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Abstract

Many advances in research regarding immuno-interactions with cancer were developed with the help of ordinary
differential equation (ODE) models. These models, however, are not effectively capable of representing problems
involving individual localisation, memory and emerging properties, which are common characteristics of cells and
molecules of the immune system. Agent-based modelling and simulation is an alternative paradigm to ODE
models that overcomes these limitations. In this paper we investigate the potential contribution of agent-based
modelling and simulation when compared to ODE modelling and simulation. We seek answers to the following
questions: Is it possible to obtain an equivalent agent-based model from the ODE formulation? Do the outcomes
differ? Are there any benefits of using one method compared to the other? To answer these questions, we have
considered three case studies using established mathematical models of immune interactions with early-stage
cancer. These case studies were re-conceptualised under an agent-based perspective and the simulation results
were then compared with those from the ODE models. Our results show that it is possible to obtain equivalent
agent-based models (i.e. implementing the same mechanisms); the simulation output of both types of models
however might differ depending on the attributes of the system to be modelled. In some cases, additional insight
from using agent-based modelling was obtained. Overall, we can confirm that agent-based modelling is a useful
addition to the tool set of immunologists, as it has extra features that allow for simulations with characteristics that
are closer to the biological phenomena.

Introduction
Advances in cancer immunology have been facilitated by
the joint work of immunologists and mathematicians
[1-3]. Some of the knowledge regarding interactions
between the immune system and tumours is a result of
using mathematical models. Most existing mathematical
models in cancer immunology are based on sets of ordin-
ary differential equations (ODEs) [2]. This approach, how-
ever, has limitations pertaining problems involving spatial
interactions or emerging properties [4,5]. In addition, the
analysis of ODE models is conducted at a high level of
aggregation of the system entities. An alternative to ODE
modelling that overcomes these limitations is systems

simulation modelling. It is a set of methodologies and
applications which mimic the behaviour of a real system
[6-8]. Systems simulation modelling has also benefits com-
pared to real-world experimentation in immunology,
including time and cost effectiveness due to the resource-
intensiveness of the biological environment. Furthermore,
in a simulation environment it is possible to systematically
generate different scenarios and conduct experiments. In
addition, the “what-if” scenarios studied in such an envir-
onment do not require ethics approval.
Agent-based modelling and simulation (ABMS) is an

object-oriented system modelling and simulation approach
that employs autonomous entities that interact with each
other [9-11]. The focus during the modelling process is on
defining templates for the individual entities (agents) being
modelled and establishing possible interactions between
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these entities. The agent behaviour is described by rules
that determine how these entities learn, adapt and interact
with each other. The overall system behaviour arises from
the agents’ individual behaviour and their interactions
with other agents and the environment. For cancer immu-
nology, it can amalgamate in vitro data on individual inter-
actions between cells and molecules of the immune
system and tumour cells to build an overview of the sys-
tem as a whole [12]. Few studies, however, apply ABMS to
cancer research. Although there are examples showing the
success of simulation aiding advances in immunology
[13-18], this set of methodologies is still not popular.
There are several reasons for this: (1) ABMS is not well
known in the immunology research field; (2) although
simulation is acknowledged as being a useful tool by
immunologists, there is no knowledge of how to use it;
and (3) there is not enough trust in the results produced
by simulation.
Our aim is to outline the potential contribution of

ABMS to help cancer-related immune studies. In order
to achieve our aim, we use a case study approach. We
have chosen three well-established mathematical models
describing interactions between the immune system and
early-stage cancer as our test candidates. These models
consist of systems of ODEs solved numerically for a
time interval. By studying these models we focus on the
following three research enquiries:

1. Is it possible to obtain an equivalent ABMS model
based on the mathematical equations from the ODEs
(i.e. can we create an object oriented model by re-
using ODEs that have been created for modelling
behaviour at an aggregate level)?
2. Do we get equivalent simulation outputs for both
approaches?
3. What benefits could we gain by re-conceptualizing
a mathematical model under an ABMS view?

Case studies
The case studies are chosen by considering aspects such
as the population size, modelling effort, model complex-
ity, observation of the ODEs outcome results and the
number of different populations modelled. The mathe-
matical models chosen vary largely within these aspects
and therefore we can perform a more robust analysis of
our experiments, as shown in Table 1.

The first case study considered is based on an ODE
model involving interactions between tumour cells and
generic effector cells. The second case study adds to the
previous model the influence of IL-2 cytokine molecules
in the immune responses of effector cells towards tumour
cells. The final case study comprises an ODE model of
interactions between effector cells, tumour cells, and IL-2
and TGF-b molecules. For all case studies, the mathemati-
cal model as well as the ABMS model are presented, the
outcomes are contrasted and the benefits of each approach
are assessed. The models differ in terms of complexity of
interactions, population sizes and the number of agents
involved in the interactions (Table 1).
The remainder of this paper is organized as follows.

We start with a literature review of works comparing
ODEs and ABMS for different simulation domains. First,
we show general work that has been carried out and then
we focus on research concerned with the comparison for
immunological problems. Finally, we discuss gaps in the
literature regarding cancer research. In the methodology
section, we introduce our agent-based modelling devel-
opment process and the methods used for conducting
the experimentation. In the following section, we present
our case studies, comparison results and discussions. In
the last section, we finally draw our overall conclusions
and outline future research opportunities.

