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Abstract

Detecting and assessing changes in the hydrologic cycle and its response to a changing

environment is essential for maintaining regional ecological security and restoring degraded

ecosystems. There is no clear scientific evidence on the effects of human activities and cli-

mate variability on runoff and its components in typical arid areas. Therefore, in this study, a

heuristic segmentation algorithm, a variable infiltration capacity model (VIC), and remote

sensing data to quantify the effects of human activities and climate variability on runoff in the

catchment of Lake Ebinur, Xinjiang, China. The results found: (1) The heuristic segmenta-

tion algorithm divided the study period into reference period (1964–1985) and two impact

periods: I (1986–2000) and II (2001–2017). (2) Cropland and forest land showed an increas-

ing trend, with grassland and barren land accounting for most of the increase. At the same

time, the leaf area index (LAI) increased by 0.002 per year during the growing season. (3)

Compared with the reference period, runoff depth decreased by 108.80 mm in impact period

I due to human activities, but increased by 110.5 mm due to climate variability, resulting in

an overall increase in runoff depth of 1.72 mm. Runoff depth increased by 11.10 mm in the

impact period II compared to the reference period, with climate variability resulting in an

increase of 154.40 mm, but human activities resulted in a decrease of 143.30 mm. Our

results shed light on decision-making related to water stress in changing circumstances in

arid regions.

1. Introduction

Climate change and human activities are important drivers of the hydrologic cycle and water

management decisions [1]. Climate change, especially temperature rise and changing precipi-

tation patterns, will have a lasting impact on the distribution patterns of regional hydrologic

processes in space and time [2]. In the context of global warming, hydroclimatic variables in

arid and semi-arid regions have been found to show an opposite trend to those in humid

regions, where the climate in the Tarim River basin is changing toward warm and humid [3,4].
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In addition, the intensification of human activities in recent decades, such as economic and

demographic factors, agricultural reclamation, and urbanization, has led to increased pressure

on water resources in arid regions [5]. The Global International Waters Assessment Project

(GIWA) water resources assessment for Central Asia found that 70% of economic develop-

ment conflicts are due to water scarcity [6]. To alleviate the severe ecological and water man-

agement problems in the northern region, the Chinese government has initiated more than

five ecological restorations programs (ER) since 1978, including the Three Northern Forest

Conservation Forests, the Soil and Water Conservation Program, the Partnership Against

Desertification, the Return of Cropland to Forests, and the Grassland Ecological Conservation

Program [7–9]. However, there is no clear scientific evidence on the impacts of human activi-

ties and climate variability on hydrological systems in arid regions.

Determining changes in the regional hydrological cycle is a major challenge due to the com-

plex interactions between hydrological systems and elements such as climate and land cover

[10]. Recently, a growing number of studies have separated the impacts of climate change and

human activities on hydrological systems using four methods, namely: (a) the traditional

Budyko-based approach [11–13]; (b) the trend method of time series decomposition [14]; (c)

the scenario-based approach to hydrologic system modeling [15,16]; and (d) the Tomer-Schil-

ling approach [17,18]. Among them, the techniques based on Budyko and the time-trend are

currently the most widely used, while the application of the latter two methods is gradually

increasing. Zhang, Nan used eight different forms of time trend methods and compared them

with the Budyko method to show that human activities have a smaller impact on runoff than

climate change [19]. Xie, Liang used simulations of variable infiltration capacity scenarios

(VIC) to evaluate the impact of ER projects on the regional hydrologic system in northern

China [3]. Yan, Bai used the Soil and Water Assessment Tool model (SWAT) to compare the

changing state of runoff relative to the baseline period through breakpoint analysis and delin-

eation of impact periods and to quantitatively distinguish the contributions of human activities

and climate variability to runoff declines [20]. Compared to other methods, process-based

hydrologic models can mechanistically simulate the hydrologic cycle and have physical advan-

tages not achieved by other statistical or empirical methods [21]. Since its appearance, the VIC

model has been applied in various geographical regions and can accurately simulate complex

processes in the hydrological cycle [22–24]. Meanwhile, the VIC model distributes various

processes in the simulating runoff component, such as the snowmelt process, the flow process,

and the permafrost process [25]. Therefore, the VIC model was chosen as the tool to quantify

the impact of runoff in this study.

Recently, the Ebinur Lake basin (ELB) in Xinjiang, China, has become a hotspot for

research on hydrology and water resources under changing conditions as the lake’s wetlands

decline, land degradation increases, and water resource supply and demand are in conflict in

recent decades [26–30]. However, few studies quantitatively distinguish between the effects of

climate change and human activities on runoff and its components over a relatively long

period. There is a need for further research to detail hydrologic and water management

changes to better manage water resources in the ELB. Our study focuses on the responses of

runoff and its components to human activities and climate change in a typical arid inland

region where ER projects have been conducted in recent decades, including changes in land

cover and vegetation leaf area. Our specific objectives were to (a) quantify the effects of climate

change and human activities on runoff, baseflow, surface runoff, and snowmelt; (b) to compare

changes in land cover, leaf area index (LAI), runoff, and their components before and after

implementation of the ER plan; and (c) to reveal the uncertainty of various calibration algo-

rithms for hydrologic model simulations.
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2. Study area dataset

2.1 Study area

Our study area includes the Bortala River basin, the Jing River basin and the adjacent wetland

of Lake Ebunur, and parts of the Kuitun River basin extending from 4˚20’N to 45˚23’N and 79˚

53’E to 83˚53’E; the area is located in the arid inland region of northwest China [31]. The total

area of the study area is 50 000 km2 and includes the Mongolian autonomous prefecture of Bor-

tala and part of the city of Kuitun in the Xinjiang Uygur autonomous region, China [32]. Aver-

age July and January temperatures in the basin are about 27.3˚C and -17.2˚C, respectively, and

average annual precipitation ranges from 89 to 169 mm, indicating a typical dry continental cli-

mate [33]. The average annual runoff in the basin from 1964 to 2017 was 4.27 × 108 m3, which

is 62.79% of the annual summer runoff, a typical pattern for dryland runoff [28].

2.2 Dataset

2.2.1 Meteorological data. Four meteorological variables on a daily scale from 1964 to

2017 were selected for the study area to run the VIC model. Maximum temperature, minimum

temperature, precipitation, and wind speed. Includes data for 7 locations obtained from the

China Meteorological Administration (CMA, http://data.cma.cn/). Because the topography of

the study area is highly variable and conventional interpolation methods are unable to account

for temporal and spatial variability in precipitation, a thin-slab interpolation method based on

climatic averages was used, and climatic averages were obtained from WordClim [34,35]

(https://www.worldclim.org/data). The thin plate interpolation method provides better climate

estimates by using mature climate background field data as a third variable to control for

errors that can be difficult to correct during the interpolation process [36].

