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Abstract: The isolation of microorganisms was performed from digestate from the process of the
anaerobic digestion (AD) of grass after hyperthermophilic pretreatment. The bacterium that was
isolated and identified was Coprothermobacter sp. Using the isolated bacteria, an AD process on
fresh grass (GB) and pretreated grass (PGB) was carried out with 10% of its addition. The highest
methane yield of 219 NmlCH4/gVS was recorded for PGB at 55 ◦C. In contrast, fresh grass subjected
to thermophilic digestion produced only 63 NmlCH4/gVS. Due to the addition of bacteria in the
AD process, an increase in the efficiency of hydrogen and methane production was observed in both
fresh grass and grass after pretreatment.

Keywords: Coprothermobacter; anaerobic digestion; hyperthermophilic pretreatment

1. Introduction

Renewable energy sources are attracting more and more attention around the world,
and their pace of development is not slowing down. The increase in the world’s population
and the use of fossil fuels will result in the need to obtain alternative energy sources that
can reduce the growing emissions of greenhouse gases [1,2]. Anaerobic digestion (AD)
is a biological process that converts organic waste into nutrient-rich digestate and biogas
rich in methane and hydrogen, with high calorific value. The application of thermophilic
conditions in AD improves the decomposition rate of organic matter, increases the methane
yield, and allows for more efficient pathogen inactivation [3]. Anaerobic digestion, as
a multi-stage process, consists of hydrolysis, acidogenesis, acetogenesis, and methano-
genesis phases, each of which is characterized by a different microbiota, which creates
a diverse microbial community. Hydrolysis is considered as a rate-limiting step for the
whole digestion process. At this stage, complex organic polymers including proteins, lipids,
and polysaccharides are degraded into simple sugars, fatty acids, amino acids, alcohols,
and aldehydes [4,5]. The identification of the microorganisms involved in the hydroly-
sis stage and their use in AD may significantly increase the efficiency of the digestion
process and biogas yield. In this context, bacteria from the genus Coprothermbacter are
of great interest, especially when the process is performed at increased temperatures. In
fact, for the first time, the genus Coprothermboacter proteolyticus was recently identified in
anaerobic thermophilic digesters [6]. Coprothermobacter spp. is generally known for its
proteolytic properties, and can therefore facilitate the processing of protein-rich waste at
higher temperatures [7]. These bacteria were identified in anaerobic thermophilic processes
treating sewage sludge, slaughterhouse waste, food scraps, and even cattle manure [8–14].
Moreover, the growth of these microorganisms in the protein-rich environment is associ-
ated with the production of hydrogen and methane, thanks to syntrophic relationships
with hydrogenotrophic methanogenic archaea [14–16]. Hence, the aim of this study was
the isolation and propagation, as well as the macro- and microscopic and genetic identi-
fication, of the isolated microorganisms from a thermophilic anaerobic digester operated
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with grass. Additionally, the use of isolated microorganisms to increase the efficiency of
biogas production under thermophilic conditions was also evaluated. To the best of the
authors’ knowledge, this is the first study in which Coprothermobacter spp. was isolated
from a thermophilic AD reactor treating grass and then used to increase the efficiency of
biogas production for the same substrate and process conditions. According to the authors’
knowledge, this is the first study in which the Coprothermobacter spp. bacteria were used to
increase the anaerobic digestion and methane and hydrogen yield from grass.

2. Results and Discussion

Metagenomic analysis revealed 99.73% of bacteria from the Coprothermobacteraceae
family. Coprothermobacter spp. accounted for 99.6% and Coprothermobacter proteolyticus ac-
counted for 0.13%. Isolated Coprothermobacter sp. bacteria were Gram-negative, rod-shaped,
anaerobic, and thermophilic, detected mainly at high temperatures (from 50 to 70 ◦C) and
in strictly anaerobic conditions, which justifies their presence in the process of grass AD at
55 ◦C. The morphology of the isolate is presented in Figure 1. In addition, it was found
that bacteria of this genus show a strong ability to degrade proteins and peptides, and are
also important producers of hydrogen [14]. Moreover, Coprothermobacter spp. has also been
identified in the thermophilic AD of sewage sludge [17]. Similar results were obtained
when comparing the mesophilic and thermophilic communities of microorganisms during
the AD of food waste. Similarly, under thermophilic conditions, the presence of Coprother-
mobacter spp. was observed [18]. Interestingly, Coprothermobacter spp. was also identified
in AD substrates such as lawn clippings and branches and wood clippings. In addition,
cellulose degradation ability for these bacteria was observed [19]. These studied substrates
were almost the same as the ones that we used in the current research.