Related work
In this section we describe the literature concerned with
the comparison between ODE and ABMS modelling for
different simulation domains. We start our review by
showing general work that has been carried out to assess
the differences of both approaches. Subsequently, we focus
on research concerned with the comparison of the strate-
gies for immunological problems. We found that there is a
scarcity of literature comparing the two approaches for
immune simulations. Furthermore, to our knowledge
there is no research contrasting the approaches for the
immune system and cancer interactions.
Over the past years several authors have acknowledged

that little work has been done to compare both methods.
In one of the pioneer studies in this area, Scholl [19] gives
an overview of ODE and ABMS, describes their areas of
applicability and discusses the strengths and weaknesses of
each approach. The author also tries to identify areas that
could benefit from the use of both methodologies in

Table 1 Case studies considered

Case Study Number of populations Population size Complexity

1) Tumour/Effector 2 5 to 600 Low

2) Tumour/Efector/IL-2 3 104 Medium

3) Tumour/Effector/IL-2/ TGF-b 4 104 High
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multi-paradigm simulations and concludes that there is lit-
tle literature concerned with the comparison of both
methodologies and their cross studies. Pourdehnad et al.
[20] compare the two approaches conceptually by discuss-
ing the potential synergy between them to solve problems
of teaching decision-making processes. The authors
explore the conceptual frameworks for ODE modelling
(using Systems Dynamics (SD)) and ABMS to model
group learning and show the differences between the
approaches in order to propose their use in a complemen-
tary way. They conclude that a lack of knowledge exists in
applying multi-paradigm simulation that involves ODEs
and ABMS. More recently, Stemate et al. [21] also com-
pare these modelling approaches and identify a list of
likely opportunities for cross-fertilization. The authors see
this list as a starting point for other researchers to take
such synergistic views further.
Studies on this comparison for Operations Research

were also conducted. For example, Schieritz [22] and
Scheritz et al. [23] present a cross-study of SD (which is
implemented using ODEs) and ABMS. They define their
features and characteristics and contrast the two meth-
ods. In addition, they suggest ideas of how to integrate
both approaches. Continuing their studies, in [24] the
authors then describe an approach to combine ODEs and
ABMS for solving supply chain management problems.
Their results show that the combined SD/ABMS model
does not produce the same outcomes as ODE model
alone. To understand why these differences occur, the
authors propose new tests as future work.
In an application in health care, Ramandad et al. [25]

compare the dynamics of a stochastic ABMS with those
of the analogous deterministic compartment differential
equation model for contagious disease spread. The
authors convert the ABMS into an ODE model and
examine the impact of individual heterogeneity and dif-
ferent network topologies. The deterministic model
yields a single trajectory for each parameter set, while
stochastic models yield a distribution of outcomes. More-
over, the ODE model and ABMS dynamics differ in sev-
eral metrics relevant to public health. The responses of
the models to policies can even differ when the base case
behaviour is similar. Under some conditions, however,
the differences in means are small, compared to variabil-
ity caused by stochastic events, parameter uncertainty
and model boundary.
An interesting philosophical analysis is conducted by

Schieritz [26] analyses two arguments given in literature
to explain the superiority of ABMS compared with
ODEs: (1) “the inability of ODE models to explain emer-
gent phenomena“ and (2) “their flaw of not considering
individual diversity“. In analysing these arguments, the
author considers different concepts involving simulation
research in sociology. Moreover, the study identifies the

theories of emergence that underlie the ODE and ABMS
approaches. The author points out that “the agent-based
approach models social phenomena by modelling indivi-
duals and interactions on a lower level, which makes it
implicitly taking up an individualist position of emer-
gence; ODEs, on the other hand, without explicitly refer-
ring to the concept of emergence, has a collectivist
viewpoint of emergence, as it tends to model social phe-
nomena on an aggregate system level“. As a second part
of the study, the author compares ODEs and ABMS for
modelling species competing for resources to analyse the
effects of evolution on population dynamics. The conclu-
sion is that when individual diversity is considered, it lim-
its the applicability of the ODE model. However, it is
shown that “a highly aggregate more ODE-like model of
an evolutionary process displays similar results to the
ABMS“. This statement suggests that there is the need to
investigate further the capabilities and equivalences of
each approach.
Similarly, Lorenz [27] proposes that three aspects be

compared and that this helps with the choice between
ODE and ABMS: structure, behaviour and emergence.
Structure is related to how the model is built. The struc-
ture of a model in ODE is static, whereas in ABMS it is
dynamic. In ODE, all the elements, individuals and inter-
actions of the simulation are developed in advance. In
ABMS, on the other hand, agents are created or destroyed
and interactions are defined through the course of the
simulation run. The second aspect (behaviour) focuses on
the central generators of behaviours in the model. For
ODE the behaviour generators are feedback and accumu-
lations, while for ABMS they are micro-macro-micro feed-
back and interaction of the systems elements. Both
methodologies incorporate feedback. ABMS, however, has
feedback in more than one level of modelling. The third
aspect lies in their capacity to capture emergence, which
differs between the two methodologies. In disagreement
with [26] mentioned earlier, the author states that ABMS
is capable of capturing emergence, while the one-level
structure of ODE is insufficient in that respect.
In this work we discuss the merits of ODEs and ABMS

for problems involving the interactions with the immune
system and early-stage cancer that can benefit from
either approach. To our knowledge (and as the gap in the
literature shows) such a study has not been conducted
before. The differences between ODEs and ABMS when
applied to classes of problems belonging to different
levels of abstraction are well established in the literature
[23]. However, we believe there is a range of problems
that could benefit from being solved by both approaches.
In addition, in many cases such as for example molecular
and cellular biology, it is still not possible to use the full
potential of ABMS as only the higher level of abstraction
of the system is known. Another reason to investigate
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problems that can interchangeably benefit from both
approaches is that, as many real-world scenarios, such as
biological systems, constantly gather new information,
the corresponding simulations have to be updated fre-
quently to suit new requirements. For some cases, in
order to suit these demands, the replacement of the cur-
rent simulation approach for new developments needs to
be considered. Our case study investigation seeks to pro-
vide further understanding on these problems and fill
some of the gaps existing in simulations for early-stage
cancer research.

Methodology
In this section we outline the activities and methods neces-
sary to realise our objectives. We examine case studies of
established mathematical models that describe some
immune cells and molecules interacting with tumour cells.
These case studies were chosen by considering aspects
such as the behaviour of the entities of the model, size
(and number) of populations involved and the modelling
effort. The original mathematical models are built under
an agent-based approach and results compared.
ABMS is capable of representing space; however, as we

chose mathematical models which do not consider spatial
interactions, our corresponding ABMS models do not
regard space (distance) and how it would affect the simu-
lation outcomes. The outcome samples obtained by
ODEs and ABMS were statistically compared using the
Wilcoxon rank-sum test to formally establish whether
they are statistically different from each other. This test
is applied as it is robust when the populations are not
normally distributed; this is the case for the samples
obtained by the ODEs and ABMS. Other approaches for
assessing whether the two samples are statistically differ-
ent, such as the t-test, could provide inaccurate results as
they perform poorly when the samples are non-normal.

