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For both human and veterinary patients, non-infectious intestinal disease is a major cause

of morbidity and mortality. To improve treatment of intestinal disease, large animal models

are increasingly recognized as critical tools to translate the basic science discoveries

made in rodent models into clinical application. Large animal intestinal models,

particularly porcine, more closely resemble human anatomy, physiology, and disease

pathogenesis; these features make them critical to the pre-clinical study of intestinal

disease treatments. Previously, large animal model use has been somewhat precluded by

the lack of genetically altered large animals to mechanistically investigate non-infectious

intestinal diseases such as colorectal cancer, cystic fibrosis, and ischemia-reperfusion

injury. However, recent advances and increased availability of gene editing technologies

has led to both novel use of large animal models in clinically relevant intestinal disease

research and improved testing of potential therapeutics for these diseases.

Keywords: cystic fibrosis, colorectal cancer, ischemia-reperfusion injury, genetically altered models, intestinal

disease, translational porcine model, stem cell reporter model

INTRODUCTION

Gastrointestinal disease accounts for over 3.0 million hospitalizations and over $135.9 billion
in health care expenditures per year (1). To lessen this incredible burden to patients and our
healthcare system, animal models play a critical role in discovery of intestinal disease pathogenesis
and therapeutic innovation. For successful clinical translation, it is critical that animal models are
properly validated. The criteria used to validate an animal model include certifying similarity in
biology and clinical presentation between model and human disease (face validity), confirming
that clinical interventions produce similar effects (predictive ability), and demonstrating that the
target under investigation has a similar role in the model compared to human clinical disease
(target validity) (2). Of intestinal disease animal models, rodents are historically preferred for
use due to their low cost and maintenance, rapid reproduction, and readily available rodent-
specific reagents. However, it is now widely recognized that rodents do not fully mimic human
disease, physiology, immunology, or drug metabolism, thus limiting their use as pre-clinical
models for disease treatment (3–7). For example, despite promising pre-clinical murine anti-cancer
therapeutic studies, success rate of these therapeutics in human clinical trial is only around 5%
(4, 8). Furthermore, the small size of rodents makes it difficult to model and advance surgical and
endoscopic techniques. The differences between rodents and humans have left gaps in both basic
science research and pre-clinical model development for intestinal diseases.
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To better represent both human physiology and disease, and
aid in the discovery of new treatments, porcine models are
gaining popularity. With similar genome, size and architecture
of the intestine, omnivorous diet, microbiome, immunology, and
physiology to humans, pigs are increasingly the preferred model
of enteric diseases (Table 1) (3, 6, 13, 17–23). The large size of
the pig allows for multiple, longitudinal sampling from the same
individual. Their large litter size of around 12 piglets allows for
ease of gender and sibling matching. These attributes reduce both
experimental variation as well as overall animal use. Additionally,
for toxicology and drug discovery testing, pigs have oral and
parenteral dosing rates similar to humans as well as similar
responses to a variety of drug classes (24).

Grossly, both human and porcine adult intestine are at a ratio
of 0.1 length per kilogram of body weight (25). The anatomy of
the small intestine is similar between pig and human, though
the large intestine varies slightly in the pig due to a larger
cecum, lack of appendix, and the presence of the spiral colon
(Figure 1) (3). Microscopically, for both species, the small and
large intestine are comprised of a single layer of epithelial cells,
interspersed with intra-epithelial lymphocytes, to serve as a
barrier between luminal contents and systemic circulation. The
single layer epithelium covers villus projections (present only in
small intestine) and extends down into the crypts of Lieberkuhn.
Located at the crypt-base are the intestinal epithelial stem cells
(ISCs), which are responsible for renewing the epithelial cell
populations on a continuous 3–5 day cycle (17, 27–29). In the
human, the ISCs are interspersed with Paneth cells, a specialized
secretory cell type that both supports ISC function and releases
antimicrobial factors into the intestinal lumen (30, 31). While
a similar cell population expressing the same biomarkers and
intracellular structures has been identified in the pig, the porcine
Paneth cell has yet to be fully defined (15, 32).

