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Abstract: This study aimed to use organic fertilizers, e.g., compost and manures, and a halophytic
plant [wavy-leaved saltbush (Atriplex undulata)] to remediate an agricultural soil polluted with toxic
elements. Compost or manure (1% w/w) was added to a polluted soil in a pot trial. The application of
the organic fertilizer, whether compost or manure, led to a significant improvement in the growth of
the tested plant. From the physiological point of view, the application of organic fertilizers to polluted
soil significantly increased the content of chlorophyll, carotenoid, and proline and, furthermore, led
to a clear decrease in malondialdehyde (MDA) in the plant leaves. The highest significant values of
organic carbon in the polluted soil (SOC) and cation exchange capacity (CEC) were found for the
soil amended by compost and planted with wavy-leaved saltbush. Manure significantly reduced the
soil pH to 7.52. Compost significantly decreased Zn, Cu, Cd, and Pb availability by 19, 8, 12, and
13%, respectively, compared to the control. On the other hand, manure increased Zn, Cu, Cd, and Pb
availability by 8, 15, 18, and 14%, respectively. Compost and manure reduced the bioconcentration
factor (BCF) and translocation factor (TF) of Cd and Pb. Compost was more effective in increasing
the phytostabilization of toxic metals by wavy-leaved saltbush plants compared to manure. The
results of the current study confirm that the application of non-decomposed organic fertilizers to
polluted soils increases the risk of pollution of the ecosystem with toxic elements. The cultivation of
contaminated soils with halophytic plants with the addition of aged organic materials, e. g., compost,
is an effective strategy to reduce the spreading of toxic metals in the ecosystem, thus mitigating their
introduction into the food chain.

Keywords: contaminated soils; Atriplex; halophytic plants; organic amendments; phytoremediation

1. Introduction

In recent decades, soil contamination with heavy metals has raised concern due to its
negative impact on environmental systems and the possibility of heavy metals bioaccu-
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mulation in the food chain [1]. The soil is a main sink for toxic elements from different
human activities and a main source of food contamination [2,3]. In addition, pollution of
agricultural land with heavy metals leads to the deterioration of its properties and suitabil-
ity for plant production [3–5]. The deterioration of soil properties will eventually lead to a
decrease in the productivity of crops and in their suitability for human consumption [3,4].
Toxic elements such as arsenic (As), copper (Cu), cadmium (Cd), chromium (Cr), lead (Pb),
and zinc (Zn) are the most diffuse environmental polluting elements [5]. Agriculture lands
are a nonrenewable resource on earth, so the conservation of contaminated soils is vital for
sustainable development [3]. About 20 million hectares of world agricultural lands have
heavy metal levels higher than the permissible limits [4,6].

There are many methods to remediate a polluted soil, but ecologists prefer to use
biological methods to reduce pollution and preserve the ecosystem [3,6]. The use of plants
as an environmentally friendly method to remediate polluted agriculture lands is a modern
technology that is receiving wide attention from environmental scientists and govern-
ments [6]. The phytoremediation technology depends on the use of plants to eliminates
contaminants from soils and water by adsorbing or degrading them [6,7]. Phytostabiliza-
tion is one of the main phytoremediation strategies which involve the planting of suitable
plant species able to immobilize heavy metals and prevent their accumulation in soils and
ground water [3,8,9].

Some halophytic shrubs, especially those belong to the Chenopodiaceae family, are
grown in saline arid conditions and are used to provide forage for livestock and the
rehabilitation of saline soils [8,10]. Atriplex is one of the most important types of halophytic
plants and is known as saltbush [11]. River saltbush (Atriplex amnicola Paul G. Wilson) is
part of the Chenopodiaceae family and has been used in the remediation of polluted soils [8].
Halophytic plants, e.g., river saltbush, quail bush, and wavy-leaved saltbush, can be used
in the remediation of metal-polluted soils [9]. Wavy-leaved saltbush (Atriplex undulata) is a
plant of the Atriplex genus, but little is known about its phytoremediation efficiency.