The agent-based model development
The agent-based models were implemented using (Any-
Logic™ 6.5 [28]). For the agent design we follow the
steps defined in [29]: (1) identify the agents (cells and
molecules), (2) define their behaviour (die, kill tumour
cells, suffer apoptosis), (3) add them to an environment,
and (4) establish connections to finally run the simula-
tions, as further discussed next:
1. Identify the possible agents. For this purpose, we

use some characteristics defined in [9]. An agent is: (1)
self-contained, modular, and a uniquely identifiable indivi-
dual; (2) autonomous and self-directed; (3) a construct
with states that varies over time; and (4) social, having
dynamic interactions with other agents that impact its
behaviour. By looking at the ODE equations, therefore, the
variables that are differentiated over time (their disaggre-
gation) will either be corresponding to agents or states of

one agent [29,30]. The decision whether the stock is an
agent or an agent state varies depending on the problem
investigated. Based on our case studies, however, we sug-
gest that: (1) these variables preferably become states
when they represent accumulations of elements from the
same population; or (2) they become agents when they
represent accumulations from different populations. For

example, if you have an ODE
dx
dt

= y, x should either be an

agent or an agent state, depending on the problem
context.
2. Identify the behaviour and rules of each agent.

In our case, the agent’s behaviours will be determined by
mathematical equations converted into rules. Each agent
has two different types of behaviours: reactive and proac-
tive behaviours. The reactive behaviour occurs when the
agents perceive the context in which they operate and
react to it appropriately. The proactive behaviour
describes the situations when the agent has the initiative
to identify and solve an issue in the system.
3. Implement the agents. Based on step 2 we develop

the agents. The agents are defined by using state charts
diagrams from the unified modelling language (UML)
[31]. With state charts it is possible to define and visualize
the agents’ states, transitions between the states, events
that trigger transitions, timing and agent actions [4].
Moreover, at this stage, the behaviours of each agent are
implemented using the simulation tool. Most of our tran-
sitions occur according to a certain rate. For our imple-
mentation, the rate is obtained from the mathematical
equations.
4. Build the simulation. After agents are defined, their

environment and behaviour previously established should
be incorporated in the simulation implementation. More-
over, in this step we include parameters and events that
control the agents or the overall simulation.
For example, let us consider a classical ODE which

describes an early-stage tumour growth pattern [2]:

dT
dt

= Tf (T) (1)

where:

• T is the tumour cell population at time t,
• T (0) > 0,
• f (T ) specifies the density dependence in prolifera-
tion and death of the tumour cells. The density
dependence factor can be written as:

f (T) = p(T) − d(T) (2)

where:

• p(T ) defines tumour cells proliferation
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• d(T ) define tumour cells death
The expressions for p(T ) and d(T ) are generally
defined by power laws:

p(T) = aTα (3)

d(T) = bTβ (4)

In this case, our agent would be a tumour cell that repli-
cates and dies according to the parameters a and b. The
tumour cell agent behaviours are “proliferate” or “die”,
according to the rate defined by the mathematical model.
If the rate is positive, there is proliferation, otherwise,
death occurs (Table 2).
The tumour cell assumes two states, alive and dead, as

shown in Figure 1. In the alive state, these cells can repli-
cate and die. If the growth rate is positive, the cell repli-
cates according to the rate value; otherwise, it dies. There
is, therefore a branch connecting the two transitions pro-
liferate and death to the alive state. Once cells move to
the final state dead, they are eliminated from the system
and from the simulation.
The transition connecting the state alive to the branch is

triggered by the growth rate. In the state charts, the round
squares represent the states and the arrows represent the
transitions between the states. Arrows within states indi-
cate the agent actions (or behaviours) and the final state is
represented by a circle.
Our agents are stochastic and assume discrete time steps

to execute their actions. This, however, does not restrict
the dynamics of the models, as most of our agents state
transitions are executed according to certain rates - this
will go in parallel with steps execution, as defined in Any-
Logic [28]. The rate triggered transition is used to model a
stream of independent events (Poisson stream). In case
more than one transition/interaction should occur at the
same time, they are executed by AnyLogic in a discrete
order in the same time-step. In the next section we apply
the methodology to study our case studies and compare
the outcomes.

Case 1: interactions between tumour cells and generic
effector cells
For the first case, a mathematical model of tumour cells
growth and their interactions with general immune effec-
tor cells defined in [32] is considered. Effector cells are
responsible for killing the tumour cells inside the

organism. Their proliferation rate is proportional to the
number of existing tumour cells. As the quantities of effec-
tor cells increase, the capacity of eliminating tumour cells
is boosted. These immune cells proliferate and die per
apoptosis, which is a programmed cellular death. In the
model, cancer treatment is also considered. The treatment
consists of injections of new effector cells into the organ-
ism. The details of the mathematical model are given in
the following section.

The mathematical model
The interactions between tumour cells and immune
effector cells can be defined by the following equations:

dT
dt

= Tf (T) − dT(T, E) (5)

dE
dt

= pE(T, E) − dE(T, E) − aE(E) + �(T) (6)

where

• T is the number of tumour cells,
• E is the number of effector cells,
• f(T ) is the growth of tumour cells,
• dT (T, E) is the number of tumour cells killed by
effector cells,
• pE(T, E) is the proliferation of effector cells,
• dE(T, E) is the death of effector cells when fighting
tumour cells,
• aE(E) is the death (apoptosis) of effector cells,

Table 2 Agents’ parameters and behaviours for the
tumour growth model

Parameters Reactive behaviour Proactive behaviour

a, alpha, b and beta Dies if rate < 0 Proliferates if rate > 0

Figure 1 Tumour cell agent.
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• F(T ) is the treatment or influx of cells.