Beneath the epithelial barrier is the lamina propria
compartment. While the lamina propria is made up of
a mix of structural elements including blood and lymph
vessels, connective tissue, and mesenchymal cells, immune
cells constitute a major population, including dendritic cells
and lymphocytes. These immune cells are responsible for
discriminating between harmless luminal antigens and potential
enteropathogens (33–35). Some differences exist between the
immunologic organization between human and pig intestine
such as the distribution and frequency of lamina propria and
intraepithelial lymphocyte populations, the inverted structure
of porcine peripheral and gut-associated lymph nodes, and
the aggregated lymphoid follicles (Peyer’s patches) which form
one long continuous band in the porcine ileum (22, 29, 35).
However, despite these differences, pigs are still recognized as
useful models in several enteric immunologic studies including
infectious disease, oral vaccination, small bowel transplantation,
food hypersensitivity, and immune development (13, 22, 36–39).

With these similarities in both physiology and architecture
between human and porcine intestine (Table 1), porcine models
of various intestinal injuries such as ischemia-reperfusion injury,
intestinal transplantation, short gut syndrome, and necrotizing
enterocolitis have progressed the field of gastroenterology (37,
40–44). Furthermore, in vitro advancements continue to broaden

TABLE 1 | Summary of comparisons between human and porcine intestinal

physiology and anatomy as well as advantages and disadvantages of porcine

models.

Porcine intestine similarities to human Porcine intestine differences

from human

• Intestinal length

• Omnivorous diet

• Microbiome (9)

• Immune response resembles human in 80%

of analyzed parameters (10)

• High genome homology (11, 12)

• Presence of spiral colon

• Inverted lymph node structure

• Distribution and frequency

of intestinal lymphocyte

populations

• Continuous ileal Peyer’s patch

Porcine model advantages Porcine model disadvantages

• Husbandry well understood

• Outbred breeds better mimic variation

between human individuals (13)

• Large litters for gender/sibling matching

• Large animal size allows for improving

surgical/endoscopy techniques using human

equipment for diseases like Cystic Fibrosis

and colorectal cancer

• Longer lifespan permits longitudinal studies

• Oral/parenteral dosing and responses to

many drug classes similar to humans (14)

• More accepted on ethical basis compared to

non-human primates or other large animals

• Numerous in vitro applications such as

advanced 3D organoid cultures (15, 16)

• Necessitate large, specialized

housing facilities

• More expensive than mice

• Not as many species-specific

reagents as mice

the utility of porcine enteric disease models. These advancements
include an increase in porcine specific reagents and the use of
primary intestinal epithelial cell culture in 2-D monolayers, 3-
D organoid culture, and co-culture with microbes and lamina-
propria derived cells to better understand intestinal barrier
function (15, 16, 19, 20, 40, 41, 45). However, for more
mechanistic studies and to better understand human genetic
diseases in the wide array of intestinal maladies, advancements in
porcine gene-edited models are needed. Fortunately, enhanced
strategies to edit the porcine genome and develop transgenic
models, as well as approaches to genetically modify porcine-
derived intestinal organoids, have increased the availability
of pre-clinical modeling for Cystic Fibrosis (CF), colorectal
cancer (CRC), and ischemia-reperfusion injury (Table 2). This
review summarizes the current use of pre-clinical, gene edited
porcine intestinal disease and injury models and evaluates
future additional needs to ultimately improve treatment of
intestinal disease.

GENE THERAPY IN PORCINE CYSTIC
FIBROSIS MODELS TO ALLEVIATE
INTESTINAL OBSTRUCTION

Cystic Fibrosis (CF) is a life-threatening disease due to various
mutations in the CF transmembrane conductance regulator
(CFTR) gene (57). This critical gene encodes for an anion
channel widely expressed in epithelium including lung, pancreas,
kidney, and intestine; its loss of function inhibits chloride
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FIGURE 1 | Distribution of early intestinal polyposis due to APC mutation. Human and porcine (APC1311) early adenoma/polyp distribution is similar within the colon

and rectum, while murine (Apcmin) is mostly localized to the small intestine. Adenoma/polyps shown in yellow. Figure adapted from Gonzalez et al. and Flisikowska

et al. (21, 26).

and bicarbonate transport across cell membranes. This leads
to thick mucoid secretions with low pH, subsequent pathogen
colonization, and dysregulated inflammation (57, 58). While
cause of death in patients afflicted with CF is primarily due to
respiratory failure, intestinal disease also contributes significantly

to patient morbidity (59). Up to 20% of infants with CF suffer
from meconium ileus at birth, followed by distal intestinal
obstructive syndrome due to intestinal atresia, diverticulosis, and
microcolon (46, 57). While genetically modified murine models
of CF assisted in basic understanding of CFTR functions, these
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TABLE 2 | Summary of findings from gene-edited porcine models of

non-infectious intestinal disease.

