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Abstract

This paper develops a mathematical model describing the evolutionary dynamics of a unicellular, asexually replicating
population exhibiting chromosomal instability. Chromosomal instability is a form of genetic instability characterized by the
gain or loss of entire chromosomes during cell division. We assume that the cellular genome is divided into several
homologous groups of chromosomes, and that a single functional chromosome per homologous group is required for the
cell to have the wild-type fitness. If the fitness is unaffected by the total number of chromosomes in the cell, our model is
analytically solvable, and yields a mean fitness at mutation-selection balance that is identical to the mean fitness when there
is no chromosomal instability. If this assumption is relaxed and the total number of chromosomes in the cell is not allowed
to increase without bound, then chromosomal instability leads to a reduction in mean fitness. The results of this paper
provide a useful baseline that can inform both future theoretial and experimental studies of chromosomal instability.
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Introduction

Living systems have evolved a range of mechanisms to ensure

the accurate transmission of their genetic information from one

generation to the next [1]. When one or more of these

mechanisms break down, the result is generally significantly

increased mutation rates and variability in the distribution of

genotypes in a population. Very often, the variability in the

distribution of genotypes manifests itself through organizational

changes to the genome itself, as opposed to point-mutations along

the DNA gene sequences. When this happens, the genomes are

said to exhibit genetic instability [1,2,3].

Genetic instability is a hallmark feature of cancer cells, and

generally comes in one of two different forms: (1) Microsatellite

INstability, or MIN, tumors, are characterized by elevated point-

mutation rates and the accumulation of sequences of DNA in their

chromosomes [1,2,3,4]. (2) Chromosomal INstability, or CIN,

tumors, are characterized by a breakdown in chromosomal

segregation mechanisms during cell division, leading to the gain

or loss of entire chromosomes [1,2,3,4]. Such cells may no longer

be diploid, with different homologous groups being characterized

by different copy numbers, a phenomenon known as aneuploidy

[1,2,3,4]. In addition to the gain or loss of entire chromosomes,

CIN is also characterized by the fusion of parts of chromosomes to

one another, leading to more complicated genome-wide re-

arrangements [1,2,3,4].

The CIN instability is by far more prevalent than the MIN

instability [1,4]. Given the centrality of genetic instability to the

progression of cancer, an understanding of the role of CIN on the

evolutionary dynamics of a cellular population is important for

developing accurate models of cancer progression, and for possibly

assessing the efficacy of various treatment strategies.

Materials and Methods

To model the evolutionary dynamics associated with the CIN

instability, we consider a unicellular population of asexually

reproducing organisms. We also assume that the organismal

genome is organized as follows: We let N denote the total number

of homologous groups in the genome. Labelling the homologous

groups 1, . . . ,N, we let ni denote the number of chromosomes in

homologous group i (by a homologous group, we mean a set of

chromosomes that contain the same sequence of genes, though

corresponding genes on different chromosomes within a group

may differ from one another due to mutations).

We assume that each chromosome is a double-stranded DNA

molecule, and that, when each chromosome replicates, the two

strands unwind, and each strand serves as the template for the

synthesis of the corresponding daughter strand (a process known as

semiconservative replication).

During normal cell division, the two daughter chromosomes of

a given parent chromosome segregate into separate daughter cells.

However, with chromosomal instability, it is possible that two

daughter chromosomes will segregate into the identical daughter

cell. We let pc denote the probability that the two daughter

chromosomes of a given parent segregate into separate daughter

cells, so that 1{pc is the probability that they co-segregate into the

same daughter cell.

We assume that DNA replication is not error-free. Thus, we let

p denote the probability that a given template strand of a given

chromosome produces a daughter chromosome that is identical to

the parent.

Following the single-fitness-peak approximation that is com-

monly used as a starting point in quasispecies and population

genetics models, we assume that for each homologous group there
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is a wild-type chromosome for which that chromosome is

functional. Any mutation to the wild-type is assumed to render

the chromosome non-functional.

If the chromosomes are taken to be sufficiently long, then we may

make an approximation known as the neglect of backmutations, which

states that a template strand that differs from the wild-type will produce

a daughter that differs from the wild-type with probability 1. The basis

for this assumption is that, for a sufficiently long chromosome, any new

mutations will likely occur in a previously unmutated portion of the

genome, so that the wild-type cannot be restored.