Kuznetsov model [32] defines the functions f(T ), dT
(T, E), pE(E, T ), dE(E, T ), aE(E) and F(t) as shown below:

f (T) = a(1 − bT) (7)

dT(T, E) = nTE (8)

pE(E, T) =
pTE

g + T
(9)

dE(E, T) = mTE (10)

aE(E) = dE (11)

�(t) = s (12)

The agent-based model
Two classes of agents are defined: the tumour cell and
the effector cell. The agents’ parameters and behaviours
corresponding to each state are shown in Table 3. All
behaviours are derived from the mathematical model. In
the table, each agent has two different types of beha-
viours: reactive and proactive behaviours.
State charts are often used in ABMS to show the differ-

ent states entities can be in and how they move from one
state to the other (transitions). For our models we also use
events, which are actions scheduled to occur in the course
of the simulation. The state chart for the tumour cells is
shown in Figure 2(a), in which an agent proliferates, dies
with age or is killed by effector cells. In addition, at a cer-
tain rate, the tumour cells contribute to damage to effector
cells. The rates defined in the transitions are the same as
those from the mathematical model (Table 4). Figure 2(b)
presents the effector cell agent state chart, in which either

the cell is alive and able to kill tumour cells and proliferate
or is dead by age or apoptosis. In the transition rate calcu-
lations, the variable TotalTumourCells corresponds to the
total number of tumour cell agents; and the variable Tota-
lEffectorCells is the total number of effector cell agents. In
the simulation model, apart from the agents, there is also
an event - namely, treatment - which produces new effec-
tor cells with a rate defined by the parameter s.

Experimental design for the simulations
Four scenarios were investigated. The scenarios have
different death rates of tumour cells (defined by para-
meter b), different effector cells apoptosis rates (defined
by parameter d) and different treatments (parameter s).
The values for these parameters as well as the initial
number of cells were obtained from [2] (see Table 5).
The initial values for effector cells and tumour cells
were set to 5 and 50, respectively. In the first three sce-
narios, cancer treatment was considered, while the
fourth case did not consider any treatment. The simula-
tion for the ABMS was run fifty times and the mean
values are displayed as results. The mathematical model
outcomes display values for a time period of one hun-
dred days and therefore the same interval was deter-
mined for the ABMS.

Results and discussion
In the first scenario results, shown in Figure 3, the beha-
viour of the tumour cells appears similar for both ODEs
and ABMS. However, the Wilcoxon test rejected the simi-
larity hypothesis for both outcomes, as shown in Table 6.
The reason for this test pointing out that the outcomes
differ is that tumour cells for the ODE model decreased
asymptotically towards to zero, while the ABMS behaviour
is discrete and therefore reached zero. Furthermore, the
variances observed in the ABMS curve, given its stochastic
characteristic, also influenced the Wilcoxon test results.
The number of effector cells for both simulations follow
the same pattern, although the numbers are not the same
due to the agents variability. This variability is very evident
with regards to the effector cells population for two main
reasons: (1) for this first case study the size of the popula-
tions involved is relatively small, which increases the
impacts of stochasticity in the outcomes; and (2) the ODE
system changes the amount of cells overtime in a continu-
ous fashion, which means that in this simulation fractions
of cells are considered. ABMS does not consider fraction
of cells - a cell either is alive or dead. This is implemented
as a boolean indicator and corresponds to the real world,
where fractions of cells could obviously not exist. Consid-
ering the above explanations we conclude that for this sce-
nario the ABMS outcomes seem more realistic, as in
biological experiments cells are also atomic entities and
stochastic variability occurs.

Table 3 Agents’ parameters and behaviours for case 1

Agent Parameters Reactive behaviour Proactive
behaviour

Tumour
Cell

a and b Dies (with age)

a and b Proliferates

m Damages effector
cells

n Dies killed by effector
cells

Effector
Cell

m Dies (with age)

d Dies per apoptosis

p and g Proliferates

s Is injected as treatment
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(a) Tumour cell agent (b) Effector cell agent

Figure 2 ABMS state charts for case 1.

Table 4 Transition rates calculations from the mathematical equations for case 1

Agent Transition Mathematical equation Transition rate

Tumour Cell proliferation aT (1 - Tb) a - (TotalTumour.b)

death aT (1 - Tb) a - (TotalTumour.b)

dieKilledByEffectorCells nTE n.TotalEffectorCells

causeEffectorDamage mTE m

Effector Cell Proliferation
pTE
g+T

p.TotalTumourCells
g+TotalTumourCells

DieWithAge dE d

DiePerApoptosis mTE message from tumour

Table 5 Simulation parameters for different scenarios of case 1.

Scenario b d s

1 0.002 0.1908 0.318

2 0.004 2 0.318

3 0.002 0.3743 0.1181

4 0.002 0.3743 0

For the other parameters, the values are the same in all experiments, i.e. a = 1.636, g = 20.19, m = 0.00311, n = 1 and p = 1.131.
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Figure 3 Results for case 1 scenario 1.
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The results for the second scenario seem similar for
effector cells, as shown in Figure 4, which was con-
firmed by the Wilcoxon test (Table 6). The results for
the tumour cells are visibly not the same. Regarding the
ODE simulation, in the first ten days the tumour cells
population first decreases and then grows up to a value
of 240 cells, in which the growth reaches a steady-state.
The initial decrease of tumour cells is also observed in
the ABMS outcomes. After ten days, however, there is a
smaller cellular increase and a steady-state is not
observed. Similar to the previous scenario, the simula-
tion curve presents an erratic behaviour throughout the
simulation days. There is, however an unexpected decay
of tumour cells over time. This is explained by the indi-
vidual characteristics of the agents and their growth/
death rates attributed to their instantiation. As the death
rates of tumour cells agents are defined according to the
mathematical model, when the tumour cell population
grows, the newborn tumour cells have higher death
probabilities, which leads to a considerable number of
cells dying out. This indicates that the individual beha-
viour of cells can lead to a more chaotic behaviour
when compared to the aggregate view observed in the
ODE simulation.
For scenarios 3 and 4, shown in Figures 5 and 6

respectively, the results for both approaches differ com-
pletely. Moreover, with regard to the tumour cells

curve, the differences are even more evident. The ODEs
outcomes for scenario 3 reveal that tumour cells
decreased as effector cells increased, following a preda-
tor-prey trend curve. For the ABMS, however, the num-
ber of effector cells decreased until a value close to zero
was reached, while the tumour cells numbers varied dif-
ferently from the ODEs results. As we discussed for the
previous scenarios, the predator prey-pattern observed
in the ODE simulation was only possible due to its con-
tinuous character. In the ODE simulation outcome
curve for the effector cells it is possible to observe, for
instance, that after sixty days the number of effector
cells ranges between one and two. These values could
not be reflected in the ABMS simulation and therefore
the differences occur.
In scenario 4, although effector cells appear to decay

in a similar trend for both approaches, the results for
tumour cells vary widely. In the ODE simulation, the
numbers of effector cells reached a value close to zero
after twenty days and then increased to a value smaller
than one. For the ABMS simulation, however, these
cells reached zero and never increased again.
Similar to scenarios 2 and 3, the continuous ODE simu-

lation outcomes contrasted with discrete agents caused the
different outcomes. Furthermore, as occurred in scenario
2, the individual behaviour and rates attributed to the cells
seemed to have an impact in the growth of tumours.

