake may interact with aging cascades to 

dysregulate microglia [43]. Whether the lack of effect observed herein is due to differences 

in basal density or reactivity is unknown. However, our data does agree with other studies 

that did not find that ethanol impacted microglia in the amygdala [78]. Future studies 

should explore other regions correlated to alcohol abuse and control regions to determine the 

uniqueness of the hippocampal findings. At a minimum, our results show that hippocampal 

microglia are more sensitive to repetitive alcohol consumption compared with the amygdala.

To determine whether the alcohol-induced changes in microglia of the hippocampus 

persisted into abstinence, we elected to use qRT-PCR. After one 4-Day DID cycle of ethanol 

exposure, Aif-1 mRNA initially increases but appears to quickly resolve in abstinence. 

Conversely, the increase in Aif-1 mRNA was present during intoxication and persisted 

even 10 days after binge-like consumption. No changes were seen in Itgam after ethanol 

exposure, but this may be because the concentration of mRNA of Itgam was lower than 

either Aif-1 according to the average cycle threshold (CT) values of the water group. The 

lower expression of Itgam compared with other markers of microglia has previously been 
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observed [79] and reinforces the hypothesis that Itgam or CD11b is a marker of more 

activated microglia compared with Aif-1 (also known as Iba-1) [19, 48]. Other AUD models 

have also reported that ethanol affects the microglial transcriptome, including research 

examining the prefrontal cortex in the DID model [17, 80]. We, however, uniquely examined 

the impact of repetitive binge drinking in the hippocampus. Together this information 

may indicate that binge-like consumption drives changes in microglia that are not fully 

activated or proinflammatory at BECs that are often observed in non-dependent, problematic 

alcohol drinkers [81]. Previous research agrees with these findings that as ethanol exposure 

increases, it drives the microglial response to a more pro-inflammatory state [18, 82], 

especially as it relates to the microglial transcriptome [17]. Furthermore, these findings 

concur with other research showing that acute ethanol only causes transient microglial 

morphology changes compared with more chronic use [83].

5. Conclusions

The impact of binge-like consumption on neuroinflammation continues to be of interest. 

Alcohol-induced neuroinflammatory signaling can underlie both the behavioral and 

biological consequences observed in the development of AUDs. Our data reveal how 

binge drinking impacts the microglial response before dependence without significant 

neurodegeneration. Given that the BECs elicited by this model (~100 mg/dL) is much 

lower than the previous studies of alcohol-related brain damage (~300 mg/dL) that showed 

microglial activation, it could indicate that repetitive binge consumption is problematic, 

rather than dependent individuals, may lead to maladaptations in the glial responses. 

Because alcohol abuse is comorbid with so many other conditions that affect the 

neuroimmune response, including aging, infections, and traumatic brain injury, these data 

provide a snapshot to consider how binge-like consumption’s alteration of microglia may 

contribute to the worsening of neuroinflammatory events and promote further alcohol 

misuse.
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TSPO Quantitative Reverse Transcription; Translocator Protein

References

[1]. Grant BF, Saha TD, Ruan WJ, Goldstein RB, Chou SP, Jung J, et al. Epidemiology of DSM-5 
Drug Use Disorder: Results from the National Epidemiologic Survey on Alcohol and Related 
Conditions-III. JAMA Psychiatry. 2016; 73: 39–47. [PubMed: 26580136] 

[2]. Bloomfield K, Stockwell T, Gmel G, Rehn N. International comparisons of alcohol consumption. 
Alcohol Research and Health. 2003; 27: 95–109. [PubMed: 15301404] 

[3]. Bouchery EE, Harwood HJ, Sacks JJ, Simon CJ, Brewer RD. Economic Costs of Excessive 
Alcohol Consumption in the U.S., 2006. American Journal of Preventive Medicine. 2011; 41: 
516–524. [PubMed: 22011424] 

[4]. NIAA. NIAAA Council Approves Definition of Binge Drinking. 2004. Available at : https://
pubs.niaaa.nih.gov/publications/Newsletter/winter2004/Newsletter_Number3.pdf (Assessed: 2 
July 2021).