Anaerobic Digestion Process

The hydrogen and methane yields reported from the experiments are plotted in
Figure 2, whereas the characteristics of the digestates from the experiments are summarized
in Table 1. As shown in Figure 2, the addition of the Coprothermobacter spp. culture
resulted in a significant increase (p < 0.05) in hydrogen production for both pretreated
and untreated grass. However, much higher hydrogen yield was observed in pretreated
grass (PGB) (54 NmLH2/gVS), compared to the production observed in fresh grass (GB)
(35 NmLH2/gVS). This indicates the highest efficiency of the combined thermal and
biological pretreatment, mostly improving the hydrogen yield and, hence, the hydrolysis
rate of grass. It is hypothesized that thermal pretreatment loosens the lignocellulosic
structure of grass to make it more available for bacteria of Coprothermobacter spp., which
provide further decomposition of organic polymers. The addition of Coprothermobacter spp.
also increased the production of methane (p < 0.05), and the results corresponded to the
yields of hydrogen. Hence, the highest methane yield of 219 NmlCH4/gVS, was reported
in the experiment with hyperthermophilically pretreated grass subjected to digestion with
the addition of the Coprothermobacter spp. culture. In contrast, the AD process of grass
with neither thermal pretreatment nor the addition of Coprothermobacter spp. gave only
62 NmlCH4/gVS. The analysis of the digestates revealed increased values of both TVFA
and nutrients in the experiments with Coprothermobacter spp. addition; however, the
differences with the control were not high. In detail, the addition of the microbial culture
to grass increased the amount of ammonium nitrogen by 32% for the GB variant and by
11% for the PGB variant. Furthermore, an increase in TVFA from 8800 to 9110 mg/L was
observed for the pretreated grass and from 5169 to 6150 mg/L for the untreated grass. The
changes in phosphates were negligible, whereas the pH slightly dropped with the addition
of Coprothermobacter spp. The increase in the values of TVFA, ammonium nitrogen, and
orthophosphates may indicate a greater degree of hydrolysis.



Molecules 2022, 27, 4338 3 of 8

Molecules 2022, 27, x FOR PEER REVIEW 2 of 9 
 

 

microscopic and genetic identification, of the isolated microorganisms from a 
thermophilic anaerobic digester operated with grass. Additionally, the use of isolated 
microorganisms to increase the efficiency of biogas production under thermophilic 
conditions was also evaluated. To the best of the authors’ knowledge, this is the first study 
in which Coprothermobacter spp. was isolated from a thermophilic AD reactor treating 
grass and then used to increase the efficiency of biogas production for the same substrate 
and process conditions. According to the authors’ knowledge, this is the first study in 
which the Coprothermobacter spp. bacteria were used to increase the anaerobic digestion 
and methane and hydrogen yield from grass. 

2. Results and Discussion 
Metagenomic analysis revealed 99.73% of bacteria from the Coprothermobacteraceae 

family. Coprothermobacter spp. accounted for 99.6% and Coprothermobacter proteolyticus 
accounted for 0.13%. Isolated Coprothermobacter sp. bacteria were Gram-negative, rod-
shaped, anaerobic, and thermophilic, detected mainly at high temperatures (from 50 to 70 
°C) and in strictly anaerobic conditions, which justifies their presence in the process of 
grass AD at 55 °C. The morphology of the isolate is presented in Figure 1. In addition, it 
was found that bacteria of this genus show a strong ability to degrade proteins and 
peptides, and are also important producers of hydrogen [14]. Moreover, Coprothermobacter 
spp. has also been identified in the thermophilic AD of sewage sludge [17]. Similar results 
were obtained when comparing the mesophilic and thermophilic communities of 
microorganisms during the AD of food waste. Similarly, under thermophilic conditions, 
the presence of Coprothermobacter spp. was observed [18]. Interestingly, Coprothermobacter 
spp. was also identified in AD substrates such as lawn clippings and branches and wood 
clippings. In addition, cellulose degradation ability for these bacteria was observed [19]. 
These studied substrates were almost the same as the ones that we used in the current 
research. 