Table 6 Wilcoxon test with 5% significance level comparing case 1 simulation results

Implementation Cells Scenario (p-value)

1 2 3 4

ABS Tumour
Effector

0
0.3789

0
0.6475

0.8591
0

0
0

ABS - Fix 1 Tumour
Effector

0
0

0
0.3023

0
0

0.0011
0

ABS - Fix 2 Tumour
Effector
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Figure 4 Results for case 1 scenario 2.
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Summary
An ODE model of tumour cells growth and their interac-
tions with general immune effector cells was considered
for re-conceptualization using ABMS. Four scenarios
considering small population numbers were investigated
and, for only one of them, the ABMS results were similar
to the mathematical model. The differences observed
were explained by the way each simulation approach is
implemented, which includes their data representation
and processing. ODE simulations deal with continuous
values for the entities whereas ABMS represents discrete
agents. Furthermore, the stochastic behaviour of the
ABMS and how it affects small populations is not present
in the ODEs. It also appears that the individual interac-
tions between populations in the ABMS leads to a more
chaotic behaviour, which does not occur at a higher
aggregate level. The result analysis also reveals that con-
ceptualizing the ABMS model from the mathematical
equations does not always produce the same outcomes.
One alternative to obtain better matching results would
be the development of an agent-based model, which is

not based on the rates defined in the ODE model, but
using real data (available or collectable) or some form of
parameter calibration.

Case 2: interactions between tumour cells, effector cells
and cytokines IL-2
The second case study investigated is concerned with a
mathematical model for the interactions between
tumour cells, effector cells and the cytokine IL-2. This is
an extension of the previous study, since it considers IL-
2 as molecules that will mediate the immune response
towards tumour cells. They will interfere on the prolif-
eration of effector cells according to the number of
tumour cells in the system. Treatment is now applied in
two different ways, by injecting effector cells or injecting
cytokines.

The mathematical model
The mathematical model used in case 2 is obtained
from [33]. The model’s equations illustrate the non-spa-
tial dynamics between effector cells (E), tumour cells (T)
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Figure 5 Results for case 1 scenario 3.
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Figure 6 Results for case 1 scenario 4.
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and the cytokine IL-2 (IL), described by the following
differential equations:

dE
dt

= cT − μ2E +
p1EIL

g1 + IL
+ s1 (13)

Equation 13 describes the rate of change for the effector
cell population E [33]. Effector cells grow based on recruit-

ment (cT) and proliferation ( p1 EIL

g1+IL
). The parameter c repre-

sents the antigenicity of the tumour cells (T) [33,34]. μ2 is
the death rate of the effector cells. p1 and g1 are para-
meters used to calibrate the recruitment of effector cells
and s1 is the treatment that will boost the number of
effector cells.

dT
dt

= a(1 − bT) − aaET
g2 + T

(14)

Equation 14 describes the changes that occur in the
tumour cell population T over time. The term a(1 - bT)
represents the logistic growth of T (a and b are parameters

that define how the tumour cells will grow) and aaET
g2+T is the

number of tumour cells killed by effector cells. aa and g2
are parameters to adjust the model.

dIL

dt
=

p2ET
g3 + T

− μ3IL + s2 (15)

The IL-2 population dynamics is described by Equa-

tion 15. p2ET
g3+T determines IL-2 production using para-

meters p2 and g3. μ3 is the IL-2 loss. s2 also represents
treatment. The treatment is the injection of IL-2 in the
system.

The agent-based model
The populations of agents are therefore the effector cells,
tumour cells and IL-2 and their behaviour is shown in

Table 7. The state charts for each agent type are shown in
Figure 7. The ABMS model rates corresponding to the
flow values in the ODEs model are given in Table 8. In the
transition rate calculations, the variable TotalTumour cor-
responds to the total number of tumour cell agents, the
variable TotalEffector is the total number of effector cell
agents and TotalIL_2 is the total number of IL-2 agents.
In the simulation model, apart from the agents, there

are also two events:

1. TreatmentS1, which adds effector cell agents
according to the parameter s1
2. TreatmentS2, which adds IL-2 agents according to
the parameter s2

Experimental design for the simulation
The experiment was conducted assuming the same para-
meters as those of the mathematical model (Table 9). For
the ABMS model, the simulation was run fifty times and
the average outcome value for these runs was collected.
Each run simulated a period equivalent to six hundred
days, following the same time span used for the numeri-
cal simulation of the mathematical model. The initial
values set to effector cells, tumour cells and IL-2 were,
respectively, 10, 50 and 0.

Results and discussion
The results obtained are shown in Figures 8, 9 and 10
for effector cells, tumour cells and IL-2 respectively.
The ABMS was validated by comparing its outputs with
those produced by the ODEs. As the figures reveal, the
results for all populations are very similar; the growth
and decrease of all populations occur at similar times
for both approaches. Furthermore because of the large
population sizes (around 104), ABMS model curves have

Table 7 Agents’ parameters and behaviours for case 2

Agent Parameters Reactive behaviour Proactive behaviour

Effector Cell mu2 Dies

p1 and g1 Reproduces

c Is recruited

s1 Is injected as treatment

p2 and g3 Produces IL-2

aa and g2 Kills tumour cells

Tumour Cell a and b Dies

a and b Proliferates

aa and g2 Dies killed by effector cells

c Induces effector recruitment

IL-2 p2 and g3 Is produced

mu3 Is lost

s2 Is injected

Figueredo et al. BMC Bioinformatics 2013, 14(Suppl 6):S6
http://www.biomedcentral.com/1471-2105/14/S6/S6
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minor erratic behaviour, which corroborates to the simi-
lar patterns observed in the outcomes. These similarities
are also confirmed by the Wilcoxon test results pre-
sented in Table 10. The table shows the p-values
obtained with a 5% significance level. For the effector
and tumour cells, the p-value was higher than 0.5,

which indicates that the test failed to reject the null
hypothesis that the outcomes were similar.