All the above meteorological data were interpolated to a gridded data set of 0.05˚ using the

TPS interpolation algorithm within the WordClim climate mean. The WordClim dataset is a

global gridded meteorological dataset interpolated from nearly 60,000 meteorological station

data using sparse splines with two environmental covariates (elevation and distance to the

coast) and MODIS-based satellite products [37]. In this study, a standardized normalized

homogeneity test (SNHT) was performed on meteorological data to identify data spikes and

outliers that were not due to climatic factors. Of the selected meteorological stations, only a

few stations had missing values before 1970 after the SNHT and homogenization evaluation,

so this did not have a significant impact on the research results. Also, since the TPS interpola-

tion is performed under the average background meteorological field, the interpolation data

do not significantly affect the research results. The rate of change of -6.5˚C km-1 was adjusted

to reflect the actual decrease in temperature with altitude, using the relationship between tem-

perature and altitude at measured meteorological stations [38].

2.2.2 Environment variables. These soil data were taken from the World Soil Database

(HWSD), where soil attributes were stored in a 30 arc-second grid, and were mainly used for

the parameterization of the VIC model [39].

Based on the delineation of the impact period, we used land cover, leaf area index (LAI),

and shortwave albedo from three representative years (1980, 2000, and 2017) as vegetation

parameters for the VIC model simulations. These land cover, LAI, and shortwave albedo data

were obtained from Landsat TM imagery, AVHRR, and MODIS products [40]. After analyz-

ing the breakpoints, we categorized these vegetation parameters as LC _1980, LC _2000, and

LC _2017, which represent the early and late phases of the ER project, respectively. These two

phases coincided with the introduction of the ER plan developed by the Chinese government,

which is useful for researching the effects of land-use change and ecological restoration plans.
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To reconcile the data for LAI and shortwave albedo with the use of the VIC model, three data

sets were used for different periods, each with 12 months of data. These three data sets were

consistent with land cover and therefore can be used for VIC simulations under different sce-

narios based on the classified vegetation parameters

Topographic data were obtained from HydroSHEDS, including digital elevation models,

slopes, drainage directions, flow accumulation, and river networks, respectively [41].

2.2.3 Streamflow. Monthly discharges from 1964 to 1984 were used to evaluate the per-

formance of the model, with discharges recorded by local water agencies at three hydrologic

stations. Due to many missing values and heavy human interference with discharges at the

Bole station, this station was not used for this model validation. The other two hydrologic sta-

tions had good flow quality and were well rated in several studies [4].

3. Methods

3.1 Breakpoint analysis

Understanding of the determinants of climate variability for regional ecological quality has pri-

marily come from the study of hydroclimatic variables, and some scientists have used tradi-

tional trend tests or change analyses for hydroclimatic variables in the ELB [42]. However,

traditional statistical testing methods are insufficient for analyzing breakpoints in nonlinear

and nonstationary time series; thus, in this study, a heuristic segmentation-based algorithm

was used to overcome these challenges [43,44]. The modified moving T-test concept was used

to detect breakpoints in nonlinear and nonstationary time series in the heuristic segmentation

algorithm [45]. The method has been used successfully to detect fractures in hydrological vari-

ables such as the Yellow and Han rivers, among others [46]. The nonstationary time series var-

iables were first divided into stationary segments, and then the sliding pointer was moved

from left to right along the time series. The statistical significance of the difference in means

for two Gaussian distributed random samples μ1 and μ2 is indicated by Student’s t-test statis-

tic.

t ¼
m1 � m2

SD

�
�
�
�

�
�
�
�

ð1Þ

Where

SD ¼
ðN1 � 1Þs2

1
þ ðN2 � 1Þs2

2

N1 � N2 � 2

� �1=2
1

N1

þ
1

N2

� �1=2

ð2Þ

is the pooled variance. s1, s2 are the standard deviations of the two samples, and N1 and N2 are

the number of points in the two samples.

We calculate t as a function of position in the time series and use the statistic t to quantify

the difference between the mean of the time series left and right. If a larger t value means that

the means in the two-time series are more likely to be significantly different, tmax is chosen as

the cutoff value. Based on the heuristic segmentation algorithm, this study analyzed precipita-

tion, temperature, runoff, and ET in the study area at breakpoints and then delineated different

runoff influence periods in ELB.

3.2 Hydrological model

The VIC model is a scheme for determining the atmospheric transfer of ground vegetation,

considering the water and energy balance [47]. The VIC model divides the study area into sev-

eral latitudes and longitude grid cells, and in each grid, the land cover type is divided into an
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arbitrary number of tiles corresponding to the proportion of land cover types (e.g., grassland,

cropland) in the grid cell. Runoff was simulated for each land type tile and averaged as a

weighted average of the grid cells. Although the VIC model cannot accurately simulate vegeta-

tion for each period, it reflects the response of vegetation to hydrologic processes based on the

climatological characteristics of the vegetation (e.g., 12-month LAI) [48].

The VIC model has been well-calibrated in numerous river basins around the world,

including arid regions, and has been successfully used in water resource management, climate

variability, and anthropogenic impact studies [49,50].

3.2.1 Modeling setup. The ELB domain was emulated on a daily scale from 1959 to 2017

with three scenarios of VIC model strategies. Both VIC setups under the three scenarios were

run at a spatial resolution of 0.05˚ degrees (consisting of 1794 grid cells) and on a 24-hour

time scale, where each grid cell was simulated independently and could be divided into multi-

ple vegetation heterogeneities, multiple soil types, and multiple soil types [51].

3.2.2 Calibration and validation. The baseline hydrometeorological simulations were

divided into two separate parts: the calibration period (1964–1974) and the validation period

(1975–1984). The observed discharge data from regional hydrological stations were used for

comparison with VIC-simulated discharge in the baseline period. The calibration process was

mainly to optimize the infiltration, Ds, Ws, and soil depth of the VIC model [52]. We also used

Differential Evolution Markov Chain (DE-MC) and shuffled complex evolution (SCE-UA)

methods to optimize the parameters of the VIC model and compare the optimization perfor-

mance of the two different algorithms. The effectiveness of the VIC model was described using

the recommended Nash-Sutcliffe model efficiency coefficient (NSE), root mean square error

(RMSE), coefficient of determination (R2), and percent bias (PBIAS) of the model evaluation

[53]. It was assumed that the calibrated and validated VIC model from 1964 to 1984 deputized

the hydrological processes of the ELB under natural conditions.