 

(A) 

Molecules 2022, 27, x FOR PEER REVIEW 3 of 9 
 

 

 
(B) 

 
(C) 

Figure 1. Microphotographs of Coprothermobacter spp. isolate: (A) direct preparation (40× 
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Figure 2. Cumulative hydrogen and methane production for AD pretreated grass with bacteria with
control sample (PGB and CPGB, respectively: B,C) and raw grass with bacteria with control sample
(GB and CGB, respectively: A,D) at 55 ◦C.

Table 1. Concentrations of TVFA, ammonium nitrogen, orthophosphates (PO4−3), and pH in the
digestates from the experiments. PGB—pretreated grass with bacteria; CPGB—control sample for
PGB; GB—raw grass with bacteria; CGB—control sample for GB.

Name GB CGB PGB CPGB

Substrate Grass +
Bacteria Control Pretreated

Grass + Bacteria Control

Ammonium
nitrogen (mg/L) 540 ± 41.9 408 ± 21.5 472 ± 14.4 423 ± 33.0

TVFA (mg/L) 9110 ± 548.5 8800 ± 565.7 6150 ± 393.7 5160 ± 224.8
Phosphorus

(mg/L) 482 ± 26.8 476 ± 12.1 256 ± 41.7 240 ± 32.7

pH 7.4 ± 0.4 7.2 ± 0.6 7.4 ± 0.5 7.38 ± 0.3
Cumulative

hydrogen yield
(NmL/gVS)

35.1 ± 1.4 30.3 ± 0.4 54.1 ± 6.3 43.2 ± 0.6

Cumulative
methane yield
(NmL/gVS)

62.5 ± 2.7 23.6 ± 0.8 218.6 ± 5.1 162.6 ± 2.4

± standard deviation.
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The high efficiency of hydrolysis and the increase in biogas production in the tested
variants with the addition of Coprothermobacter spp. may be related to the content and
availability of proteins. This relationship was also observed during the thermophilic AD of
activated sludge [13]. In addition, Coprothermobacter strains have been detected during the
anaerobic digestion of various protein-rich wastes [16,20,21]. The increased level of hydrol-
ysis in this research could be linked to the degradation of proteins by Coprothermobacter spp.
as these bacteria follow amino acid fermentation [11]. Moreover, Coprothermobacter spp.
is involved in the degradation of low-molecular-weight organic compounds, which may
have been released after the thermal pretreatment, and this phenomenon was also observed
during the AD of solid organic waste [21]. In turn, the greater methane production can
be explained by the fact that Coprothermobacter spp., by producing hydrogen, can promote
syntrophic cooperation with methanogens. Hydrogen is one of the carriers in interspecies
electron transfer [14]. Coprothermobacter spp. can degrade proteins in syntrophic association
with methanogens, and hence, by forming a syntrophy with methanogens, the activity
of Coprothermobacter spp. is improved. Moreover, hydrogen is the main source of energy
for Methanothermobacter thermoautotrophicus, often identified in thermophilic anaerobic
digestion systems [16,22].

3. Materials and Methods
3.1. Material

Anaerobic digestion experiments were performed using grass from a home garden,
which was collected in October 2021. After harvesting, the raw, wet grass was ground
in a shredder (FIMAR TS-32D400V) in order to obtain a size reduction to 3–5 mm, and
then stored at −18 ◦C. The composition of the grass was as follows: carbon—58.7% TS;
nitrogen—2.6%TS; phosphorus—0.8% TS.

3.2. Isolation of Thermophilic Bacteria

The material used for the isolation of microorganisms was taken from the diges-
tate from the AD process, which was carried out at a temperature of 55 ◦C, in which
the substrate was grass subjected to an earlier hyperthermophilic treatment, where the
maximum efficiency of both hydrogen and methane production was 41 mLH2/gVS and
160 mLCH4/gVS, respectively. Anaerobe Basal Broth (Oxoid) was inoculated with 10%
of the digestate and the microorganisms were multiplied for 14 days at 55 ◦C in anaero-
bic conditions. Next, streak plating was performed on Brain Heart Infusion Agar (BHI,
Merck Life Science Poznań, Poland) and samples were incubated for 7 days at 55 ◦C in
an anaerobic jar with the addition of an AnaeroGenTM Armosphere Generation Systems
sachet (Thermo Scientific, Waltham, MA, USA) (Figure 3). After the isolation of single
colonies, each colony of a different morphology (in color, shape, or surface), as assessed
macroscopically, was transferred to the liquid BHI broth and multiplied for 7 days at 55
◦C in anaerobic conditions. Among the few isolates on the petri dish, only 1 was able to
multiply. This isolate was genetically identified.