The first step to reduce metals pollution is the reduction of metal bioavailability in the
contaminated soils [3]. Several organic fertilizers have been used for the immobilization of
toxic elements in polluted lands [12–14]. Organic amendments are a source of plant nutri-
ents and could remain the principal nutrients sources for the maintenance of soil fertility
and quality [15]. Organic materials derived from plant and animal residues have many
positive characteristics that can enhance soil quality and improve crop performance [16].
These materials can be particularly useful as amendments to severely degraded soils [11].
Compost is rich in phosphorus (P) and iron (Fe), which can immobilize toxic metals in pol-
luted soil [17]. The impact of organic amendments on the bioavailability of toxic elements
varies according to the degree of decomposition of the organic matter [18,19]. The oxidiz-
able fraction of heavy metals which is bound to soil organic matter (SOM) is significantly
influenced by the electrostatic complexation between the metal and SOM, which affects the
toxicity of metals in contaminated soils [20]. The hydroxyl and phenolic groups in humic
compounds are the chief ligands for toxic elements [21]. Humic substances form insoluble
complexes with toxic metals and can decrease their bioavailability and pollution risks;
therefore, organo–metal complexes can be an effective tool to decrease the environmental
risk of heavy metals [22].

Compost differs in its chemical composition from manure that contains non-
decomposing organic materials; therefore, it is expected that there will be a difference in
their effects on the bioavailability of heavy metals. The current study was conducted to
examine: (1) the efficiency of wavy-leaved saltbush plants in reducing the availability of Zn,
Cu, Cd, and Pb, (2) the role of organic fertilizers, e.g., compost and manure, in increasing
the ability of the halophytic plants to tolerate the toxic metal stress, and (3) the effects of
compost and manure on the bioavailability, accumulation, and root-shoot transfer of Zn,
Cu, Cd, and Pb.



Plants 2021, 10, 2176 3 of 13

2. Material and Methods
2.1. Soil Characterization

The soil of the current study was collected from a polluted private farm in Illwan,
Assiut, Egypt. Untreated sewage wastewater was used in the irrigation of the experimental
site for more than 60 years. The chemical and physical properties are shown in Table 1.
The soil was air-dried and sieved through a 2 mm sieve. Soil texture was determined by
the pipette method [23]. The soil pH was determined in a 1:2 (soil to water) suspension
by a digital pH meter. Soil organic carbon was determined by the dichromate oxidation
method as described by Wakley and Black [23]. CaCO3 was measured by the calcimeter
method [23]. Soil salinity (EC) was estimated in a 1:2 soil-to-water extract by determining
the electric conductivity [23]. The micro-Kjeldahl method was used to measure total
nitrogen in soil [23], whereas 0.005 M DTPA (diethylenetriaminepentaacetic acid) was used
to extract the available Zn, Cu, Cd, and Pb from soil samples [24]. The soil samples (2 g)
were digested by HF-HNO3-HClO4 (1:1:1, v/v) in Teflon beakers to extract the total soil Zn,
Cu, Cd, and Pb [23]. SRM 1547, a reference material, was determined for quality assurance
and the results indicated that levels of Zn, Cu, Cd, and Pb are within the range of the
reference material. All the chemical analysis was done in duplicate.

Table 1. Basic analysis of the studied soil.

Soil Properties Value

Texture Sandy loam
CaCO3 (g kg−1) 60
CEC (cmol kg−1) 15

pH (1:2) 8.09
EC (1:2) (dS m−1) 2.11

Organic carbon (g kg−1) 3.50
Total nitrogen (mg kg−1) 190

Total Zn (mg kg−1) 800
Available Zn (mg kg−1) 8.2

Total Cu (mg kg−1) 300
Available Cu (mg kg−1) 2.5

Total Pb (mg kg−1) 850
Available Pb (mg kg−1) 7.0

Total Cu (mg kg−1) 300
Available Cu (mg kg−1) 2.5

2.2. Pot Experiments

Two series of pot experiments in a greenhouse (25 ◦C and 12 h light) were conducted
to study the immobilization of toxic elements by A. undulata. The first series of experiment
was conducted with the addition of compost and manure to the contaminated soil without
any tested plants. The second series of experiment was performed in the same conditions
with the inclusion of A. undulata plants. Plastic pots (25 cm in diameter and 20 cm in depth)
were filled with 5 kg of soil. Two seedlings of A. undulata were planted in each pot. The
pots were carefully watered near field capacity. Two types of organic fertilizers were used
in the current study, i.e., compost and farmyard manure. Compost was obtained from plant
material. The tested organic materials were added to the soil in the amount of 1% of soil
weight before cultivation. The trials included a control treatment without fertilization. The
same treatments were repeated in other pots without plants cultivation. The trials included
24 pots, 12 pots with plants, and 12 pots without plants.