[5]. Gunzerath L, Hewitt BG, Li T, Warren KR. Alcohol research: past, present, and future. Annals of 
the New York Academy of Sciences. 2011; 1216: 1–23. [PubMed: 21182533] 

[6]. Centers for Disease C, Prevention. Vital signs: binge drinking prevalence, frequency, and intensity 
among adults - United States, 2010. Morbidity and Mortality Weekly Report. 2012; 61: 14–19. 
[PubMed: 22237031] 

[7]. Der-Avakian A, Markou A. The neurobiology of anhedonia and other reward-related deficits. 
Trends in Neurosciences. 2012; 35: 68–77. [PubMed: 22177980] 

[8]. Thiele TE, Navarro M. “Drinking in the dark” (did) procedures: a model of binge-like ethanol 
drinking in non-dependent mice. Alcohol. 2014; 48: 235–241. [PubMed: 24275142] 

[9]. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Frontiers 
in Cellular Neuroscience. 2013; 7: 45. [PubMed: 23616747] 

[10]. Sierra A, de Castro F, Del Rio-Hortega J, Rafael Iglesias-Rozas J, Garrosa M, Kettenmann H. 
The “Big-Bang” for modern glial biology: Translation and comments on Pío del Río-Hortega 
1919 series of papers on microglia. Glia. 2016; 64: 1801–1840. [PubMed: 27634048] 

[11]. Tremblay M, Stevens B, Sierra A, Wake H, Bessis A, NimmerjahnA. The role of microglia in the 
healthy brain. Journal of Neuroscience. 2011; 31: 16064–16069. [PubMed: 22072657] 

Nelson et al. Page 10

J Integr Neurosci. Author manuscript; available in PMC 2022 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pubs.niaaa.nih.gov/publications/Newsletter/winter2004/Newsletter_Number3.pdf
https://pubs.niaaa.nih.gov/publications/Newsletter/winter2004/Newsletter_Number3.pdf


[12]. Carson MJ, Bilousova TV, Puntambekar SS, Melchior B, Doose JM, Ethell IM. A rose by 
any other name? the potential consequences of microglial heterogeneity during CNS health and 
disease. Neurotherapeutics. 2007; 4: 571–579. [PubMed: 17920538] 

[13]. Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic 
pruning during development and disease. Annual Review of Neuroscience. 2012; 35: 369–389.

[14]. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic 
surveillants of brain parenchyma in vivo. Science. 2005; 308: 1314–1318. [PubMed: 15831717] 

[15]. Sierra A, Encinas JM, Deudero JJP, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, et al. 
Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell 
Stem Cell. 2010; 7: 483–495. [PubMed: 20887954] 

[16]. Lee KM, Coelho MA, McGregor HA, Solton NR, Cohen M, Szumlinski KK. Adolescent Mice 
are Resilient to Alcohol Withdrawal-Induced Anxiety and Changes in Indices of Glutamate 
Function within the Nucleus Accumbens. Frontiers in Cellular Neuroscience. 2016; 10: 265. 
[PubMed: 27917110] 

[17]. Osterndorff-Kahanek E, Ponomarev I, Blednov YA, Harris RA. Gene expression in brain and 
liver produced by three different regimens of alcohol consumption in mice: comparison with 
immune activation. PLoS ONE. 2013; 8: e59870. [PubMed: 23555817] 

[18]. Marshall SA, Geil CR, Nixon K. Prior Binge Ethanol Exposure Potentiates the Microglial 
Response in a Model of Alcohol-Induced Neurodegeneration. Brain Sciences. 2016; 6: 16.