3.2.1. Genetic Identification

The isolated pure bacterial culture was subjected to metagenomic analysis (Figure 1).
Prior to the metagenomic analysis of the bacterial culture, the sample was stored at −20 ◦C.
The metagenomic analysis of the bacterial population was performed on the basis of the
hypervariable V3–V4 region of the 16S rRNA gene. Sequences of the 341F and 785R
primers were used to prepare the library. PCR was carried out using a Q5 Hot Start High-
Fidelity 2× Master Mix. Sequencing was performed on a MiSeq apparatus, in paired-end
technology, 2 × 300 nt, using the Illumina v3 kit. Bioinformatic analysis was performed
with QIIME 2 based on the Silva 138 reference sequence and DADA2 package.
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3.2.2. Microscopic Observations and Staining

Microscopic photographs of the direct preparation and the preparations stained with
the Gram method and fluorescent propidium iodide were taken. After air-drying and fixing,
the cells were stained with 1 µg/mL propidium iodide in the dark. The morphology of cells
was observed at 40× or 100× objective under a fluorescent/contrast-phase microscope
(Nikon Eclipse Ci H600L, Tokyo, Japan) attached to a digital camera (Nikon Digital Sight
DS-U3, Tokyo, Japan) and using imaging software (NIS-elements BR 3.0, Nikon).

3.3. Anaerobic Digestion Experiments

The isolated and identified strain of Coprothermobacter spp. was cultivated and multi-
plied as a pure culture on liquid BHI broth, in strictly anaerobic conditions, in seal-cup tubes
at the temperature of 55 ◦C and with the addition of an AnaeroGenTM Systems sachet.

The AD process with the addition of isolated bacteria was carried out in a similar
manner to the process carried out in previous studies [23]. The AD was carried out in two
variants: I—grass pretreated at 70 ◦C, mixed with water in the ratio 1:2, with the addition
of bacteria (PGB); and II—raw grass mixed with water in the ratio 1:2, with the addition of
bacteria (GB). For each of the tested variants, a control system in which no bacteria were
added was used, named CGB and CPGB, respectively, for GP and PGB. For the inoculation
of the fermentation mixtures, cultures with the volume of 70 mL (6 × 108 CFU/mL, i.e.,
2.0 according to McFarland standard) were used, which constituted 10% of the volume
(1:9 v/v). Before the bacteria were inoculated into the fermentation mixture, the bacterial
cultures were centrifuged. Biomass containing no substrate was added to the fermentation
mixture. The AD process was carried out in bottles with a total and working volume of 1
and 0.7 dm3, respectively.

3.4. Chemical Analyses

Ammonium nitrogen was analyzed and total volatile fatty acids (TVFA) determined
by HACH-Lange test no. LCK 514, 8038, and LCK365 using the DR3900 spectrophotometer.
Moreover, the analysis of orthophosphates (PO4

−3) was performed via the HACH-Lange
method no. 8048. Tests were performed according to the manufacturer’s instructions.
The analysis of the produced biogas was performed using the GA−21plus gas analyzer
(Madur, Zgierz, Poland). All the conducted research was performed in three repeats. Data
processing and average value calculations were performed in Microsoft Excel 2010.
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3.5. Statistical Analysis

Data obtained were subjected to statistical evaluation using one-way ANOVA analysis
with OriginPro 6.1 (Northampton, MA, USA) software, at the significance level of p < 0.05.

4. Conclusions

The study showed that the isolated and identified microorganism of Coprothermobacter
spp. can successfully improve the biogas yield from both fresh grass and grass after hyper-
thermophilic pretreatment. The anaerobic digestion of hyperthermophilically pretreated
grass was found to be the most efficient as 54 NmLH2/gVS and 219 NmLCH4/gVS of hy-
drogen and methane were yielded, in contrast to the corresponding values reported for raw
grass (35 NmLH2/gVS and 63 NmLCH4/gVS). The greatest improvement in both hydro-
gen and methane production can be achieved by combining thermal pretreatment with the
addition of biological amendments to grass before being subjected to anaerobic digestion.
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