Summary
A mathematical model for the interactions between
tumour cells, effector cells and the cytokine IL-2 was
considered to investigate the potential contribution of
building the model under an ABMS perspective. Experi-
mentation shows that results are very similar, which is
explained by the large population sizes considered in the
experiments. In further experiments, the same model was
also run under small population sizes and the results for
the simulations were different due to stochasticity and
the approaches particularities, as discussed in the pre-
vious case study. Regarding the use of computational
resources for larger data sets, ABMS was far more time-
and memory-consuming than the ODEs.

Case 3: interactions between tumour cells, effector cells,
IL-2 and TGF-b
The third case study is based on the mathematical model
of Arciero et al. [34], which consists of a system of ODEs
describing interactions between tumour cells and

Figure 7 ABMS state charts for the agents of case 2.

Table 8 Transition rates calculations from the mathematical equations for case 2

Agent Transition Mathematical equation Transition rate

Effector Cell Reproduce p1.ILE
g1+IL 2

p1.TotalIL 2.TotalEffector
g1+TotalIL 2

Die μ2E mu2

killTumour aaET
g2+T aa TotalTumour

g2+TotalTumour

ProduceIL2 p2ET
g3+T

p2.TotalTumour
g3+TotalTumour

Tumour Cell Reproduce aT(1 - bT ) a - (TotalTumour.b)

Die aT(1 - bT ) a - (TotalTumour.b)

DieKilledByEffector aaTE
g2+T

message from effector

IL-2 Loss μ3IL mu3

Table 9 Parameter values for case 2

Parameter Value

a 0.18

b 0.000000001

c 0.05

aa 1

g2 100000

s1 0

s2 0

mu2 0.03

p1 0.1245

g1 20000000

p2 5

g3 1000

mu3 10

Figueredo et al. BMC Bioinformatics 2013, 14(Suppl 6):S6
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immune effector cells, as well as the immune-stimulatory
and suppressive cytokines IL-2 and TGF-b. According to
Arciero et al. [34] TGF-b stimulates tumour growth and
suppresses the immune system by inhibiting the

activation of effector cells and reducing tumour antigen
expression. The mathematical model, together with
further details on the interactions studied is introduced
in the following section.
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Figure 8 ODEs and ABMS results for effector cells of case 2.
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Figure 9 ODEs and ABMS results for tumour cells of case 2.
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Figure 10 ODEs and ABMS results for IL2 of case 2.
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The mathematical model
The mathematical model we use in case 2 is obtained from
[33]. The model’s equations illustrate the non-spatial
dynamics between effector cells (E), tumour cells (T), IL-2
(I) and TGF-b (S) cytokines. The model is described by
the following differential equations:

dE
dt

=
cT

1 + γ S
− μ1E +

(
p1EI
g1 + I

) (
p1 − q1S

q2 + S

)
(16)

Equation 16 describes the rate of change for the effec-
tor cell population E. According to Arciero et al. [34],
“effector cells are assumed to be recruited to a tumour
site as a direct result of the presence of tumour cells“.

The parameter c in
cT

1 + γ S
represents the antigenicity of

the tumour, which measures the ability of the immune
system to recognize tumour cells. The presence of
TGF − β (S) reduces antigen expression, thereby limiting
the level of recruitment, measured by inhibitory para-
meter g. The term μ1E represents loss of effector cells
due to cell death, and the proliferation term(

p1EI
g1 + I

) (
p1 − q1S

q2 + S

)
asserts that effector cell prolif-

eration depends on the presence of the cytokine IL-2
and is decreased when the cytokine TGF-b is present. p1
is the maximum rate of effector cell proliferation in the
absence of TGF-b, g1 and q2 are half-saturation con-
stants, and q1 is the maximum rate of anti-proliferative
effect of TGF- b.

dT
dt

= aT
(

1 − T
K

)
− aaET

g2 + T
+

p2ST
g3 + S

(17)

Equation 17 describes the dynamics of the tumour cell

population. The term aT
(

1 − T
K

)
represents logistic

growth dynamics with intrinsic growth rate a and carry-
ing capacity K in the absence of effector cells and

TGF-b. The term
aaET
g2 + T

is the number of tumour cells

killed by effector cells. The parameter aa measures the
strength of the immune response to tumour cells. The

third term
p2ST
gs + S

accounts for the increased growth of

tumour cells in the presence of TGF-b. p2 is the maxi-
mum rate of increased proliferation and g3 is the half-

saturation constant, which indicates a limited response
of tumour cells to this growth-stimulatory cytokine [34].

dI
dt

=
p3ET

(g4 + T)(1 + αS)
− μ2I (18)

The kinetics of IL-2 are described in equation 18. The

first term
p3ET

(g4 + T)(1 + αS)
represents IL-2 production

which reaches a maximal rate of p3 in the presence of
effector cells stimulated by their interaction with the
tumour cells. In the absence of TGF-b, this is a self-lim-
iting process with half-saturation constant g4 [34]. The
presence of TGF-b inhibits IL-2 production, where the
parameter is a measure of inhibition. Finally, μ2I repre-
sents the loss of IL-2.

dS
dt

=
p4T2

θ2 + T2
− μ3S (19)

Equation 19 describes the rate of change of the sup-
pressor cytokine, TGF-b. According to Arciero et al.
[34], “experimental evidence suggests that TGF-b is pro-
duced in very small amounts when tumours are small
enough to receive ample nutrient from the surrounding
tissue. However, as the tumour population grows suffi-
ciently large, tumour cells suffer from a lack of oxygen
and begin to produce TGF-b in order to stimulate angio-
genesis and to evade the immune response once tumour
growth resumes“. This switch in TGF-b production is

modelled by term p4T2

θ2 + T2
, where p4, is the maximum

rate of TGF-b production and τ is the critical tumour
cell population in which the switch occurs. The decay
rate of TGF-b is represented by the term μ3S.