2.3. Characterization of Compost and Manure

A sample of compost and manure was burned in a muffle furnace at 600 ◦C for 6 h
to determine the total organic content [23]. A mixture of H2SO4 and HClO4 (1:1 v/v)
was used to digest a sample of compost and manure to determine Zn, Cu, Cd, Pb, and
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total nitrogen [23]. The pH of the organic materials was measured by a digital pH meter
in a 1:10 suspension. The electrical conductivity (EC) was estimated in 1:10 extracts by
electric conductivity measurement [23]. Table 2 shows the chemical analysis of compost
and manure.

Table 2. Chemical analysis of compost and manure.

Organic Carbon
(g kg−1)

Total Nitrogen
(g kg−1)

pH
1:10

EC
(dS m−1)

Zn
(mg kg−1)

Cu
(mg kg−1)

Pb
(mg kg−1)

Cd
(mg kg−1)

Compost 400 22 8.02 4.5 160 40 - 0.33
Manure 320 18 7.82 6.5 155 35 - 0.42

2.4. Plant Analysis

After 15 weeks of cultivation, the plants were harvested and separated into roots
and shoots. The samples of roots and shoots were washed twice with tap water. A
solution of 0.1 HCl and Tween 80 was used to remove the inorganic wastes from the plant
samples, and then the samples were washed with distilled water. The plant samples were
oven-dried at 70 ◦C for 48 h. The dried samples were ground and submitted to the acid
digestion using a 2:1 HNO3/HClO4 mixture [23]. The concentration of toxic elements,
e.g., Zn, Cu, Cd, and Pb, was measured by an atomic absorption spectrophotometer
(AAS). Malondialdehyde (MDA) was measured by the method described by Madhava and
Sresty [25]. Total chlorophylls and carotenoids were extracted from fresh leaves by acetone
(80%) and then analyzed by a spectrophotometer [26].

2.5. Bioconcentration and Translocation Factors

The bioconcentration factor (BCF) is calculated by dividing metal in shoot by total metal
in soil, according to Equation (1) [27]. BCF is determined to evaluate a plant ability to accu-
mulate heavy metals; values of BCF higher than 1 indicate a higher accumulation capacity.

BCF = Metal in shoot (mg kg−1)/Total metal in soil (mg kg−1) (1)

The translocation factor (TF) is a parameter to evaluate the root–shoot transfer of
metals and is calculated with Equation (2) [27].

TF = Shoot metal (mg kg−1)/Root metal (mg kg−1) (2)

2.6. Statistical Analysis

The cultivated and non-cultivated pots were arranged in a Complete Blocks Design
(CBD) with four replicates. One-way ANOVA was used to test the significance of the
differences between the tested treatments. Duncan test was used to compare means. SPSS
statistical software was used in all statistical analysis.

3. Results
3.1. Effect of Cultivation and Organic Fertilization on the Characteristics of Polluted Soil

Compost and manure were added to the polluted soil to explore their effects on the
soil properties and the availability of Cd and Pb. The results for the studied characteristics
of the cultivated and non-cultivated soils are reported in Table 3. The soil pH was affected
significantly (p < 0.05) by cultivation and organic fertilization treatments. The pH values
ranged between 7.52 and 7.90; the lowest significant value was found for the cultivated
soil amended with manure, while the highest one was found for the control soil without
cultivation. The addition of manure to the cultivated soil reduced the soil pH to 7.52
(Tables 1 and 3). The highest significant values for soil organic carbon (SOC) and cation
exchange capacity (CEC) were found for the soil amended by compost and cultivated with
wavy-leaved saltbush plants.
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Table 3. Effect of cultivation, compost, and manure on some chemical characteristics of soil.