The DEMC algorithm is a new method for global optimization in the normative parameter

space that combines Markov chain Monte Carlo (MCMC) simulation with differential evolu-

tion algorithms [54]. The strengths of this method include overcoming the difficulty of

MCMC selecting the appropriate scale and orientation for proposal assignment and resolving

the computational efficiency difficulty of reaching convergence time [55]. Relevant research

has shown that DEMC can accurately and efficiently search the parameter space in the field of

simulation of rainfall-runoff modeling [56]. Meanwhile, we used the traditional global parame-

ter optimization method, SCE-UA, as a control group for the MCMC method for the VIC

model parameter optimization scheme to select the optimal model parameters.

The performance of the VIC model was described by the following four indicators of statis-

tics: NSE, RMSE, R2, and PBIAS and calculated by the following formulas.

NSE ¼ 1 �

Pn
i¼1
ðSIMi � OBSiÞ

2

Pn
i¼1
ðOBSi � OBSÞ2

ð3Þ

RMSE ¼
1

n
pXn

i¼1

ðOBSi � SIMiÞ
2

ð4Þ

R2 ¼
ð
Pn

i¼1
ðOBSi � OBSÞðSIMi � SIMÞÞ2

Pn
i¼1
ðOBSi � OBSÞ

Pn
i¼1
ðSIMi � SIMÞ

ð5Þ

PBIAS ¼
Pn

i¼1
SIMi �

Pn
i¼1
OBSiPn

i¼1
OBSi

� 100 ð6Þ
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where OBSi and SIMi are the observed and simulated values for the proceeding steps at each

time, respectively; n refers to the total number of pairs of values; and and OBS are the average

of the simulated and measured values, respectively. The extent of the NSE spans from -1 to 1.

The VIC simulation values were approximately close to the real state when the R2 and NSE

were close to 1 [53]. The RMSE denotes the error of the VIC model, and the PBIAS measures

the relative difference between modeled and observed values [53]. In our research, the RMSE

was selected as the objective equation for the SEC-UA and DMMC calibration processes dur-

ing the calibration period in this study.

3.3 Experimental details

3.3.1 Streamflow segmentation. In this experiment, we reconstructed the streamflow and

its components under different scenarios based on energy balance. No model setup for the

VIC includes any lateral flow between elements or regional groundwater aquifers, so we did

not include a specific groundwater component in the experiment. We partitioned the model

results into surface runoff (QSF), base flow (QBF), and snowmelt (QSM) based on the variable

infiltration curve and the snow module [57]. Then, the main equations of the runoff and snow

mode were calculated as follows:

Q ¼
XNþ1

n¼1

Cn � ðQSF þ QBFÞ ð7Þ

QSM ¼ P �
dWe

dt
� p� Qv � Qe ð8Þ

In addition to the runoff components described above, Cn is the vegetation fractional cover-

age for the nth vegetation tile, CN+1 is the bare soil fraction, and Q is the total runoff in Eq 7,

where P is the precipitation, Qv is the sublimation from blowing snow, and Qe is the evapora-

tion and sublimation from the snowpack, for
dWe
dt is the rate of snow water accumulation, and p

is the spatial probability of occurrence of blowing snow for a time increment dt in Eq 8. The

total runoff was a combination of base runoff and surface runoff, excluding snowmelt. Based

on this classification, we compared the seasonal runoff and its components in the above study

area. We categorized the seasons like June, July, and August for summer; September, October,

and November for fall; December, January, and February for winter; and March, April, and

May for spring. In the current study, there were three components of total runoff: surface run-

off (referring to direct surface rainfall-runoff), baseflow (referring to subsurface rainfall-run-

off), and snowmelt runoff (surface runoff from melting snow).

3.3.2 Detection of human activities and climate variability contributions. After the

implementation of the corresponding ER project, the hydrological cycle in Northwest China

has been greatly influenced, but the contributions of climate change and human activities to

changes in runoff and its components are still debatable [3]. We applied the concept of sce-

nario modeling and the classification of sensitive periods to determine the response of runoff

changes to human activities and climate change. We used three scenarios: VIC_1980 was the

baseline scenario, which was used both for model calibration and validation and for recon-

structing runoff from the state of nature, with the 1980 land cover and LAI data; VIC_2000
simulates the runoff from Impact Phase I, which was mainly used to separate direct and indi-

rect human activities, with the 2000 land cover and LAI data; and VIC_2017 simulates the run-

off from Impact Phase II, which serves a similar purpose as the VIC_2000 scenario, with the

2017 land cover and LAI data (Table 1).
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The historical runoff time series needs to be separated into two segments, the second repre-

senting a period (referred to herein as the impact phase) influenced by both climate variability

and human activities (Fig 1), according to the following equations:

DQ1 ¼ Q1

obs � Q0

obs ð9Þ

DQ2 ¼ Q2

obs � Q0

obs ð10Þ

Where and DQ2 denote the changes in a total runoff for impact phases I and II, respectively;

Q0
obs, Q

1
obs, and Q2

obs are the observed runoff for the reference phase, impact phase I, and impact

phase II, respectively.

Second, the change in runoff caused by human activities was determined by reconstructing

the scenarios (Table 1) of runoff in the natural state for different impact periods by the follow-

ing equations:

DQ1

H ¼ Q1

obs � Q1

sim1980
ð11Þ

DQ2

H ¼ Q2

obs � Q2

sim1980
ð12Þ

where Q1
H and Q2

H indicate the changes in runoff due to human activities during Impact phase

Table 1. Simulation scenarios for detecting climate variability and human activity on streamflow and its components.

Scenarios LC Period LAI Objectives

VIC_1980 Early-Restoration-1980 1964–2017 LAI-1980

Reconstruction of natural streamflow and its components during impact phase

VIC_2000 Late-Restoration-2000 1985–2000 LAI-2000 To identify the effect of human activities during the impact phase I

VIC_2017 Late-Restoration-2017 2001–2017 LAI-2017 To identify the effect of human activities during impact phase II

https://doi.org/10.1371/journal.pone.0272576.t001

Fig 1. A schematic to determine the effects of climate change and human activities on streamflow change.

https://doi.org/10.1371/journal.pone.0272576.g001
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1 and Impact phase 2, respectively; Q1
sim1980

and Q2
sim1980

represent the mean runoff from the

simulated impact phases I and II, respectively, under the VIC_1980 scenario.