Gene-edited

porcine model

Key findings for intestinal disease Sources

Cystic fibrosis

CFTR−/− Intestinal gene editing to correct cystic

fibrosis transmembrane conductance

regulator (CFTR) expression alleviates

Cystic Fibrosis induced obstructions

(46)

Colorectal cancer

APC1311 Adenomatous polyposis coli (APC)

mutation model reproduces colonic and

rectal polyps as seen in familial

adenomatous polyposis (FAP)

(26)

Identification of gene expression,

micro-RNAs associated with FAP

(47–50)

Development of nanoparticles to improve

endoscopic identification of dysplastic

lesions and adenomas

(51, 52)

TP53R167H Porcine TP53 isoforms expressed similarly

to humans; TP53 variants and circular

RNA overexpressed in colon

(53, 54)

KRASG12D

TP53R167H
Cre-recombinase inducible TP53 and

Kirsten rat sarcoma viral oncogene

homolog (KRAS) mutation model leads to

intestinal carcinoma development

(55)

Ischemia-reperfusion injury

Enteroid culture In vitro gene-editing of ischemic injured

intestinal epithelium identifies cellular

mechanisms of repair

(41)

Future directions: stem cell reporter

LGR5-H2B-GFP In vivo and in vitro tracking of LGR5+

intestinal stem cells, further model

validation necessary

(56)

mice fail to fully recreate human clinical disease (59). These
limitations in the mouse models impeded further discovery of
disease pathogenesis and potential therapeutics.

In 2008, in an effort to develop an animal model that
better represents CF clinical disease, Rogers et al. utilized
recombinant adeno-associated virus (rAAV) vectors to create
the first CFTR-null piglets (CFTR−/−). These piglets also
demonstrated immediate clinical signs of intestinal obstruction
similar to that in human infants with CF (60). These clinical signs
include intestinal atresia, microcolon, and diverticulosis (57).
Other gene editing strategies have since been used to generate
CFTR−/− pigs including bacterial artificial chromosome vectors
(61) as well as rAAVs to introduce a point mutation within
the CFTR gene, CFTR-1F508 mutation (59, 62). This specific
CFTR mutation is the most common CF-causing mutation in
human patients – it accounts for about 70% of CF alleles (62).
Murine models with this same induced point mutation fail to
develop airway disease, pushing the need for a porcine model
of this common mutation. While CFTR-1F508 porcine models
display the same features of human disease in the lung and
intestine, the rate of meconium ileus is 100% in the newborn
pigs, in contrast to a rate of 20% in human infants (46). As

in humans, meconium ileus requires immediate medical and/or
surgical correction, which inhibited the use of the porcine model
due to cost and complexity. These factors pushed researchers to
utilize additional gene editing techniques to alleviate meconium
ileus in the porcine model. Stoltz et al. were able to correct
this phenotype by inducing CFTR expression under the control
of intestinal fatty acid-binding protein (iFABP) in CFTR−/−

pig fibroblasts (46). These findings indicated that correcting the
expression of CFTR by gene editing in the intestine is sufficient
to prevent intestinal obstruction. Further work in the porcine CF
models is necessary to identify exactly how much CFTR function
is required for proper intestinal function. With these findings,
novel gene therapy approaches can be developed such as somatic
tissue gene editing to restore endogenous CFTR function. It is
critical that this research is done in a porcine model, similarly
sized to humans, so that delivery of therapeutics can be modeled
using human equipment such as endoscopy. The information
gained from a translational porcine model of CF will lead to the
development of innovative gene therapy treatment approaches to
alleviate CF-induced intestinal obstruction.