Soil
Treatment Amendments EC

(dS m−1) pH (1:2) SOC
(g kg−1)

CEC
(cmol kg−1)

Zn
(mg kg−1)

Cu
(mg kg−1)

Cd
(mg kg−1)

Pb
(mg kg−1)

Non-
cultivatedSoil

Control 2.20 ± 0.11 b 7.90 ± 0.26 a 3.5 ± 0.28 b 16 ± 1.5 b 8.00 ± 0.32 b 2.48 ± 0.18 b 3.40 ± 0.15 b 7.00 ± 0.28 b

Compost 3.00 ± 0.16 a 7.78 ± 0.25 ab 5.5 ± 0.26 a 17 ± 1.8 ab 6.52 ± 0.18 d 2.28 ± 0.14 c 3.00 ± 0.13 c 6.10 ± 0.24 c

Manure 3.20 ± 0.15 a 7.58 ± 0.26 b 5.7 ± 0.25 a 17 ± 1.7 ab 8.63 ± 0.33 a 2.86 ± 0.16 a 4.00 ± 0.12 a 8.00 ± 0.25 a

Cultivated
Soil

Control 2.30 ± 0.14 b 7.88 ± 0.27 a 3.8 ± 0.24 b 16 ± 1.3 b 6.54 ± 0.25 d 2.00 ± 0.14 d 2.55 ± 0.15 e 4.70 ± 0.29 e

Compost 3.10 ± 0.18 a 7.75 ± 0.24 ab 5.8 ± 0.33 a 18 ± 1.5 a 5.86 ± 0.32 e 1.76 ± 0.15 e 1.96 ± 0.18 f 4.00 ± 0.27 f

Manure 3.00 ± 0.11 a 7.52 ± 0.22 b 5.6 ± 0.42 a 18 ± 1.4 a 7.04 ± 0.19 c 1.80 ± 0.11 e 2.75 ± 0.17 d 5.00 ± 0.26 d

p 0.0001 0.008 0.005 0.002 0.009 0.005 0.001 0.004

SOC = soil organic carbon, CEC = cation exchange capacity. The available form of heavy metals was extracted by 0.005 M DTPA
(diethylenetriaminepentaacetic acid). Means (±standard deviation, n = 4) with the same letters are not significantly different at p < 0.05;
p values were determined by ANOVA.

The planting of metal-polluted land by wavy-leaved saltbush plants and the appli-
cation of compost or manure significantly (p < 0.05) affected the studied properties and
the bioavailability of Zn, Cu, Cd, and Pb. The cultivation of soil significantly minimized
the bioavailability of Zn, Cu, Cd, and Pb. Compost decreased the availability of Zn, Cu,
Cd, and Pb by 19, 8, 12, and 13% in the non-cultivated soil compared to the control, while
manure increased these values by 8, 15, 18, and 14%. Compost addition to the planted
soil caused a decrease in the bioavailability of Zn, Cu, Cd, and Pb by 10, 12, 24, and 15%
compared to the control, while manure increased the availability of Zn, Cu, Cd, and Pb
by 8, 10, 8. and 6%. The addition of compost decreased the bioavailability of Zn, Cu, Cd,
and Pb; on the other hand, manure increased the availability of Zn, Cu, Cd, and Pb in the
contaminated soil. The cultivation of soil with wavy-leaved saltbush plants decreased the
availability of Zn, Cu, Cd, and Pb by 16, 27, 25, and 33% compared to the non-cultivated
soil (over the manure and compost treatments). The availability of Zn, Cu, Cd, and Pb in
the compost-amended and planted soil was decreased by 27, 29, 42, and 43% compared
to the control without plants. Similarly, the availability of Zn, Cu, Cd, and Pb in the
manure-amended and planted soil was decreased by 12, 27, 20, and 29% compared to the
control without plants. Planting of the polluted soil by wavy-leaved saltbush plants was
effective in reducing the availability of Zn, Cu, Cd, and Pb. Compost was more effective
than manure in enhancing the immobilization of Zn, Cu, Cd, and Pb and in reducing
metal bioavailability.