The effects of human activities on hydrological processes can be categorized as direct or

indirect, depending on whether they directly affect the water cycle. Indirect human activities

consist mainly of changes in land cover properties on the land surface, such as reclamation of

land and afforestation. These activities mainly affect hydrological processes on the land sur-

face, which further affect runoff. Direct human activity is defined as all human activities that

directly affect the hydrological cycle, except for land use/cover change, including dam con-

struction and reservoir operations, human water withdrawals, and agricultural and industrial

applications. According to the above scenarios (Table 1), we reduced the simulated runoff

from the VIC_2000 and VIC_2017 scenarios by the observed runoff from impact phases I and

II, respectively, to obtain the corresponding runoff changes due to indirect human activities.

Below are the relevant formulas:

DQ1

IH ¼ Q1

sim2000
� Q1

sim1980
ð13Þ

DQ2

IH ¼ Q2

sim2017
� Q2

sim1980
ð14Þ

DQ1;2

H ¼ DQ1;2

IH þ DQ
1;2

DH ð15Þ

where DQ1;2
H , DQ1;2

IH and DQ1;2
DH represent the changes in runoff due to human activity, indirect

human activity, and direct human activity for impact phases I and II, respectively; Q1
sim1980

,

Q2
sim2000

, Q2
sim1980

, and Q2
sim2017

are the simulated average values of runoff for the VIC_1980,

VIC_2000, and VIC_2017 scenarios in impact phases I and II, respectively.

DQ1;2 ¼ DQ1;2

H þ DQ
1;2

C ð16Þ

After the above scenarios and calculations, we divided the factors that contributed to the

total runoff change into two parts: human activities and climate variability, although, these

two parts often interact with each other in the basin hydrological cycle. Therefore, the total

runoff change (ΔQ1,2)due to the combined effects of climate variability and human activities is

described by the following equation:

where DQ1;2
H and DQ1;2

C represent the streamflow changes induced by climate variability and

activities in impact phases I and II, respectively.

4. Results

4.1 Model performance evaluation

Based on the SCEUA and DEMC parameter calibration algorithms described in Section 3.2.2

and the observed series of measured monthly runoff from the two sites, we obtained the per-

formance of the VIC model and the objective function trajectories of the two algorithms. All

boundary conditions and input data were kept constant in this study, and two calibration algo-

rithms were used to calibrate the VIC model for each of the five parameters. These parameters

were the shape of the VIC curve (b), which controls the amount of water that can infiltrate

into the soil; the thickness of the second and lowest soil layers d2(m) and d3(m), which affect

the maximum storage capacity for transpiration; the fraction of maximum baseflow where

nonlinear baseflow occurs; and the fraction of maximum soil moisture of the third soil layer

(Ws) where nonlinear baseflow comes from [58]. Fig 2 depicts the objective function trajecto-

ries of SC-EUA and DEMC after 2000 iterations, with Fig 2(A) depicting the scatter plot and

histogram of the two algorithms, and Fig 2(B) and 2(C) depicting the objective function
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trajectory of the two algorithms over time. The scatter plot demonstrates that there is no corre-

lation between the two algorithms’ trajectories. The SC-EUA objective function trajectory was

mainly concentrated in the range of -6.32 to -7.11, which was more laxly distributed than the

DEMC results, and the DEMC was concentrated in the low-value region below -4.76, proving

that the DEMC algorithm could explore the parameter space more broadly and efficiently than

the SC-EUA algorithm. According to Fig 2(B) and 2(C), as the number of iterations increases,

the RMSE of SC-EUA gradually increases compared to DEMC, indicating that the DEMC

algorithm can effectively reach the convergence space. The optimal calibration algorithm from

DEMC outperformed the SC-EUA algorithm in both the calibration and verification periods,

as shown in Table 2. According to the simulation results, the NSE of both the DEMC and

SC-EUA algorithms exceeded 0.60, achieving the simulation’s reliability level, and the simula-

tion performance of the Wenquan station was superior to that of the Jinghe station, with the

NSE and R2 of the DEMC algorithm being approximately 6% greater than those of the

SC-EUA.

Fig 3 depicts a comparison of simulated and observed runoff from two stations during the

calibration and verification periods (including precipitation and temperature for the corre-

sponding period). Although there were some over- or underestimations of streamflow at the

Wenquan and Jinghe stations compared to measured streamflow at certain times, the simula-

tion results capture the observed variation and magnitude of streamflow over monthly time

well. The simulation results revealed that there was insufficient stability in the summer, and

the simulated streamflow from the Wenquan station became less stable during the validation

period, whereas the Jinghe station demonstrated better homeostasis throughout the simula-

tion. As previously stated, the phenomenon of simulated underestimation may be the effect of

glaciers on streamflow was not considered, and while precipitation increases in summer, more

precipitation evaporates in the atmosphere, resulting in scarce water resources.

4.2 Breakpoint determination

The heuristic segmentation algorithm identifies abrupt changes in hydrologic variables in vari-

ous regions of the ELB, which typically occur around 1985 or around 2000. Bole city’s average

annual temperature increased significantly after 1987, average annual precipitation increased

significantly after 1999, average annual evapotranspiration decreased significantly after 2012,

and average annual streamflow increased dramatically after 1997 (Fig 4). The average annual

temperature of Jinghe County increased significantly after 1995, the average annual precipita-

tion showed a gradual upward trend after 1994, and the average annual ET decreased

Fig 2. Scatterplot comparing the RMSE values of the two algorithms for the monthly emissions during the calibration period (a). Objective

function trajectories for the DEMC and SC-EUA algorithms (b, c).

https://doi.org/10.1371/journal.pone.0272576.g002

Table 2. Performance evaluation of the VIC simulation.