[19]. Marshall SA, McClain JA, Kelso ML, Hopkins DM, Pauly JR, Nixon K. Microglial activation 
is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: the importance of 
microglia phenotype. Neurobiology of Disease. 2013; 54: 239–251. [PubMed: 23313316] 

[20]. Coleman LG, Zou J, Crews FT. Microglial-derived miRNA let-7 and HMGB1 contribute to 
ethanol-induced neurotoxicity via TLR7. Journal of Neuroinflammation. 2017; 14: 22. [PubMed: 
28118842] 

[21]. Peng H, Geil Nickell CR, Chen KY, McClain JA, Nixon K. Increased expression of M1 and 
M2 phenotypic markers in isolated microglia after four-day binge alcohol exposure in male rats. 
Alcohol. 2017; 62: 29–40. [PubMed: 28755749] 

[22]. Esser MB, Hedden SL, Kanny D, Brewer RD, Gfroerer JC, Naimi TS. Prevalence of alcohol 
dependence among us adult drinkers, 2009–2011. Preventing Chronic Disease. 2014; 11: E206. 
[PubMed: 25412029] 

[23]. Sprow GM, Thiele TE. The neurobiology of binge-like ethanol drinking: evidence from rodent 
models. Physiology & Behavior. 2012; 106: 325–331. [PubMed: 22245775] 

[24]. Gilpin NW, Koob GF. Neurobiology of alcohol dependence: focus on motivational mechanisms. 
Alcohol Research & Health. 2008; 31: 185–195. [PubMed: 19881886] 

[25]. Valdez GR, Koob GF. Allostasis and dysregulation of corticotropin-releasing factor and 
neuropeptide Y systems: implications for the development of alcoholism. Pharmacology, 
Biochemistry, and Behavior. 2004; 79: 671–689.

[26]. Edwards S, Koob GF. Neurobiology of dysregulated motivational systems in drug addiction. 
Future Neurology. 2010; 5: 393–401. [PubMed: 20563312] 

[27]. Rhodes JS, Best K, Belknap JK, Finn DA, Crabbe JC. Evaluation of a simple model of ethanol 
drinking to intoxication in C57BL/6J mice. Physiology & Behavior. 2005; 84: 53–63. [PubMed: 
15642607] 

[28]. Cox BR, Olney JJ, Lowery-Gionta EG, Sprow GM, Rinker JA, Navarro M, et al. Repeated cycles 
of binge-like ethanol (EtOH)-drinking in male C57BL/6J mice augments subsequent voluntary 
EtOH intake but not other dependence-like phenotypes. Alcoholism, Clinical and Experimental 
Research. 2013; 37: 1688–1695.

[29]. Lee KM, Coehlo MA, Solton NR, Szumlinski KK. Negative Affect and Excessive Alcohol Intake 
Incubate during Protracted Withdrawal from Binge-Drinking in Adolescent, but not Adult, Mice. 
Frontiers in Psychology. 2017; 8: 1128. [PubMed: 28729845] 

[30]. Bobak M, Room R, Pikhart H, Kubinova R, Malyutina S, Pajak A, et al. Contribution of drinking 
patterns to differences in rates of alcohol related problems between three urban populations. 
Journal of Epidemiology and Community Health. 2004; 58: 238–242. [PubMed: 14966239] 

Nelson et al. Page 11

J Integr Neurosci. Author manuscript; available in PMC 2022 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[31]. Epstein EE, Labouvie E, McCrady BS, Swingle J, Wern J. Development and validity of drinking 
pattern classification: binge, episodic, sporadic, and steady drinkers in treatment for alcohol 
problems. Addictive Behaviors. 2004; 29: 1745–1761. [PubMed: 15530719] 

[32]. Crabbe JC, Harris RA, Koob GF. Preclinical studies of alcohol binge drinking. Annals of the New 
York Academy of Sciences. 2011; 1216: 24–40. [PubMed: 21272009] 

[33]. Jeanblanc J, Rolland B, Gierski F, Martinetti MP, Naassila M. Animal models of binge drinking, 
current challenges to improve face validity. Neuroscience & Biobehavioral Reviews. 2019; 106: 
112–121. [PubMed: 29738795] 

[34]. Marshall SA, Casachahua JD, Rinker JA, Blose AK, Lysle DT, Thiele TE. IL-1 receptor signaling 
in the basolateral amygdala modulates binge-like ethanol consumption in male C57BL/6J mice. 
Brain, Behavior, and Immunity. 2016; 51: 258–267.