Finally, we assume that the first-order growth rate constant, or

fitness, of a genome is determined by the number of functional

chromosomes in each homologous group, as well as by the number

of non-functional chromosomes in each homologous group. Thus,

if nz
i denotes the number of functional chromosomes in

homologous group i, and n{
i denotes the number of non-

functional chromosomes, then the fitness is given by k(~nnz;~nn{),
where ~nn+:(n+

1 , . . . ,n+N ).

When a given parent cell reproduces, it produces two daughters.

Let us label these daughters as a ‘‘left’’ daughter cell and ‘‘right’’

daughter cell. Given a left daughter cell with genome character-

ized by (~nnz,~nn{), we define parameters m+
i,j , where i~1, . . . ,N,

j~1, . . . ,6 for mz
i,j and j~1,2,3 for m{

i,j , as follows:

1. mz
i,1 denotes the number of functional chromosomes in

homologous group i of the parent cell that do not exhibit

instability, and that send a functional daughter into the left

daughter cell. The probability that a given functional

chromosome produces daughters that segregate in this manner

is pcp.

2. mz
i,2 denotes the number of functional chromosomes in

homologous group i of the parent cell that do not exhibit

instability, and that send a non-functional daughter into the left

daughter cell. The probability that a given functional

chromosome produces daughters that segregate in this manner

is pc(1{p).

3. mz
i,3 denotes the number of functional chromosomes in

homologous group i of the parent cell that exhibit instability,

and send two functional daughters into the left daughter cell.

The probability that a given functional chromosome produces

daughters that segregate in this manner is (1{pc)p2=2.

4. mz
i,4 denotes the number of functional chromosomes in

homologous group i of the parent cell that exhibit instability,

and send one functional and one non-functional daughter into

the left daughter cell. The probability that a given functional

chromosome produces daughters that segregate in this manner

is (1{pc)p(1{p).

5. mz
i,5 denotes the number of functional chromosomes in

homologous group i of the parent cell that exhibit instability,

and send two non-functional daughters into the left daughter

cell. The probability that a given functional chromosome

produces daughters that segregate in this manner is

(1{pc)(1{p)2=2.

6. mz
i,6 denotes the remainder of the functional chromosomes in

homologous group i of the parent cell. These chromosomes

must exhibit instability and send the daughters into the right

daughter cell. The probability that a given functional

chromosome produces daughters that segregate in this manner

is (1{pc)=2.

7. m{
i,1 denotes the number of non-functional chromosomes in

homologous group i of the parent cell that do not exhibit

instability. The probability that a given non-functional chromo-

some produces daughters that segregate in this manner is pc, and

such a chromosome will produce one non-functional daughter

that segregates into the left daughter cell, and one non-functional

daughter that segregates into the right daughter cell.

8. m{
i,2 denotes the number of non-functional chromosomes in

homologous group i of the parent cell that exhibit instability,

and send the daughters into the left daughter cell. The

probability that a given non-functional chromosome produces

daughters that segregate in this manner is (1{pc)=2, and such

a chromosome will produce two non-functional daughters that

segregate into the left daughter cell.

9. m{
i,3 denotes the number of non-functional chromosomes in

homologous group i of the parent cell that exhibit instability,

and send the daughters into the right daughter cell. The

probability that a given non-functional chromosome produces

daughters that segregate in this manner is (1{pc)=2, and such

a chromosome will produce two non-functional daughters that

segregate into the right daughter cell.

Now, for i~1, . . . ,N, let ~mmz
j ~(mz

1,j , . . . ,mz
N,j), where

j~1, . . . ,6, and ~mm{
j ~(m{

1,j , . . . ,m{
N,j), where j~1,2,3. If ~nnz

i ,

~nn{
i denote the number of functional and non-functional chromo-

somes in homologous group i, respectively, then we have,

~nnz
i ~mz

i,1zmz
i,2zmz

i,3zmz
i,4zmz

i,5zmz
i,6

~nn{
i ~m{

i,1zm{
i,2zm{

i,3 ð1Þ

For the left daughter cell, we also have,

nz
i ~mz

i,1z2mz
i,3zmz

i,4

n{
i ~mz

i,2zmz
i,4z2mz

i,5zm{
i,1z2m{

i,2 ð2Þ

These two equations imply that 0ƒmz
i,4ƒn+i , and so we have that

mz
i,4~0, . . . , minfnz

i ,n{
i g. We then have that mz

i,3~0, . . . ,

t(nz
i {mz

i,4)=2s, m{
i,2~0, . . . ,t(n{

i {mz
i,4)=2s, mz

i,5~0, . . . ,

t(n{
i {mz

i,4{2m{
i,2)=2s, mz

i,2~0, . . . ,n{
i {mz

i,4{2m{
i,2{2mz

i,5,

mz
i,6~0, . . . ,?, m{

i,3~0, . . . ,?.