Algorithms Gauge station Calibration Validation

NSE R PBIAS RMSE NSE R PBIAS RMSE

DEMC Wenquan 0.71 0.82 1.32 1.23 0.81 0.74 2.54 1.16

Jinghe 0.75 0.72 -2.52 2.85 0.78 0.83 3.85 2.15

SCEUA Wenquan 0.68 0.73 4.06 2.22 0.65 0.78 4.46 3.61

Jinghe 0.62 0.79 -19 2.35 0.77 0.69 6.02 3.86

Note: DEMC is the differential evolution Markov chain algorithm, and SCE-UA is the shuffled complex evolution metropolis algorithm.

https://doi.org/10.1371/journal.pone.0272576.t002
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obviously after 1998, while the average annual streamflow did not change (Fig 5). The average

annual temperature in Wenquan County exhibited a gradient change after 1994, the average

annual precipitation displayed a significant upward trend after 1985, the average annual ET

decreased slowly the time 1986-to 2001, and the average annual flow increased and then

decreased from 1999-to 2013 (Fig 6). Through a comprehensive analysis of the abrupt time-

series changes in hydrometeorological variables in different regions of the study region, the

heuristic segmentation algorithm was finally used to determine two significant time ranges of

changes in annual hydroclimatic variables at the three stations, one of which occurred from

1985–2000 and the other from 2001–2017. The abovementioned periods of classification coin-

cide with the implementation of ecological restoration projects such as the Three North Pro-

tection Forest System Construction Project, the Return of Cultivated Land to Forest Project,

and the Grassland Ecological Protection Subsidy Program.

As described in Subsection 3.3.2, the reference phase was assumed to be independent of

human activities and climate change to facilitate a comparison with runoff during the impact

period, thus distinguishing the contribution of human activities and that of climate change to

runoff changes. In other words, the observed runoff was very close to its natural state. By the

above-mentioned analysis, the period 1964–1984 was finally determined as the reference

phase, the period 1985–2000 as impact phase I, and the period 2001–2017 as impact phase II.

Fig 7 compares the differences in the average values of hydroclimatic variables for the refer-

ence phase and impact phases I and II. In general, the ET in the impact phases decreased sig-

nificantly compared with the reference phase, declining from 1750 mm in the reference phase

to approximately 1310 mm in impact phase I, and the decreasing trend of summer ET was

obvious, while the ET in impact phase II was larger than that in impact phase II. Precipitation

increased by 60 mm during the whole impact phase compared with the reference phase; at the

same time, the variation in winter rainfall was obvious, with impact period II being much

higher than the other periods. Fig 7(B) reveals the degree of change in runoff during different

Fig 3. Comparison of simulated streamflow with observed streamflow from two hydrological stations, detailed model

performance is shown.

https://doi.org/10.1371/journal.pone.0272576.g003
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impact phases compared to the reference phase, from which it could be found that runoff

increased by 3.86% during the whole impact period, except for winter and summer when it

showed a decreasing trend. The other seasons all increased, with the highest increase of 8.96%

in autumn. The trends in the above hydrologic variables tell us that hydrologic conditions are

getting better throughout the ELB; however, the question of whether this improvement is a key

factor of humans’ efforts, or a selection of natural climatic factors needs to be assessed quanti-

tatively, which we do in the following sections.

4.3 Land cover and LAI changes

The land cover in the ELB has undergone considerable variation in the past 40 years. Here, we

used the latest land cover classification system for cropland, forest, grassland, wetland, water,

snow/ice, impervious surface, and bare land because the variation in the above land cover

types had an unnoticeable effect on the hydrological cycle [59]. Differences in ER plans before

and after were calculated by taking 1980 as the base year and calculating the differences

between 2000 and 2015 land-use data for comparison with the base year, respectively. To indi-

cate the vegetation dynamics, we selected the monthly average LAIs from April-October of

each year from 1981-to 2019.

As Fig 8(B) shows, in addition to a significant decrease in grassland and bare land (by 1256

km2), all other land cover types increased, with the largest increase in cropland (by 1148 km2),

followed by that in the forest, wetland, water, impervious surface, and permanent snow/ice.

The increment in forest area may be attributed to afforestation programs, and the significant

Fig 4. Temporal changes of hydroclimatic variables at Bole station (p<0.05). The gray line, red line, and gray area

represent the runoff observation, breakpoint segmentation value, and coverage area, respectively.

https://doi.org/10.1371/journal.pone.0272576.g004
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increase in cropland and impervious surfaces may be due to local population growth and eco-

nomic development. By exploring the transfer pattern of each land cover type in the past 40

years, we discovered that the growth of cropland area in three different periods was mainly

transferred from grassland and barren land and accompanied by a little forest, wetland, and

impervious surface, in which the total transfer of bare land and grassland to cropland was 643

km2 from 1980–2000 (Fig 8(A)); the total transfer of the two abovementioned types was 771

km2 from 2000–2015 (Fig 8(B)), and the total transfer of bare land and grassland was 1336

km2 in the entire period (1980–2015) (Fig 8(C)). At the same time, the cropland area increased

more significantly in impact period II (2001–2017) than in impact period I (1986–2000). The

growth of forest area was transferred mainly from grassland, but the forest was also converted

to grassland and cropland. In the period 1980–2000, the forest was mainly transferred to grass-

land (Fig 8(A)), while in the period 2000–2015, the forest was mainly transferred to cropland

(Fig 8(B)), which reflects the intensification of agricultural production activities. Wetlands and

water are key types reflecting local hydrologic health, as shown in Fig 8. We found an increase

in the area of both wetland and water compared to 1980, except for water, which decreased

from 1980-to 2000. The wetland area increased mainly by the transfer of water, grassland, and

bare land, with the above three land types transferring a total of 127 km2 of land to wetland

during the period 1980–2000 (Fig 8(A)). The trend of wetland growth decreased sharply dur-

ing the period 2000–2015 (Fig 8(B)). Eventually, we determined that the permanent snow and

ice cover type was also slowly increasing compared to the amount in 1980, which indicated

that local hydrological resources were gradually becoming more abundant.

Fig 5. Temporal changes of hydroclimatic variables at Jinghe station (p<0.05). The gray line, red line, and gray area

represent the runoff observation, breakpoint segmentation value, and coverage area, respectively.

https://doi.org/10.1371/journal.pone.0272576.g005
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Fig 6. Temporal changes of hydroclimatic variables at Wenquan station (p<0.05). The gray line, red line, and gray

area represent the runoff observation, breakpoint segmentation value, and coverage area, respectively.

https://doi.org/10.1371/journal.pone.0272576.g006

Fig 7. Comparison of average changes in hydroclimatic variables between the impact period and the base period. Where

Win_ET, Fal_ET, Sum_ET, Spr_ET, ET, Win_P, Fal_P, Sum_ET, Spr_P, P, Win_Q, Fal_Q, Sum_Q, Spr_Q, Q represent the

average evapotranspiration value in winter, the average evapotranspiration value in autumn, the average evapotranspiration value

in summer, the average evapotranspiration value in spring, the average annual average evapotranspiration, winter average

precipitation, fall average precipitation, summer average precipitation, spring average precipitation, annual average precipitation,

winter average runoff, fall average runoff, summer average runoff, spring average runoff, annual average runoff.

https://doi.org/10.1371/journal.pone.0272576.g007
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Since the ELB has undergone a continuous change in land cover type, the growth of vegeta-

tion has evolved. Fig 9 illustrates the inter-and intra-annual variation in the LAI during the

vegetation growing season in the ELB from 1981-to 2019. The LAI showed an increasing trend

of 0.002 per year throughout the study period, from 0.27 in 1981 to 0.34 in 2019, while the

magnitude of change before 2008 was greater than that of change after 2008. Narrowing the

study scale to intra-annual variation, we found that the LAI showed a trend consistent with

runoff variation throughout the study period, with peaks in summer (June, July, and August)

and valleys in the other periods. Dividing the intra-annual variation in the LAI into two impact

periods corresponding to Subsection 4.3, we found that the LAI in impact phase I (1981–2000)

decreased by an average of 0.0064 during the vegetation growing season compared to impact

phase II (2001–2019) (Fig 9(B)).