[35]. Marshall SA, McKnight KH, Blose AK, Lysle DT, Thiele TE. Modulation of Binge-like 
Ethanol Consumption by IL-10 Signaling in the Basolateral Amygdala. Journal of Neuroimmune 
Pharmacology. 2017; 12: 249–259. [PubMed: 27640210] 

[36]. Gilpin NW, Herman MA, Roberto M. The central amygdala as an integrative hub for anxiety and 
alcohol use disorders. Biological Psychiatry. 2015; 77: 859–869. [PubMed: 25433901] 

[37]. Hwa L, Besheer J, Kash T. Glutamate plasticity woven through the progression to alcohol use 
disorder: a multi-circuit perspective. F1000Research. 2017; 6: 298. [PubMed: 28413623] 

[38]. Marshall SA, Rinker JA, Harrison LK, Fletcher CA, Herfel TM, Thiele TE. Assessment of the 
Effects of 6 Standard Rodent Diets on Binge-Like and Voluntary Ethanol Consumption in Male 
C57BL/6J Mice. Alcoholism, Clinical and Experimental Research. 2015; 39: 1406–1416.

[39]. National Research Council. Guide for the Care and Use of Laboratory Animals. The National 
Academies Press: Washington, DC. 1996.

[40]. Walker FR, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial 
plasticity, phenotype and function. Current Drug Targets. 2013; 14: 1262–1276. [PubMed: 
24020974] 

[41]. Paris JJ, Frye CA. Alcohol Dose-Dependently Enhances 3α-androstanediol Formation in Frontal 
Cortex of Male Rats Concomitant with Aggression. The Open Neuropsychopharmacology 
Journal. 2009; 2: 1–11.

[42]. Jeong W, Osei-Hyiaman D, Park O, Liu J, Bátkai S, Mukhopadhyay P, et al. Paracrine Activation 
of Hepatic CB1 Receptors by Stellate Cell-Derived Endocannabinoids Mediates Alcoholic Fatty 
Liver. Cell Metabolism. 2008; 7: 227–235. [PubMed: 18316028] 

[43]. Grifasi IR, Evans WA, Rexha AD, Sako LW, Marshall SA. A comparison of hippocampal 
microglial responses in aged and young rodents following dependent and non-dependent binge 
drinking. International Review of Neurobiology. 2019; 32: 305–343.

[44]. McClain JA, Morris SA, Deeny MA, Marshall SA, Hayes DM, Kiser ZM, et al. Adolescent 
binge alcohol exposure induces long-lasting partial activation of microglia. Brain, Behavior, and 
Immunity. 2011; 25 Suppl 1: S120–S128.

[45]. Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. Elsevier Academic Press: 
Amsterdam, Boston. 2004.

[46]. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: 
Open source software for digital pathology image analysis. Scientific Reports. 2017; 7: 16878. 
[PubMed: 29203879] 

[47]. Grifasi I, McIntosh S, Thomas R, Lysle D, Thiele T, Marshall SA. Characterization of the 
Hippocampal Neuroimmune Response to Binge-Like Ethanol Consumption in the Drinking in 
the Dark Model. Neuroimmunomodulation. 2019; 26: 19–32. [PubMed: 30625475] 

[48]. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. Neuroglial activation 
repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological 
function. Brain Research. Brain Research Reviews. 1999; 30: 77–105. [PubMed: 10407127] 

[49]. Kim H, Lee G, John SWM, Maeda N, Smithies O. Molecular phenotyping for analyzing subtle 
genetic effects in mice: application to an angiotensinogen gene titration. Proceedings of the 
National Academy of Sciences of the United States of America. 2002; 99: 4602–4607. [PubMed: 
11904385] 

Nelson et al. Page 12

J Integr Neurosci. Author manuscript; available in PMC 2022 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[50]. Relman D, Tuomanen E, Falkow S, Golenbock DT, Saukkonen K, Wright SD. Recognition 
of a bacterial adhesion by an integrin: macrophage CR3 (alpha M beta 2, CD11b/CD18) 
binds filamentous hemagglutinin of Bordetella pertussis. Cell. 1990; 61: 1375–1382. [PubMed: 
2364431] 

[51]. Lacagnina MJ, Rivera PD, Bilbo SD. Glial and Neuroimmune Mechanisms as Critical 
Modulators of Drug Use and Abuse. Neuropsychopharmacology. 2017; 42: 156–177. [PubMed: 
27402494] 

[52]. Yang L, Zhou Y, Jia H, Qi Y, Tu S, Shao A. Affective Immunology: The Crosstalk Between 
Microglia and Astrocytes Plays Key Role? Front in Immunology. 2020; 11: 1818.