Taking into account the transition probabilities listed above, as

well as degeneracies in the ways we can choose the segregation

patterns of the chromosomes consistent with given values of ~mm+
j ,

we obtain,

dx(~nnz;~nn{)

dt
~{(k(~nnz;~nn{)z�kk(t))x(~nnz;~nn{)z

2
Xminfnz

1
,n{

1
g

mz
1,4

~0

Xt
nz

1
{mz

1,4
2

s

mz
1,3

~0

Xt
n{
1

{mz
1,4

2
s

m{
1,2

~0

Xt
n{

1
{mz

1,4
{2m{

1,2
2

s

mz
1,5

~0

Xn{
1

{mz
1,4

{2m{
1,2

{2mz
1,5

mz
1,2

~0

X?

mz
1,6

~0

X?

m{
1,3

~0

. . .

Xminfnz
N

,n{
N
g

mz
N,4

~0

Xt
nz

N
{mz

N,4
2

s

mz
N,3

~0

Xt
n{
N

{mz
N,4

2
s

m{
N,2

~0

Xt
n{

N
{mz

N,4
{2m{

N,2
2

s

mz
N,5

~0
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Xn{
N

{mz
N,4

{2m{
N,2

{2mz
N,5

mz
N,2

~0

X?

mz
N,6

~0

X?

m{
1,3

~0

P
N

i~1

(mz
i,1zmz

i,2zmz
i,3zmz

i,4zmz
i,5zmz

i,6)!

mz
i,1!mz

i,2!mz
i,3!mz

i,4!mz
i,5!mz

i,6!

(m{
i,1zm{

i,2zm{
i,3)!

m{
i,1!m{

i,2!m{
i,3!

|

½pcp�m
z
i,1 ½pc(1{p)�m

z
i,2 ½(1{pc)p2

2
�m

z
i,3 ½(1{pc)p(1{p)�m

z
i,4

½(1{pc)(1{p)2

2
�m

z
i,5 ½1{pc

2
�m

z
i,6|

p
m{

i,1
c ½1{pc

2
�m

{
i,2 ½1{pc

2
�m

{
i,3 k(~mmz

1 z . . . z~mmz
6 ;~mm{

1 z . . . z~mm{
3 )

x(~mmz
1 z . . . z~mmz

6 ;~mm{
1 z . . . z~mm{

3 )

ð3Þ

where x(~nnz;~nn{) is the fraction of the population whose genome is

characterized by ~nn+, and �kk(t) is the mean fitness of the

population, or the average of all the first-order growth-rate

constants weighted over the population distribution.

We assume that the fitness is either 1 or 0. The fitness is taken to

be 1 if each homologous group contains at least one functional

chromosome, and if the total number of chromosomes does not

exceed some value Nmax. Otherwise, the fitness is taken to be 0.

If Nmax~?, then the fitness only depends on the number of

functional chromosomes in each homologous group, so that we

may write k(~nnz;~nn{)~k(~nnz). If we define x(~nnz) to be the total

fraction of the population with nz
i functional chromosomes in

homologous group i, where i~1, . . . ,N, then by summing over all

possible values of ~nn{, we obtain, after some manipulation,

dx(~nnz)

dt
~{(k(~nnz)z�kk(t))x(~nnz)z

2
X?

mz
1,2

~0

Xt
nz
1
2

s

mz
1,3

~0

Xnz
1

{2mz
1,3

mz
1,4

~0

X?

mz
1,5

~0

X?

mz
1,6

~0

. . .
X?

mz
N,2

~0

Xt
nz
N
2

s

mz
N,3

~0

Xnz
N

{2mz
N,3

mz
N,4

~0

X?

mz
N,5

~0

X?

mz
N,6

~0

P
N

i~1

(mz
i,1zmz

i,2zmz
i,3zmz

i,4zmz
i,5zmz

i,6)!