3.2. Effect of Compost and Manure on the Growth of Wavy-Leaved Saltbush Plants

The results related to the growth of wavy-leaved saltbush plants, plant length, root
and shoot weight, number of leaves, and leaf area per plant, are reported in Table 4. The
growth of wavy-leaved saltbush plants was affected significantly (p < 0.05) by the organic
fertilization treatments. Compost or manure enhanced plant growth compared to the
control. Compost addition increased plant length and root and shoot weight by 38, 50,
and 38% in comparison with the control. Manure addition increased plant length and root
and shoot weight by 27, 33, and 25% compared to the control soil. Compost increased the
leaves number and area per plant by 60 and 50%, respectively, compared to the control.
The application of manure increased the leaves number and area per plant by 50 and 38%,
respectively, compared to the control soil.

Table 4. Effect of compost and manure on the growth of wavy-leaved saltbush plants.

Treatments Plant Length
(cm)

Roots Dry Weight
(g pot−1)

Shoots Dry Weight
(g pot−1)

Leaves
Number/Plant

Leaf Area/Plant
(cm2)

Control 130 ± 5.50 c 30 ± 1.55 c 100 ± 5.40 c 50 ± 2.22 c 100 ± 5.28 c

Compost 180 ± 5.10 a 45 ± 1.33 a 138 ± 6.44 a 80 ± 3.33 a 150 ± 5.11 a

Manure 165 ± 6.60 b 40 ± 1.66 b 125 ± 6.12 b 75 ± 3.44 b 138 ± 5.55 b

p 0.01 0.001 0.003 0.01 0.002

Means (±standard deviation, n = 4) denoted by different letters are significantly different at p < 0.05. p values were determined by ANOVA.
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3.3. Effect of Compost and Manure on Photosynthesis Pigments and Malondialdehyde (MDA) and
Proline Content

The results related to the total chlorophyll, carotenoids, malondialdehyde (MDA), and
proline content in wavy-leaved saltbush plants are shown in Figure 1. The content of some
pigment in wavy-leaved saltbush plants was affected significantly (p < 0.05) by the organic
fertilization treatments. Manure and compost increased total chlorophyll and carotenoids.
Compost and manure increased chlorophylls by 44 and 24%, while these increments were
75 and 38% in the case of carotenoids.
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Figure 1. Effect of compost and manure on photosynthesis pigments (A) Total Chlorophyll, (B) Carotenoids), (C) Proline
content, and (D) Malondialdehyde (MDA). Means (±standard deviation, n = 4) denoted by different letters are significantly
different at p < 0.05. All the data are based on fresh weight.

The wavy-leaved saltbush plants cultivated on the control soil contained the highest
significant values of MDA and the lowest significant value of proline. The application of
compost and manure significantly (p < 0.05) decreased MDA by 44 and 17%, respectively,
compared to the control, while the application of compost and manure increased proline
by 44 and 24%, respectively, compared to the control.

3.4. Cd and Pb Uptake and Translocation as Affected by Compost and Manure

The concentrations of cadmium (Cd), zinc (Zn), copper (Cu), and lead (Pb) in the roots
and shoots were affected significantly (p < 0.05) by the compost and manure amendments
(Figure 2).
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Figure 2. Effect of compost and manure on heavy metals content in the roots and shoots. Means (±standard deviation,
n = 4) denoted by different letters are significantly different at p < 0.05.

Compost significantly decreased Cd in the roots and shoots by 30 and 60%, while
manure decreased these values by 20 and 40% compared to the control. Compost decreased
Pb in the roots and shoots by 11 and 25%, while manure decreased these values by 5 and
10% compared to the control. The root and shoot concentrations of Zn were decreased by
22 and 25% as a result of compost addition in comparison with control, while in the case
of manure, these concentrations decreased by 11 and 20%. The application of compost
significantly decreased Cu concentration in the roots and shoots by 20 and 8%, respectively,
compared to the control, while the application of manure decreased Cu concentration in
the roots and shoots by 13 and 7%, compared to the control.