[53]. Geil CR, Hayes DM, McClain JA, Liput DJ, Marshall SA, Chen KY, et al. Alcohol 
and adult hippocampal neurogenesis: promiscuous drug, wanton effects. Progress in Neuro-
Psychopharmacology & Biological Psychiatry. 2014; 54: 103–113. [PubMed: 24842804] 

[54]. White AM, Swartzwelder HS. Age-related effects of alcohol on memory and memory-related 
brain function in adolescents and adults. Recent Developments in Alcoholism. 2005; 17: 161–
176. [PubMed: 15789865] 

[55]. White AM, Kraus CL, Swartzwelder H. Many college freshmen drink at levels far beyond the 
binge threshold. Alcoholism, Clinical and Experimental Research. 2006; 30: 1006–1010.

[56]. Crews FT, Sarkar DK, Qin L, Zou J, Boyadjieva N, Vetreno RP. Neuroimmune Function and the 
Consequences of Alcohol Exposure. Alcohol Research. 2015; 37: 341–351.

[57]. Zahr NM, Kaufman KL, Harper CG. Clinical and pathological features of alcohol-related brain 
damage. Nature Reviews. Neurology. 2011; 7: 284–294. [PubMed: 21487421] 

[58]. Lynch MA. Neuroinflammatory changes negatively impact on LTP: a focus on IL-1β. Brain 
Research. 2015; 1621: 197–204. [PubMed: 25193603] 

[59]. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S. Microglia-specific localisation of 
a novel calcium binding protein, Iba1. Brain Research. Molecular Brain Research. 1998; 57: 1–9. 
[PubMed: 9630473] 

[60]. Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y. Enhanced expression of Iba1, ionized 
calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke. 
2001; 32: 1208–1215. [PubMed: 11340235] 

[61]. Ramaglia V, Hughes TR, Donev RM, Ruseva MM, Wu X, Huitinga I, et al. C3-dependent 
mechanism of microglial priming relevant to multiple sclerosis. Proceedings of the National 
Academy of Sciences of the United States of America. 2012; 109: 965–970. [PubMed: 
22219359] 

[62]. Qin L, Crews FT. NADPH oxidase and reactive oxygen species contribute to alcohol-induced 
microglial activation and neurodegeneration. Journal of Neuroinflammation. 2012; 9: 5. 
[PubMed: 22240163] 

[63]. Walter TJ, Crews FT. Microglial depletion alters the brain neuroimmune response to acute binge 
ethanol withdrawal. Journal of Neuroinflammation. 2017; 14: 86. [PubMed: 28427424] 

[64]. Sanchez-Alavez M, Nguyen W, Mori S, Wills DN, Otero D, Ehlers CL, et al. Time course of 
microglia activation and brain and blood cytokine/chemokine levels following chronic ethanol 
exposure and protracted withdrawal in rats. Alcohol. 2019; 76: 37–45. [PubMed: 30554034] 

[65]. Drew PD, Johnson JW, Douglas JC, Phelan KD, Kane CJM. Pioglitazone blocks ethanol 
induction of microglial activation and immune responses in the hippocampus, cerebellum, and 
cerebral cortex in a mouse model of fetal alcohol spectrum disorders. Alcoholism, Clinical and 
Experimental Research. 2015; 39: 445–454.

[66]. Kane CJ, Phelan KD, Han L, Smith RR, Xie J, Douglas JC, et al. Protection of neurons and 
microglia against ethanol in a mouse model of fetal alcohol spectrum disorders by peroxisome 
proliferator-activated receptor-gamma agonists. Brain, Behavior, and Immunity. 2011; 25: S137–
145.