The agent-based model
Our agents are the effector cells, tumour cells, IL-2 and
TGF-b and the behaviour of each agent is shown in
Table 11. The state charts for each agent type were
developed, as illustrated in Figure 11. The ABMS model
rates corresponding to the mathematical model are
given in Table 12. In the transition rate calculations, the
variable TotalTumour corresponds to the total number
of tumour cell agents; the variable TotalEffector is the
total number of effector cell agents, TotalIL_2 is the
total number of IL-2 agents and TotalTGF Beta is the
total TGF-b agents. This model does not include any
events.

Experimental design for the simulation
The experiment was conducted assuming the same
parameters as those defined for the mathematical model
(Table 13). For the ABMS model, the simulation was
run fifty times and the average outcome value for these

Table 10 Wilcoxon test with 5% significance level
comparing the results from the ODEs and ABMS for case 2

Population p

Effector 0.7231

Tumour 0.5710

IL2 0.4711

Figueredo et al. BMC Bioinformatics 2013, 14(Suppl 6):S6
http://www.biomedcentral.com/1471-2105/14/S6/S6

Page 13 of 20



Table 11 Agents’ parameters and behaviours for case 3

Agent Parameters Reactive behaviour Proactive behaviour

Effector Cell mu1 Dies

p1, g1, q1 and q2 Reproduces

c Is recruited

aa and g2 Kills tumour cells

Tumour Cell a Dies

a Proliferates

aa and g2 Dies killed by effector cells

g3 and p2 Has growth stimulated

p4 and tetha Produces TGF-b

c Induces effector recruitment

IL-2 alpha, p3 and g4 Is produced

mu2 Is lost

TGF-b p4 and tetha Is produced

mu3 Is lost

p2 and g3 Stimulates tumour growth

Figure 11 ABS state charts for the agents of case 3.

Table 12 Transition rates calculations from the mathematical equations for case 3

Agent Transition Mathematical equation Transition rate

Effector Cell Reproduce p1IE
g1+I ×

(
p1 − q1S

q2+S

)
p1×TotalIL 2
g1+TotalIL 2 ×

(
p1 − q1×TotalTGF Beta

q2+TotalTGF Beta

)
Die μ1E mu1

ProduceIL2 p3TE
(g4+T)(1+alphaS)

p3.TotalTumour
(g4+TotalTumour)(1+alpha.TotalTGF)

KillTumour aa.TE
g2+T

aa×TotalTumour×TotalEffector
g2+TotalTumour

Tumour Cell Reproduce (aT(1 − T
1000000000 )) (TotalTumour.a (1 − TotalTumour

1000000000 ))

Die (aT(1 − T
1000000000 )) (TotalTumour.a (1 − TotalTumour

1000000000 ))

DieKilledByEffector aa.TE
g2+T

message from effector

ProduceTGF p4T2

teta2+T2
p4TumourCells

teta2+TumourCells2

EffectorRecruitment cT
1+γS

c
1+gamma.TotaltGF

IL-2 Loss μ2I mu2

TGF-b Loss μ3S mu3

Stimulates
TumourGrowth

p2T
g3+S

p2.TotalTGF
g3+TotalTGF

Figueredo et al. BMC Bioinformatics 2013, 14(Suppl 6):S6
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runs was collected. Each run simulated a period equiva-
lent to six hundred days, following the time interval
used for the numerical simulation of the mathematical
model. The initial numbers of effector cells, tumour
cells, IL-2 and TGF-b were set to, respectively, 1, 1, 10
and 0.

Results and discussion
Results for case 3 ODEs and ABMS simulations are
provided in Figures 12, 13, 14 and 15. Outcomes
demonstrate that the behaviour of the curves for effec-
tor cells, tumour cells and IL-2 in both paradigms is
similar, although the starting time for the growth of
populations for the ABMS varies for each run. In the

figures corresponding to the ABMS results, therefore,
ten distinct runs were plotted to illustrate the
variations.
For most ABMS runs the pattern of behaviour of the

agents is the same as that obtained by the ODEs. For a
few runs, however, the populations decreased to zero,
indicating that it is not always possible to obtain similar
results with both approaches.
The differences observed occur for two reasons: (1)

the ABMS stochasticity and (2) the agents individual
behaviour and their interactions. While ODEs always
use the same values for the parameters over the entire
population aggregate, ABMS rates vary with time. Each
agent therefore is likely to have distinct numbers for
their probabilities. The agents individual interactions,
which give raise to the overall behaviour of the system,
are also influenced by the scenario determined by the
random numbers used. By running the ABMS multiple
times with different sets of random numbers, the out-
comes vary according to these sets. For the ODEs, on
the contrary, multiple runs always produce the same
outcome, as random numbers are not considered.
In addition, the unexpected patterns of behaviour

found the the ABMS results are the consequence of the
agents individual interactions and their chaotic charac-
ter. We believe that these unexpected patterns obtained
with ABMS should be further investigated by specialists
to determine if they are realistic and plausible to happen
in biological experiments.
Regarding the TGF-b outcomes, the ODEs results

reveal numbers smaller than one, which is not possible
to achieve with the ABMS. The results for the simula-
tions regarding these molecules are therefore completely
different and the ABMS results are always zero.
Figures 16, 17, 18 and 19 contrast the ODEs results

with the closest results obtained from ABMS. For all
experiments, ABMS demanded far more computational
resources than the ODEs simulation runs.