4.4 Contributions analysis

This analysis was mainly concerned with the changes in runoff and its components in different

impact phases corresponding to the baseline phase, along with the distinction between the effects

of human and climatic factors on runoff according to the method described in Subsection 3.3.2.

The interannual variation in streamflow, surface runoff, baseflow, and snowmelt was first calcu-

lated based on the difference between the designed scenario simulations and the observed runoff,

and then the distribution of intra-annual runoff and its components under different scenario sim-

ulations was calculated. Finally, the contributions of human factors and climate factors to the

increase in runoff and its components under different impact periods were derived.

Fig 8. Land cover type changes from 1980–2015: (a) area shift in land cover types from 1980 to 2000; (b) area shift in land

cover types from 2000–2015; (c) area shift in land use from 1980–2015; (d) changes in the area of 8 land cover types in 2000

and 2015 relative to 1980.

https://doi.org/10.1371/journal.pone.0272576.g008
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Fig 9. Average April-October LAI for each year from 1981-to 2019 for the entire ELB (a) and average monthly LAI for

three different periods (b). The red dotted line shows the linear fit for 1981–2019, and "Tend (1981-)" denotes the trend

for 19881–2019, p<0.05.

https://doi.org/10.1371/journal.pone.0272576.g009

Fig 10. Variations in runoff depth driven by VIC_1980, VIC_2000, and VIC_2017 for the entire ELB.

https://doi.org/10.1371/journal.pone.0272576.g010
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4.4.1 Temporal analysis. The magnitude of the VIC_1980 simulated runoff variability,

which represented the runoff variability under natural conditions, was considerably larger

than that of the other scenarios under the three VIC scenarios mentioned above, along with a

similar tendency of variations to the VIC_2000 simulated runoff (Fig 10). During 1991–1995,

1997–2004, and 2009–2017, the simulated values of the above three scenarios were signifi-

cantly different from the observed runoff, while the differences were ranked in the following

order: VIC_1980, VIC_2000, and VIC_2017. The above results indicated that the simulated

value of the VIC_1980 scenario, which represented the natural state of runoff, had more influ-

ence on runoff change than land cover transfer, and the effect of climate change on runoff in

impact phase I was much higher than that impact phase II.

The intra-annual trends of runoff and its components under different scenario simulations

indicated obvious differences (Fig 11). The simulated runoff of VIC_1980 and VIC_2000

showed the same monthly distribution trends within impact phase I, and high flow periods

occurred in June, July, and August, which was consistent with the variation pattern of inland

river runoff in the arid region. However, the simulated runoff under natural conditions

(VIC_1980) was significantly higher than the VIC_2000 simulated runoff, which was due to

Fig 11. Monthly average changes in streamflow, surface runoff, baseflow, and snowmelt are driven by the VIC_1980,

VIC_2000, and VIC_2017 scenarios for the entire ELB during impact phase I (a) and impact phase II (b).

https://doi.org/10.1371/journal.pone.0272576.g011
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the increase in runoff due to the gradual humidification of the regional climate. The same pat-

terns were found for surface runoff, baseflow, and snowmelt, and the simulated runoff under

natural conditions was consistent with the corresponding intra-annual distribution pattern of

simulated runoff for the VIC scenario for any of the impact periods. Baseflow showed a rela-

tively homogenous distribution compared to other runoff components during the intra-annual

period, with high values occurring mainly in summer; additionally, surface runoff almost dis-

appeared during the dry season and was concentrated in May, July, and August. Finally, snow-

melt occurred mainly in spring and near the beginning of winter. A comparison of the intra-

annual distribution of runoff and its components in impact phase I and impact phase II

revealed that the average difference between simulated runoff in the natural state (VIC_1980)

and the simulated runoff in VIC_2017 was higher than the average difference with the simu-

lated runoff in VIC_2000, which was similar to the simulated pattern of interannual variation

and might be caused by the inconsistency of ER plans or agricultural development in the two

impact periods.

4.4.2 Contributions of human activities and climate variability. Table 3 reveals the

average values of runoff and its components for the VIC scenarios simulated under the refer-

ence phase and impact phases I and II. Compared to the reference phase, the observed runoff

increased slowly during the impact phase, whereas in contrast, the VIC-simulated runoff

increased more dramatically. The average runoff growth in the impact phase under the

VIC_1980 scenario was the maximum compared to the reference phase because it considered

only the impact of climate change on runoff, excluding the disturbance of human activities,

and therefore represented the runoff change pattern under natural conditions. The difference

between the runoff simulated in VIC_1980 and VIC_2000 was relatively narrow compared to

the impact phase I and reference phase, which may be because the runoff transition between

this period and the base period was relatively smooth, and human activities and climate vari-

ability did not change significantly. However, the difference in runoff between the VIC_1980

and VIC_2017 simulations was higher than that between impact phase II and the reference

phase. The above phenomena are visualized in Fig 12. The observed runoff depth accumulated

an increase of 1.72 mm in impact phase I compared with the reference phase, while the

Table 3. VIC-simulated values of streamflow and its components for different impact phases and scenarios.