The efficiency of phytoremediation can be determined by calculating BCF and TF. The
translocation factor (TF) was estimated to evaluate the efficiency of compost and manure
in reducing the root–shoot transfer of Cd and Pb in wavy-leaved saltbush plants. The
values of TF and BCF are presented in Figures 3 and 4. Compost and manure significantly
decreased the Cd and Pb TF values, while the response of Zn and Cu was not significant.
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Figure 3. Effect of compost and manure on the translocation factor (TF) of heavy metals. Means (±standard deviation,
n = 4) denoted by different letters are significantly different at p < 0.05.
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Figure 4. Effect of compost and manure on the biological concentration factor (BCF). Means (±standard deviation, n = 4)
denoted by different letters are significantly different at p < 0.05.

Compost and manure decreased the TF values of Cd by 43 and 25% compared to the
control. Compost and manure decreased the Pb TF values by 15 and 10% compared to the
control. Compost and manure significantly reduced the BCF values of Cd and Pb, while the
response of Zn and Cu was not significant. Compost and manure reduced the BCF values
of Cd in roots by 30 and 20% and in shoots by 60 and 40% in comparison with the control.
Compost and manure reduced the BCF values of Pb in roots by 11 and 5% and in shoots by
25 and 15% in comparison with the control. The efficiency of compost in reducing the TF
and BCF values was greater than that of manure.

4. Discussion

The accumulation of toxic elements, e.g., zinc (Zn), copper (Cu), lead (Pb), and
cadmium (Cd), in agricultural lands is of great concern due to its negative impact on
crop quality and productivity, food safety, and the health of soil organisms [28]. Among
the heavy metals that are affecting soil and water quality, Zn, Cu, Pb, and Cd are the
most dangerous elements in the ecosystem due to their high mobility in soil, plant, and
water systems [29]. The studied soil contained levels of Zn, Cu, Cd, and Pb of 800, 300,
40, and 850 mg kg−1, respectively (Table 1). The critical values of Zn, Cu, Cd, and Pb
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for agricultural soils are 150–300, 50–140, 1–3, and 50–300 mg kg−1 [30]. The findings of
this study indicate that the soil was polluted with Zn, Cu, Cd, and Pb. Pollution of soil
with toxic elements causes damage in the root and shoot systems, as well as an imbalance
in vital systems, e.g., it blocks the synthesis of sugars and proteins, disturbs hormone
metabolism, and causes nutrients imbalance [31,32]. The threshold levels of Zn, Cu, Pb,
and Cd for plants tissues are 100–400, 20–100, 30–300, and 5–30 mg kg−1, respectively [33].
The concentrations of Pb and Cd in the roots of the studied plants reached 580–650 and 140–
200 mg kg−1, respectively, while in the shoots they reached 150–200 and 32–80 mg kg−1,
respectively. Though the wavy-leaved saltbush plants grew in a soil polluted with Zn,
Cu, Pb, and Cd and the concentration of these metals within the plant tissue was higher
than the toxicity limits, no symptoms of toxicity by heavy metals appeared in the studied
plants. This confirms that these plants tolerate high concentrations of toxic elements,
whether in soil solution or in their tissues, and are thus eligible for use in the remediation
of polluted soils.

The bioconcentration factor (BCF) and translocation factor (TF) are among the most
important parameters to determine the potential of plants to be used in phytoremedia-
tion [34]. There are two tolerance mechanisms against metal stress according to BAF and
TF values [34]. The first mechanism involves metal excluder species that have a TF value
lower than 1 and accumulate toxic metals in the roots with low root–shoot transfer. The
second mechanism is typical of hyperaccumulator plants that have TF and BCF values
higher than 1. Based on the obtained results, wavy-leaved saltbush plants accumulate high
levels of toxic metals in their roots, with TF values less than 1; therefore, the studied plants
are suitable for the so-called phytostabilization technology.