Table 13 Parameter values for case 3

Parameter Value

a 0.18

aa 1

alpha 0.001

c 0.035

g1 20000000

g2 100000

g3 20000000

g4 1000

gamma 10

mu1 0.03

mu2 10

mu3 10

p1 0.1245

p2 0.27

p3 5

p4 2.84

q1 10

q2 0.1121

theta 1000000

k 10000000000
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Figure 12 ODEs and ten runs of ABMS results for effector cells of case 3.
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Summary
The third case study comprised interactions between
effector cells, tumour cells and two types of cytokines,
namely IL-2 and TGF-b. There were two important

aspects observed in the ABMS outcomes. The first obser-
vation is that the TGF- b population was not present in
the simulation when using the mathematical model’s para-
meters, as its numbers are real values smaller than one.
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Figure 13 ODEs and ten runs of ABMS results for tumour cells of case 3.
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Figure 14 ODEs and ten runs of ABMS results for IL-2 of case 3.
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Figure 15 ODEs and ten runs of ABMS results for TGF-b of case 3.
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This indicates that there is the need of further model vali-
dation with real data in order to check which paradigm
outcome is closer to reality. The second aspect observed is
that ABMS produces extra patterns of population

behaviour (extreme cases) distinct from that obtained by
the mathematical model. This could in turn lead to the
discovery of other real-world patterns, which would other-
wise not be revealed by deterministic models.

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 104 Effector cells from ODE

Days
0 100 200 300 400 500 600

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 104 Effector cells from ABMS

Days

Figure 16 ODEs and ABMS results for effector cells of case 3.
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Figure 17 ODEs and ABMS results for tumour cells of case 3.
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Figure 18 ODEs and ABMS results for IL-2 of case 3.
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Conclusions
In the literature there is little work related to the applica-
tion of ABMS to cancer research. ODE models are more
frequently used instead. Immune research could benefit
from ABMS as an alternative to ODE modelling that
overcomes some of its limitations regarding emergence,
individual memory, adaptation and spatial localization. In
this paper, our aim was to outline the possible contribu-
tion of ABMS to early-stage cancer research by immu-
nologists. In order to achieve our aim, three research
questions were defined: (1) Is it possible to obtain an
equivalent agent-based model from the original mathe-
matical formulation? (2) Do the outcomes differ? (3) Are
there any benefits of using one method compared to the
other? To answer these questions we chose three well
established mathematical models. These differ in terms
of population sizes, types of agents involved and nature
of the interactions. A summary of our case studies and
findings is depicted in Table 14.
Case study 1 was concerned with the use of ODEs to

model interactions with general immune effector cells
and tumour cells. The objective of this model is to
observe these two populations evolving overtime and to
evaluate the impacts of cancer treatment in their

dynamics. Four different scenarios regarding distinct
sets of parameters were investigated and in the first
three scenarios treatment was included. The ABMS pro-
duced very different results for most scenarios. The out-
comes from ODEs and ABMS only resembled for
Scenario 1. It appears that two major characteristics of
this model influenced the differences obtained: (1) The
small quantities of individuals considered in the simula-
tions (especially regarding the effector population size,
which was always smaller than ten) that significantly
increase the variability of the ABMS; and (2) The origi-
nal mathematical model considers fractional population
sizes (smaller than one) which is impossible to be con-
sidered in ABMS. In addition to this particular model’s
characteristics, for any mathematical model considering
cyclic intervals of growth or decay of populations
observed in our studies, the corresponding curves in the
ABMS outcomes are more accentuated, given the fact
that ODEs changes quantities continuously whereas
ABMS varies discretely. Small numbers do not allow to
recreate predator-prey patterns in stochastic models, as
such models need to be perfectly balanced to work. Sto-
chasticity in small models does not allow such balance
and therefore might produce chaos.

Figure 19 ODEs and ABMS results for TGF-b of case 3.

Table 14 Summary of findings

Case Study Outcome of the comparison Explanation Population
size

1) Tumour/Effector • Most results were different • It appears that variabilities in small populations have major
impacts in the outcomes

Varied from 5
to 600

2) Tumour/Efector • Results were statistically/IL-2 the same • Large populations
• Less variability in the agents’ populations

104

3) Tumour/Effector/
IL-2/ TGF-b

• Different runs with outcome variations
• Simulations produced alternative
scenarios
• The behaviour of the curves is less
erratic for agents

• Agent-based stochasticity
• New scenarios need further investigations to assess their
feasibility
• Large numbers of agents

104
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Case study 2 referred to the investigation of the inter-
actions between effector cells, cytokines IL-2 and
tumour cells, and only one scenario was considered.
ODEs and ABMS simulations also produced very similar
results. As populations’ sizes had a magnitude of 104
individuals, the ABMS erratic behaviour in the out-
comes was not evident, which contributed to the out-
comes similarity. The differences observed in the curves
were explained by the continuous numbers produced by
the ODEs versus discrete values from ABMS.
Case study 3 added complexity to the previous case

study by establishing a mathematical model including
the influence of the cytokine TGF-b in the interactions
between effector cells, cytokines IL-2 and tumour cells.
The simulation outcomes for the ABMS were mostly
following the same pattern as that produced by the
ODEs; however there were some alternative outcomes
where the patterns of behaviour demonstrated a total
extermination of tumour cells by the first two hundred
days. This indicates that for this case study the ABMS
results are more informative, as they illustrate another
set of possible dynamics that should be validated
through further immune experimentation.
In response to our research questions, we conclude that

not everything modelled in ODEs can be implemented in
ABMS (e.g. no half agents); however - this does not mat-
ter if population sizes in the original model definition are
large enough. In addition, population size has a positive
impact on result similarity. The bigger the population,
the closer the simulation outputs. Finally, ABMS can
contribute additional insight, as due to its stochastic nat-
ure it can produce different results (normal and extreme
cases). Further, variability in the graph is closer to the
real world, although knowing the underlying pattern
might be more useful. ODEs therefore also have an
advantage as they show more clearly underlying patterns
in the output (as for example predator-prey pattern).
In the future, we want to investigate new case studies

and systematically determine when phenomena such as
agent-based stochasticity mostly influences on the out-
come differences and in which circumstances extreme
cases occur. In addition, with regard to extreme cases, it
is necessary to gain additional insights of (1) how fre-
quent these extreme cases occur and (2) wether there is
any relation between the frequency of occurrence of
these cases in the simulation and in the real-world. For
example, we could count the appearance of these unusual
cases (as a measure of system stability or robustness of
the solution) when running the experiments 10, 000
times. This could help immunologists defining vaccina-
tion strategies and appropriateness of cancer treatments
by making them aware of the possible outcome scenarios
and how frequently they occur.

List of Abbreviations
ODE: Ordinary differential equation; ABMS: Agent-based modelling and
simulation.
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