--Variables (mm) Reference phase Impact phase I Impact phase II

Streamflow (obs) 138.61 140.33 149.73

Surface runoff (obs) 29.06 29.42 31.39

Baseflow (obs) 83.68 84.72 90.40

Snowmelt (obs) 32.47 32.87 35.07

Streamflow (VIC_1980) 142.62 249.13 293.06

Surface runoff (VIC_1980) 29.90 52.23 61.44

Baseflow (VIC_1980) 86.10 150.41 176.93

Snowmelt (VIC_1980) 33.40 58.35 68.64

Streamflow (VIC_2000) - 250.04 -

Surface runoff (VIC_2000) - 52.42 -

Baseflow (VIC_2000) - 150.96 -

Snowmelt (VIC_2000) - 58.57 -

Streamflow (VIC_2017) - - 183.39

Surface runoff (VIC_2017) - - 38.45

Baseflow (VIC_2017) - - 110.72

Snowmelt (VIC_2017) - - 42.96

https://doi.org/10.1371/journal.pone.0272576.t003

PLOS ONE Quantifying the effects of human activities and climate variability on runoff changes

PLOS ONE | https://doi.org/10.1371/journal.pone.0272576 September 1, 2022 18 / 27

https://doi.org/10.1371/journal.pone.0272576.t003
https://doi.org/10.1371/journal.pone.0272576


observed runoff depth accumulated an increase of 11.1 mm in impact phase II compared with

the reference phase, making it much larger than the growth rate of impact phase I.

According to the analytical framework in Subsection 3.3.2, the effects of climate variability

and human activities on the increase in runoff and its components were categorized into dif-

ferent impact phases (Fig 12). During impact phase I (1986–2000), the runoff depth cumula-

tively increased by 1.72 mm relative to the reference phase (1964–1985), and climate change

caused a cumulative increase in runoff depth of 110.50 mm, but direct human activities caused

a reduction in runoff depth of 108.80 mm. Among them, indirect human activities caused an

increase in runoff depth of 0.91 mm, and direct human activities caused a decrease in runoff

depth of 109.71 mm. Therefore, in general, human activities had a negative effect on the trend

of runoff growth. Surface runoff, baseflow, and snowmelt increased by 0.36 mm, 1.04 mm, and

0.40 mm, respectively, relative to the reference phase (1964–1985), consistent with the trend of

total runoff, and all increased due to climate change but decreased due to direct human activi-

ties. During impact phase II (1986–2000), the runoff depth cumulatively increased by 11.10

mm relative to the reference phase (1964–1985), and climate change caused a cumulative

increase in runoff depth of 154.40 mm, while direct human activities caused a reduction in

runoff depth of 143.30 mm. Among them, indirect human activities caused a 109.66 mm

reduction in runoff depth, and direct human activities caused a 33.66 mm reduction in runoff

depth; thus, the reduction in runoff depth caused by indirect human activities was higher than

that caused by direct human activities compared with the impact phase I. It was noteworthy

that indirect human activities were attributed to the increase in runoff during impact phase I

Fig 12. Effects of climatic and human factors on increasing trends in streamflow, surface runoff, baseflow, and snowmelt in the

ELB during different impact periods, where (a) denotes impact phase I and (b) shows impact phase II.

https://doi.org/10.1371/journal.pone.0272576.g012
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compared to the reference phase (1964–1985), but indirect human activities were attributed to

the decrease in runoff during impact phase II. As mentioned above, climate variability was the

main factor leading to the increase in runoff and its components in the ELB region, and

human activities were the main factor leading to the decrease in runoff and its components,

although in general, the increase in runoff due to climate change was greater than the decrease

in runoff due to human activities; therefore, the runoff showed an increasing trend compared

with the reference phase (1964–1985). Meanwhile, compared to the baseline period (1964–

1985), runoff and its components were higher in impact phase II than in impact phase I, and

the increase in runoff due to climate variability was greater than that in impact phase I. Indi-

rect human activities contributed to the increase in runoff in impact phase I but contributed to

the decrease in runoff in impact phase II.

5. Discussion

5.1 The driving force behind changing streamflow

Our study traced variations in the hydrological cycle of the ELB based on VIC simulations,

which were largely derived from climate change and human activities. Against the background

of global warming, precipitation, and runoff in the ELB region have shown increasing trends

since the 1990s, but the changes in Lake Ebinur, the ultimate catchment of the river, have

shown the reverse trend. The surface area of Lake Ebinur showed an increasing trend before

2003; thereafter, it showed a rapid decline from 885 km2 in 2003 to 392 km2 in 2015 [28]. This

reduction was because from 2003 to 2015, the gross regional product of the two major cities in

the ELB region, Bole city, and Jinghe County, increased by 11.210 billion yuan and 5.516 bil-

lion yuan, respectively, while the area of sown crops increased by 34,700 hectares and 6.58

hectares, respectively [60,61]. These dramatic economic activities consumed many water

resources in the ELB. This pattern is like the pattern presented in Fig 12, where human activi-

ties consumed most of the water resources compared to the baseline period, although there

was a slight increasing trend in runoff during the impact period. The ELB and even the arid

region are gradually becoming wetter due to climate change. Li, Chen found that the runoff of

rivers, which were heavily recharged by snow and glaciers, showed a significant upward trend

due to the increase in glacier and snow meltwater caused by the increasing temperature and

precipitation each year [10]. The fragile hydrological environment of inland river basins in

arid regions is particularly sensitive to human activities, such as the expansion of cultivated

land and the construction of hydraulic projects [62].

Several recent studies have shown that changes in vegetation dynamics may have significant

impacts on the local hydrological cycle. Zhao, A compared the records of total terrestrial water

storage depletion before and after ER through gravity satellites and government reports and

found a significant increase (p<0.0001) in the total terrestrial water storage depletion after ER,

indicating that ER was the main cause of water depletion [63]. Xie, Liang found that the Three

Northern Protection Forests Program and climate change caused an upward trend in precipi-

tation and runoff in the arid region of Northwest China but a downward trend in the semiarid

region [3]. A review of ELB hydroelectric construction showed that in approximately 2000, a

total of 12 hydroelectric facilities of diverse scales were built in the middle and upper reaches

of ELB rivers, mainly for irrigation and industrial water supply, as well as for flood control and

electricity generation. In parallel, Wang, Liu found that the hydrological and water resource

variations in the ELB region over the past 50 years were mainly due to the continuous expan-

sion of cropland and oases, the continuous human growth and the construction of hydraulic

engineering, which coincided with the pattern found in Fig 12 of this paper [4]. The above

events and research were closely related to the direct human activities that led to the decline in
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runoff shown in Fig 12(A). Hence, for arid regions, suitable ER programs can contribute to

increasing the positive feedback effect of the hydrological cycle, but the intensification of

human activities is the main element of water stress in arid regions.