Soil characteristics, e. g., clay content, cation exchange capacity (CEC), soil pH, and
organic matter (SOC), play important roles in changing heavy metals’ bioavailability [35].
The use of organic amendments is another viable option to cultivate crop in soils contami-
nated with Zn, Cu, Pb, and Cd [36]. The nature and quantity of organic matter in the soil
affect many soil properties, e g., there is an increase in the adsorption of Zn, Cu, Pb, and
Cd by soil components with increasing amounts of organic matter [37–39]. The addition
of compost significantly affected the distribution of Cd, Zn, Cu, and Pb in soils in this
study. Organic fertilizers have crucial roles in minimizing the bioavailability of Zn, Cu, Pb,
and Cd in contaminated soils due to their high CEC and complexing ability [36]. In the
current study, compost increased the soil CEC and SOC; on the other hand, it reduced the
availability of Zn, Cu, Pb, and Cd. The decrease in the bioavailability of Zn, Cu, Pb, and
Cd with the addition of organic matter was predominantly due to the effect of increasing
soil CEC and SOC [38,39]. Zhou et al. [13] also stated that the application of composted
organic fertilizers to alkaline lands can reduce the bioavailability and uptake of Zn and Pb.
Decomposed organic fertilizers contain organic compounds that form insoluble complexes
with toxic elements, which can reduce the uptake of toxic metal in plant tissues [12,14].
Compost can be used to increase the phytostabilization of Zn, Cu, Pb, and Cd in polluted
lands [40].

Unlike compost, the addition of manure led to an increase in the bioavailability of
Zn, Cu, Pb, and Cd. Manure contains relatively high levels of soluble organic matter [19].
The addition of manure reduced the soil pH to 7.52 (Tables 1 and 3). We hypothesize that
the low soil pH and the non-decomposing organic compounds in manure are the reasons
for the increase in the bioavailability of Pb and Cd in the studied soil. The type of organic
matter directly affects metal availability, which is very close to the degree of organic matter
humification [41]. Cadmium and lead are more mobile and available when lowering the pH
of moderately alkaline soils [42]. The hydroxyl and carboxyl groups in mature composted
materials form stable complexes with toxic metals and reduce their bioavailability [18,19].

The addition of compost to metal-polluted lands increased the phytostabilization of
Cd, Zn, Cu, and Pb by wavy-leaved saltbush plants. We assume that compost enhanced
the phytostabilization of Zn, Cu, Pb, and Cd by reducing the bioavailability of Cd, Zn,
Cu, and Pb through the formation of organo–metal complexes, minimized the metal root–
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shoot transfer by inducing the precipitation of Zn, Cu, Pb, and Cd in the root tissues,
and mitigated the toxicity stress by enhancing photosynthesis and proline accumulation.
The accumulation of malondialdehyde (MDA) in plant tissues is an indicator of oxidative
stress damage due to the toxicity of Cd, Zn, Cu, and Pb in the growing medium [43,44].
Compost mitigated oxidative stress and reduced the accumulation of MDA in the leaves
of wavy-leaved saltbush plants by increasing proline, which is a secondary amino acid
mitigating abiotic stresses, e. g., metal stress [45]. Previous studies confirmed that some
Atriplex plants, e. g., A. amnicola, A. undulata, and A lentiformis are able to precipitate Zn,
Cu, Pb, and Cd on their root surface by forming metal–phosphate complexes [8,46–50]. The
roots of Atriplex plants are characterized by their high content of phosphorous and chloride,
which increases their ability in the precipitation of toxic elements on the root surface [46].
The degree of plant resistance to element toxicity depends on the type of plant and on
soil conditions [48–50]. Therefore, improving plants’ growth conditions increases their
resistance and thus improves their performance efficiency in contaminated soils [50–57].

5. Conclusions

Cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) are among the most toxic
elements that lead to environmental pollution and are also among the most dangerous
elements to living organisms. Therefore, it is necessary to use modern technological means
for the remediation of metal-polluted agricultural soils. In this pot trial, wavy-leaved
saltbush plants were used to remediate an agricultural soil contaminated with Cd, Zn,
Cu, and Pb by what is known as phytostabilization. The plants under study have a great
ability to absorb toxic metals in their roots, with a low root–shoot transfer. The addition of
compost improved the ability of the plants to reduce the availability of Cu, Zn, Cd, and Pb
in the soil, while the addition of manure had an opposite effect. The application of organic
fertilizers, whether as compost or manure, had positive effects in stimulating plant growth
and increasing plant resistance to metals’ toxicity. Wavy-leaved saltbush plants can survive
in environments that contain high concentrations of toxic metals, as they accumulate these
elements in the root system, with a low transfer to the aboveground parts. More studies are
needed on the extent to which these plants can be suitable in treating sewage, sediments,
and contaminated water.
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