IMPROVED MODELING AND DETECTION
OF COLORECTAL CANCER IN GENE
EDITED PIGS

As of 2020 in the US, colorectal cancer (CRC) is the second
leading cause of cancer related deaths for men and women
combined (63). For many patients, including those with
precursor familial adenomatous polyposis condition (FAP),
CRC begins with germline or somatic mutations in the tumor-
suppressor, adenomatous polyposis coli (APC) gene. This
key driver mutation initiates polyp formation in the colonic
epithelium. Subsequent compounding epigenetic changes
and genetic mutations progresses tumorigenesis through the
adenoma-carcinoma sequence, often culminating in metastatic
cancer (64). For reasons unknown, CRC incidence has recently
risen for young and middle-aged adults. Furthermore, many
CRC tumor subtypes exist which remain without treatments
(63). Without a doubt, there is a critical need for animal models
to better understand CRC pathogenesis and develop targeted
therapies. Attempts to recreate the polyp-adenoma-carcinoma
pathogenesis sequence by mutating Apc (Apc+/min) in the mouse
usually only leads to non-invasive, non-metastatic neoplasia.
Furthermore, this neoplasia only typically occurs in the murine
small intestine instead of the colon (Figure 1) (26, 65–67).
Moreover, the small size of mice and critical differences in drug
metabolism make these mice impractical for development of
human CRC drug therapies, progress in endoscopic imaging
techniques, or improving surgical interventions.

To overcome these barriers and create an improved, human-
scale CRC model, the first gene-targeted APC mutated pig
line was developed by inserting a translational stop signal
at codon 1311 (APC1311). This mutation is orthologous to
the germline mutations in patients with familial adenomatous
polyposis condition (FAP) (26). In these genetically modified
pigs, colonic, and rectal polyps and adenomas develop such as
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those found in human FAP and CRC patients (Figure 1) (68).
Since their development, these pigs have contributed greatly
to the discovery of epigenetic modifications, dysplastic polyp
premalignant progression, and the function of genes other than
APC that contribute to the varying severity and progression of
disease in patients with FAP (47–49, 69). One pivotal study by
Stachowiak et al., using APC1311 pigs, was the first to reveal that
microRNAs are associated with premalignant transformation
of colon polyps and can serve as potential useful biomarkers
of disease development (50). Tan et al. attempted to replicate
the APC mutation porcine model by transcription activator-
like effector nucleases (TALENs) introduction of a stop signal
at codon 902; however, these pigs have yet to develop CRC
phenotype (70).

In addition to the APC1311 line, other mutated tumor
suppressor gene porcine models are now available to study
tumorigenesis. One such group carries a latent Cre-activated
tumor protein p53 gene (TP53) mutated allele (TP53R167H)
(53). This mutation is orthologous to the oncogenic human
mutant TP53 allele that plays a role in numerous human
cancers including CRC. Previously, studies using the APC1311

pigs reported that in severe cases of polyposis, there is an
increase in expression of polymorphic TP53 (49). A more recent
study using the TP53R167H pig demonstrated that these pigs
express TP53 isoforms in a more similar manner to humans,
further underscoring the benefits of porcine cancer models
compared to murine. The TP53R167H porcine model showed
that TP53 variants and circular RNA are overexpressed in the
colon, indicating likely oncogenic function (54). These findings
highlight the important role of porcine oncogenic models to
improve our understanding of the genetic and epigenetic changes
that contribute to CRC pathogenesis. Further developments
on the TP53R167H model include the addition of inducible
Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation
(55, 71). Mutated KRAS is present in over 25% of human
tumors, including CRC, and is one of the more commonly
activated oncogenes (72). Schook et al. showed that these Cre
recombinase inducible KRASG12D TP53R167H transgenic pigs
developed rapid and reproducible mesenchymal tumors. For
more specific study of intestinal cancer, Callesen et al. refined
the combined KRAS and TP53 mutation model by directing the
control of the inducible recombination events under an intestinal
epithelial specific gene promoter, which led to development
of duodenal carcinoma. Further model establishment studies
using the KRASG12D TP53R167H pigs are warranted to establish
carcinoma development in the lower intestine in order to
better understand CRC carcinogenesis in a translational large
animal model.

While these gene-targeted porcine CRC models have served
an important role for cellular mechanistic studies, they can
also afford clinicians and researchers opportunities to improve
endoscopy skills for minimally invasive surgery, conduct
longitudinal sampling and monitoring during treatment,
and enhance detection systems for pre-malignancies in a
human-sized animal model. In general, porcine models have
been popular for testing and advancing endoscopic techniques,
particularly for colonoscopy (73–75). Early diagnostic detection