5.2 Potential limitations

It was evident from the NSE of the flow that the VIC model performed well at the Wenquan

station (Table 2). However, because of the scarcity of hydrological gauging station data, the

simulated runoff could hardly fully reflect the real hydrological variability in the reference

phase. To remedy the abovementioned defects, this study introduced the traditional SCE-UA

and DEMC algorithms from the model calibration algorithm to compare and improve the

model calibration parameters, thereby better reflecting the actual hydrological pattern. The

proposed results showed that the DEMC improved the NSE by nearly 0.2 compared with the

SCE-UA algorithm, proving that Bayesian methods, especially the latest DEMC algorithm,

could effectively improve the simulation accuracy of hydrological models. More measured

hydrological datasets need to be obtained in the future, or metrics that more accurately reflect

simulation accuracy need to be used. For example, Bennett, Nijssen used a complex informa-

tion network model (transfer entropy) to measure differences in fluxes within hydrological

models in various climate zones, and the authors used traditional correlation metrics for the

analysis and found that transfer entropy provided a complimentary account of model behavior

[64].

The current version of the VIC model on the runoff partitioning equation needs to be fur-

ther updated, and the effect of permanent glaciers on the ELB hydrological cycle was not con-

sidered in this study because the proportion of permanent glaciers was only 0.30%. In our

study, three different land cover and vegetation leaf area datasets (i.e., LC_1980&LAI_1980,

LC_2000&LAI_2000, LC_2017&LAI_2017) were applied to represent the land cover and vege-

tation changes. Such scenarios were set up mainly to distinguish the effects of human activities

and climate change on runoff changes compared to the baseline period; however, the effects of

continuous changes in land cover and vegetation were not fully captured. Thus, the contribu-

tion of ER to the hydrological cycle may be underestimated to some extent. There is a need to

update the VIC model in the future so that it can be better adapted to simulations under

dynamic land cover and climate vegetation change scenarios. The relevant parameters can be

obtained from remote sensing data in the future to update the vegetation- and land cover-

related information in the VIC model and provide a more realistic level of simulation. Further-

more, human activities (irrigation, water project construction, etc.) need to be reflected in

future modeling.

There was another limitation of this study that the interpolation algorithm led to uncer-

tainty in the climate-forcing driven data [65]. Although the interpolation of the averaged cli-

matological state (WorldClim)-based thin-slab spline functions were used, sparse

meteorological station material still introduces significant uncertainty into the simulations

[66]. We note that the use of gridded meteorological assimilation data in the hydrological

model is effective in reducing the simulation uncertainty [67]. Therefore, different meteoro-

logical forcing datasets and interpolation methods should be compared in future studies to

reduce the uncertainty in hydrological simulations. Furthermore, in reality, climate change

and human activities often combine to contribute to the hydrological cycle [68]. In this study,

it was difficult to use dynamic land cover and vegetation condition scenarios to reflect the

complex interrelationships among vegetation, climate, and land cover, and the ultimate results

were inevitably biased to a certain extent. Consequently, considering the effects of either vari-

able individually was not necessarily accurate, and new techniques are needed to evaluate the
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quantitative response of the hydrologic system to both variables in an integrated approach. An

improved VIC model by coupling dynamic surface parameters and meteorological parameters

will facilitate the feedback of hydrological systems in complicated changing circumstances in

response to this situation.

In addition, this study lacks a detailed delineation of climate change factors. In future stud-

ies, the impact of extreme drought or precipitation on runoff should be strengthened. With

global warming, extreme precipitation and drought events are becoming more frequent [69–

71]. These events significantly alter precipitation-runoff patterns in arid regions and thus

strongly affect the local meteorological-hydrological cycle [72]. The overall results of this

study, which quantified the effects of human activities and climate change on runoff, showed

that climate change has a positive feedback effect on increasing runoff and human activities

have a negative feedback effect on decreasing runoff. The effects of climate change on runoff

growth are primarily due to a substantial increase in runoff accumulation from glacial snow-

packs and altered precipitation patterns in the arid Northwest because of global warming. Cen-

tral Asia was shown to have large increases in mean annual precipitation under all scenarios

associated with rapid global warming at the end of the 21st century under all common socio-

economic pathways and representative concentrated pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0,

and SSP5-8.5) in four combinations of scenarios [73]. The impact of human activities on the

decline of runoff is mainly due to the rapid decline of available water resources in the region

due to population growth and economic development in recent years [74,75]. Therefore, a

strict water resource management system is needed in the future to control economic water

expenditures and avoid unnecessary water consumption.

6 Conclusion

The hydrological cycle was significantly altered by the complex circumstances in the ELB area.

With VIC model scenario simulations, we were able to detect changes in runoff and its compo-

nents before and after the ER plan and to quantitatively assess the main driving forces behind

the support. The following main conclusions were drawn:

1. The reference period (1984–1985), impact period I (1986–2000), and impact period II

(2001–2017) were identified. The increase in cropland area was mainly caused by grassland

and wasteland, while the increase in forest area was mainly caused by grassland. The LAI of

vegetation growth period showed a trend of 0.002 steps per year.

2. The model parameters were calibrated using the DEMC algorithm and the SCE-UA algo-

rithm, and the results showed that the NSE of the DEMC algorithm was improved by 20%

compared to the SCE-UA algorithm. The surface runoff, baseflow, and snowmelt runoff in

the reference phase accounted for 20%, 60%, and 20% of the total runoff, respectively.

3. Under the three VIC simulation scenarios, the VIC_1980 simulated runoff, which repre-

sented the natural state, was higher than the other scenarios on both intra- and interannual

time scales, while the average difference between the VIC_1980 simulated runoff and the

VIC_2017 simulated runoff was higher than the average difference with the VIC_2000 sim-

ulated runoff, which was like the simulated interannual variation pattern.

4. Compared to the reference period, the observed runoff depth increased by 1.72 mm in

impact period I and decreased by 108.80 mm due to direct human activities, while the run-

off depth cumulatively increased by 110.50 mm due to climate change. In the impact period

II (2001–2017), the runoff depth increased by 11.10 mm and the cumulative increase in

runoff due to climate change was 154.40 mm, while indirect human activities caused a
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decrease in runoff of 143.30 mm. In summary, climate change was the main reason for the

increase in runoff and its components in the ELB area, while human activities were the

main factor for the decrease in runoff and its components.

In the ELB and even in the arid area, it is particularly necessary to implement effective ER

programs that can increase the positive feedback effects of climate change and maintain the

sustainability of water resources. However, ER plans implemented in arid regions should be

adapted to the local ecological environment by planting crops that are suitable for the local cli-

mate and drought and salinity tolerance to reduce the consumption of total terrestrial water

reserves.
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