[67]. Nixon K, Kim DH, Potts EN, He J, Crews FT. Distinct cell proliferation events during abstinence 
after alcohol dependence: Microglia proliferation precedes neurogenesis. Neurobiology of 
Disease. 2008; 31: 218–229. [PubMed: 18585922] 

Nelson et al. Page 13

J Integr Neurosci. Author manuscript; available in PMC 2022 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[68]. He J, Overstreet DH, Crews FT. Abstinence from Moderate Alcohol Self-Administration Alters 
Progenitor Cell Proliferation and Differentiation in Multiple Brain Regions of Male and Female P 
Rats. Alcoholism: Clinical and Experimental Research. 2009; 33: 129–138.

[69]. Barton EA, Baker C, Leasure JL. Investigation of Sex Differences in the Microglial Response to 
Binge Ethanol and Exercise. Brain Sciences. 2017; 7:139.

[70]. Rosen S, Ham B, Mogil JS. Sex differences in neuroimmunity and pain. Journal of Neuroscience 
Research. 2017; 95: 500–508. [PubMed: 27870397] 

[71]. Kalk NJ, Guo Q, Owen D, Cherian R, Erritzoe D, Gilmour A, et al. Decreased hippocampal 
translocator protein (18 kDa) expression in alcohol dependence: a [11C]PBR28 PET study. 
Translational Psychiatry. 2017; 7: e996. [PubMed: 28072413] 

[72]. Hillmer AT, Sandiego CM, Hannestad J, Angarita GA, Kumar A, McGovern EM, et al. In 
vivo imaging of translocator protein, a marker of activated microglia, in alcohol dependence. 
Molecular Psychiatry. 2017; 22: 1759–1766. [PubMed: 28242869] 

[73]. Vilpoux C, Warnault V, Pierrefiche O, Daoust M, Naassila M. Ethanol-Sensitive Brain Regions 
in Rat and Mouse: a Cartographic Review, Using Immediate Early Gene Expression. Alcoholism: 
Clinical and Experimental Research. 2009; 33: 945–969.

[74]. Kerns RT. Ethanol-Responsive Brain Region Expression Networks: Implications for Behavioral 
Responses to Acute Ethanol in DBA/2J versus C57BL/6J Mice. Journal of Neuroscience. 2005; 
25: 2255–2266. [PubMed: 15745951] 

[75]. Keller D, Erö C, Markram H. Cell Densities in the Mouse Brain: a Systematic Review. Frontiers 
in Neuroanatomy. 2018; 12: 83. [PubMed: 30405363] 

[76]. Jinno S, Fleischer F, Eckel S, Schmidt V, Kosaka T. Spatial arrangement of microglia in the 
mouse hippocampus: a stereological study in comparison with astrocytes. Glia. 2007; 55: 1334–
1347. [PubMed: 17647290] 

[77]. Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP, et al. Microglial brain 
region-dependent diversity and selective regional sensitivities to aging. Nature Neuroscience. 
2016; 19: 504–516. [PubMed: 26780511] 

[78]. Walter TJ, Vetreno RP, Crews FT. Alcohol and Stress Activation of Microglia and Neurons: Brain 
Regional Effects. Alcoholism, Clinical and Experimental Research. 2017; 41: 2066–2081.

[79]. Lively S, Lam D, Wong R, Schlichter LC. Comparing Effects of Transforming Growth Factor 
beta1 on Microglia From Rat and Mouse: Transcriptional Profiles and Potassium Channels. 
Frontiers in Cellular Neuroscience. 2018; 12: 115. [PubMed: 29780305] 

[80]. McCarthy GM, Farris SP, Blednov YA, Harris RA, Mayfield RD. Microglial-specific 
transcriptome changes following chronic alcohol consumption. Neuropharmacology. 2018; 128: 
416–424. [PubMed: 29101021] 

[81]. Courtney KE, Polich J. Binge drinking in young adults: Data, definitions, and determinants. 
Psychological Bulletin. 2009; 135: 142–156. [PubMed: 19210057] 