of colon dysplasia and adenomas typically relies on white-light
endoscopy (76). However, due to the subtle appearance of
adenomas in situ, early-stage CRC lesions are often missed,
especially in patients with abnormal colonic mucosa due
to inflammatory bowel disease (51, 52). To improve real-
time detection of colorectal adenomas, one group developed
biodegradable near-infrared fluorescent silica nanoparticles
(FSNs) (52). These FSNs, administered intravascularly, permeate
into cancerous tissue and ‘mark’ a lesion because tumor and
dysplasia-associated blood and lymph vessels are typically leaky
(52, 77). Additionally, development of these biodegradable
FSNs ensured no long-term sequestration within the body,
as is typical of traditional nanoparticles (52). In that study,
nanoparticle application was tested by administering FSNs to
APC1311 pigs intravenously. Twenty-four hours later, colons
were surveyed using near-infrared fluorescence-assisted white
light endoscopy and adenomas were successfully highlighted by
the FSNs (52). Since this study, additional work has successfully
tested other probes in the APC1311 pigs to serve as CRC polyp
markers (51). This pre-clinical application testing made possible
by the APC1311 pigs was critical to develop new techniques to
accurately identify clinically significant colorectal dysplasia in
human patients.

GENE EDITING IN PORCINE IN VITRO

MODELS OF ISCHEMIA-REPERFUSION
INJURY

Ischemic injury occurs when there is reduction or complete loss
of blood flow to an organ. In the intestine, ischemic events can
occur due to numerous pathologic events including thrombi,
emboli, shock, cardiac insult, mechanical obstruction such as
a hernia or intussusception, or necrotizing enterocolitis (21).
In all of these disease states, the decrease in blood flow to the
intestine diminishes the oxygen supply necessary for normal
cellular metabolism. Cell damage and apoptosis quickly follows,
particularly within the intestinal epithelium that is responsible
for maintaining a critical barrier between harmful luminal
microbes and systemic vasculature. Microbial translocation
across a compromised epithelial barrier can develop into
systemic inflammatory response syndrome, intestinal necrosis,
and remote organ failure. Ultimately, this disease progression
results in over 50% patient mortality (78). To lessen the high
mortality rate, intestinal ischemia animal models are critical
to better understand the pathophysiology of ischemic injury,
identify factors driving epithelial repair, and develop potential
therapeutics (40–42, 79).

The process of ischemia-induced epithelial cell loss, as
described in numerous animal models, begins at the villus tip and
progressively extends down to the crypt-base intestinal epithelial
stem cell (ISC) compartment with increasing durations of
ischemia (40, 80–83). In the ISC compartment, two populations
of ISCs exist: active, proliferating ISCs that are sensitive to injury
(aISCs) and quiescent, reserve ISCs that are injury resistant
(rISCs). These two populations were first described using murine
models (84, 85). However, small rodent models are unable to
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accurately represent severe human ischemic injury, likely due
to differences in intestinal microvascular anatomy and overall
small intestinal size (17). Thus, the impact of ischemic injury
on these two ISC populations was largely undescribed until the
introduction of a porcine surgical model of mesenteric vascular
occlusion (16, 17). With similar sized intestine and more similar
microvascular anatomy as humans, pigs make for a better model
of intestinal ischemia (17, 86). Using the surgical porcine model
of mesenteric vascular occlusion, researchers identified that
severe ischemic injury differentially impacts the two known ISC
populations: aISCs undergo apoptosis while rISCs are preserved
and are likely responsible for epithelial recovery after injury (40).
In this model, rISCs were identified in vivo by expression of the
known ISC biomarker homeodomain only protein X (HOPX)
(85). When ischemic-injured tissue, initially enriched in HOPX+

rISCs, was recovered in vivo for up to 3 days post injury, increased
signs of crypt-base epithelial regeneration corresponded to a
decrease in HOPX expression (41). Until this point, HOPX, a
known tumor-suppressor gene in other cell types, had served
as merely a biomarker of rISCs (87). To clarify the potential
role of HOPX as a controller of ISC proliferation after severe
ischemia, genetic modification of the porcine ischemic injury
model was necessary.

Whole animal, genetically-modified porcine models have
yet to be used in intestinal ischemia-reperfusion studies.
However, recent advances in genetic modification of
porcine intestinal crypt culture are a promising first step
for more mechanistic studies. Culture techniques for porcine
enteroids, 3D organoids derived from intestinal stem cells
that recapitulate the intestinal epithelium, have been well
described (15, 16, 28). Using lentivirus, Khalil et al. were the
first group to genetically modify uninjured porcine intestinal
crypts to create GFP expressing enteroids (88). To better
understand epithelial recovery after ischemic injury and
the specific role of HOPX function in epithelial crypt cells,
Stewart et al. utilized adenovirus mediated transduction
of short hairpin RNA to silence HOPX within ischemic
injured crypt epithelium and showed that HOPX serves to
suppress cellular proliferation in resultant enteroids (41).
This novel advancement in porcine enteroids encourages
future experiments of in vitro gene editing to improve our
understanding of repair mechanisms in clinically relevant
intestinal ischemia.