mz
i,1!mz

i,2!mz
i,3!mz

i,4!mz
i,5!mz

i,6!
|

½pcp�m
z
i,1 ½pc(1{p)�m

z
i,2 ½(1{pc)p2

2
�m

z
i,3 ½(1{pc)p(1{p)�m

z
i,4

½(1{pc)(1{p)2

2
�m

z
i,5 ½1{pc

2
�m

z
i,6|

k(~mmz
1 z . . . z~mmz

6 )x(~mmz
1 z . . . z~mmz

6 ) ð4Þ

Results and Discussion

We may analytically solve for the mutation-selection balance of

Eq. (4). To do so, we define the quantity Snz
1 . . . nz

N T via,

Snz
1 . . . nz

N T~
X?

nz
1

~0

. . .
X?

nz
N

~0

nz
1 . . . nz

N x(nz
1 , . . . ,nz

N ) ð5Þ

Using Eq. (4), we can show, after some manipulation, that,

dSnz
1 . . . nz

N T
dt

~(2pN{1{�kk(t))Snz
1 . . . nz

N T ð6Þ

Assuming that the system converges to a steady-state, and

assuming that Snz
1 . . . nz

N T remains finite, we obtain that

�kk~2pN{1. Interestingly, this suggests that the mean fitness at

steady-state does not depend on the value of pc.

In Figure 1 we show a plot of the steady-state mean fitness, or

�kk:�kk(t??), obtained from a stochastic simulation of reproducing

organisms. Instead of plotting the mean fitness versus p, we plotted

it versus m:N(1{p). Note the good agreement between our

theory and the simulation results.

Although we do not show plots for smaller values of Nmax, we

do indeed find that, as Nmax is decreased, the mean fitness drops,

and may drop significantly below the Nmax?? values.

Our result for the mean fitness hinges on the assumption that

Snz
1 . . . nz

N T converges to a finite value. However, for p~1, if this

is the case, then it follows that �kk~1. This implies, however, that

Snz
1 . . . nz

N T?? at mutation-selection balance for pcv1. To see

this, note that since cells with some nz
i finite have a positive

probability of producing a daughter without any chromosomes in

homologous group i, it follows that if x(~nnz)w0 with some nz
i

finite, then the subsequent dynamics will lead to the production of

genomes with zero fitness, resulting in �kk(t)v1, contradicting the

fact that the population is at steady-state.

The way this issue is resolved is if �kk~2pN{1 for pv1, so that,

by continuity, �kk~1 for p~1. Also, Snz
1 . . . nz

N T is finite for pv1,

but infinite for p~1. As a result, the convergence of Snz
1 . . . nz

N T
as a function of Nmax is not uniform, but rather must be increased

as p?1. While we do not show plots of Snz
1 . . . nz

N T, our

stochastic simulation results suggest that the analysis above is

indeed correct.

We developed a simpe mathematical model describing the

evolutionary dynamics of a population exhibiting CIN. Our goal

at this stage was not to model the dynamics of cancer progression,

but rather to understand some basic features of the mutation-

selection balance that is associated with CIN. We found that,

under certain simplifying assumptions, that the mean fitness of the

population did not depend on the extent of CIN. This is clearly an

oversimplification, as we are neglecting additional features of CIN

such as the fusion and deletion of parts of chromosomes, which

can disrupt the normal sequence of genes and thereby affect the

fitness of the population.

Another feature we are neglecting is the role of finite population

size in our model, which can have a much stronger effect in the

case of chromsomal instability. The reason for this is that, if a cell

has a relatively large number of homologous pairs in the genome,

and its initial ploidy level is low, then for a sufficiently high level of

chromosomal instability it becomes likely that one daughter cell

will not receive any chromosomes from some homologous group,

while the other daughter cell will not receive any chromosomes

from another homologous group. This will lead to a sharp initial

decay in the population. If the population is sufficiently small, then
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this will lead to the extinction of the population. With an infinite

population, the population growth rate does initially drop sharply.

However, a small fraction of the cells will accumulate chromo-

somes in every homologous group. As the number of chromo-

somes in the homologous groups increases, these cells become

shielded from the effects of chromosomal instability, and the

population recovers as the mean fitness settles into a steady-state

value. Thus, for future research we will need to develop stochastic

models that explicitly take into account the finite size of the

population.

Finally, we should emphasize that we are not the first to develop

evolutionary dynamics models that incorporate CIN [2,5,6,7].

Nevertheless, we believe that the model offered here provides

additional perspective on the subject, and reveals new and

interesting properties of replicator dynamics as applied to

unicellular populations.
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