[82]. Zhao Y, Wang F, Fan Y, Ping G, Yang J, Wu C. Activated microglia are implicated in cognitive 
deficits, neuronal death, and successful recovery following intermittent ethanol exposure. 
Behavioural Brain Research. 2013; 236: 270–282. [PubMed: 22985845] 

[83]. Ahlers KE, Karaçay B, Fuller L, Bonthius DJ, Dailey ME. Transient activation of microglia 
following acute alcohol exposure in developing mouse neocortex is primarily driven by BAX-
dependent neurodegeneration. Glia. 2015; 63: 1694–1713. [PubMed: 25856413] 

Nelson et al. Page 14

J Integr Neurosci. Author manuscript; available in PMC 2022 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Timeline of experimental procedures. C57BL/6J mice were used for either 
immunohistochemistry (A) or PCR (B) after ethanol.
In the IHC, mice were given ethanol, water, or sucrose for 1 or 3 DID cycles and were 

euthanized immediately following their last dose. However, mice only had access to ethanol 

or water during the DID for PCR. Moreover, ethanol animals were further subdivided into 3 

groups euthanized immediately or following 1 or 10 days of abstinence.
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Fig. 2. Binge-like consumption changes hippocampal microglia. Iba-1 immunoreactivity was 
upregulated in the dentate gyrus.
Representative photomicrographs of the dentate gyrus of mice given access to 3 cycles of 

water (A), 3 cycles of sucrose (B), 1 cycle of EtOH (C), or 3 cycles EtOH (D). The dashed 

grey lines outline the edges of the granular cell layer of the DG. Insets of microglia after 

water (E), 1 cycle of EtOH (F), and 3 cycles of EtOH (G) highlight morphological changes 

in the microglia-induced binge. Quantification of the immunoreactivity (IR) indicated that 

after 3 cycles of EtOH, there was an increase in the IR in the DG (H) but not the cornu 

amonis regions (I, J). Cell counts indicated that the number of microglia in the hippocampus 

increased after ethanol exposure but decreased after 3 cycles (K–M). *p > 0.05 compared to 

water; Scale bars in representative photomicrographs = 50 μm. ML, molecular layer.

Nelson et al. Page 16

J Integr Neurosci. Author manuscript; available in PMC 2022 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Binge-like consumption did not significantly impact the microglia of the amygdala.
Representative photomicrographs of microglia from the basolateral amygdala (BLA) 

indicate consistent density and morphology in mice with 3 cycles of water (A), 3 cycles 

of sucrose (B), 1 cycle of EtOH (E), or 3 cycles EtOH (F). The dashed grey lines 

outline the ventral boundaries of the external capsule along the BLA. Quantification of 

the immunoreactivity (IR) indicated that EtOH did not affect the IR in either BLA (C) or 

the CeA (G). Likewise, no significant differences were observed in the microglia number (D, 

H). Scale bars in representative photomicrographs = 50 μm.
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Fig. 4. Binge-like consumption increases microglial expression of the immunologic CR3.
Ox-42 immunoreactivity was upregulated in the dentate gyrus. Representative 

photomicrographs of the dentate gyrus of mice given access to 3 cycles of water (A), 

3 cycles of sucrose (B), 1 cycle of EtOH (C), or 3 cycles of EtOH (D). The dashed 

grey lines outline the edges of the granular cell layer of the DG. Quantification of the 

immunoreactivity (IR) indicated that after 1 and 3 cycles of EtOH, there were increases in 

the IR in the DG (E) but not the cornu amonis regions (F, G). *p > 0.05 compared to water; 

Scale bars in representative photomicrographs = 75 μm. ML, molecular layer.
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Fig. 5. Ethanol increases microglial mRNA.
After both 1 and 3 weeks of ethanol, Aif-1 was significantly upregulated, but only after 

3 weeks of ethanol exposure did the increase persist even 10 days after binge-like ethanol 

consumption (A). No significant changes were observed in Itgam expression (B). *p > 0.05 

compared to water.
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