FUTURE DIRECTIONS: DEVELOPMENT OF
TRANSGENIC PORCINE INTESTINAL
STEM CELL REPORTER MODELS

To improve studies of the cellular mechanisms involved in
various types of intestinal injury and cancer, transgenic reporter
porcine models are warranted for in vivo and in vitro cell
tracking of intestinal cell populations. Intestinal epithelial stem
cell reporter pigs are of particular interest as ISCs play critical
roles in both the generation of colorectal cancer and in epithelial
barrier regeneration during homeostasis and disease (89–91).
With the development of high efficiency genome editing tools,

one group generated a novel porcine cell reporter model via
CRISPR-Cas9 insertion of fused histone 2B (H2B) to green
fluorescent protein (GFP) under the ACTB locus (92). With
successful ubiquitous nuclear expression of GFP demonstrated
within these pigs, the same group went on to insert the H2B-
GFP sequence under control of leucine-rich repeat-containing
G protein-coupled receptor 5 (LGR5), a known biomarker
expressed by ISCs (LGR5-H2B-GFP) (56, 84). Histologic sections
of colon demonstrated nuclear GFP in the crypt base cell
populations in this novel model. However, to truly utilize this
translational model and isolate ISCs for study of intestinal
disease, further work is necessary to conclude that these GFP
expressing cells are in fact LGR5+ ISCs. With this information,
researchers would then have access to the first ever large animal
ISC reporter, making way for improved translational studies of
colorectal cancer development and intestinal barrier function
and repair.

FUTURE DIRECTIONS: TRANSGENIC
PORCINE MODELS OF INFLAMMATORY
BOWEL DISEASE

Inflammatory Bowel Disease (IBD) is a multifactorial disease
that is typically categorized as Crohn’s Disease (CD) or
Ulcerative Colitis (UC). These syndromes are characterized by
inflammation of the intestinal mucosa, influx of immune cells,
and dysregulated cytokine production. Subsequently, patients
suffer from episodes of abdominal pain, diarrhea, bloody stools,
and weight loss (93). Historically, gene edited rodent models
have been used to determine underlying etiologies and test
therapeutic targets (94). Murine models of IBD include knock-
outs of cytokines such as IL-10, TGF-β, IL-2, and IL-23.
Loss of these cytokines disrupts regulation of inflammation
in the intestine, leading to intestinal lesions similar to those
seen in IBD (95–98). Mice have also been engineered to
over express signals such as IL-7 or STAT4 to upregulate
immune cell activity and induce IBD (99, 100). However,
given the immunological differences known between man and
mouse (5, 7), alternative models that better emulate human
immune physiology are needed to test surgical interventions
and pharmaceutical therapeutics. A host of factors have been
identified to contribute to IBD including gut microbiota,
environmental factors, and abnormal innate and adaptive
immune responses (93). Pigs, with similar intestinal microbiota,
immunology, and anatomy to humans, are the clear choice for
IBD models (3, 6, 13, 18–23). Chemical-induction of IBD by
dextran sulfate sodium (DSS) or trinitrobenzenesulfonic acid
(TNBS) has been shown to reproduce intestinal lesions in the
pig similar to those found in UC and CD, respectively (101–
105). These models have been used to test advanced endoscopic
techniques to correct strictures and supplemental amino acid
therapy. To study IBD on a more mechanistic level within a
translationally relevant large animal model, transgenic induced
IBD porcine models, parallel to the IBD murine models, are
needed to mimic the specific immune cell dysregulations seen
with IBD.
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CONCLUSIONS

The need for large animal models, particularly porcine, to
improve pre-clinical intestinal disease translational research is
well known. As described in this review, innovative applications
of gene-edited porcine models of Cystic Fibrosis, colorectal
cancer, and ischemia-reperfusion injury have progressed both the
mechanistic understanding of disease pathophysiology as well as
led to novel therapeutic treatment development. With continued
improvement of gene-editing systems such as CRISPR/Cas,

additional porcine models to track intestinal stem cells or
simulate disorders such as Inflammatory Bowel Disease can
be made available to further progress translational intestinal
disease research.
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