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Abstract: In the last two decades many reports have addressed the application of artificial intelli-
gence (AI) in the search and design of antimicrobial peptides (AMPs). AI has been represented by
machine learning (ML) algorithms that use sequence-based features for the discovery of new peptidic
scaffolds with promising biological activity. From AI perspective, evolutionary algorithms have
been also applied to the rational generation of peptide libraries aimed at the optimization/design of
AMPs. However, the literature has scarcely dedicated to other emerging non-conventional in silico
approaches for the search/design of such bioactive peptides. Thus, the first motivation here is to bring
up some non-standard peptide features that have been used to build classical ML predictive models.
Secondly, it is valuable to highlight emerging ML algorithms and alternative computational tools to
predict/design AMPs as well as to explore their chemical space. Another point worthy of mention is
the recent application of evolutionary algorithms that actually simulate sequence evolution to both
the generation of diversity-oriented peptide libraries and the optimization of hit peptides. Last but
not least, included here some new considerations in proteogenomic analyses currently incorporated
into the computational workflow for unravelling AMPs in natural sources.

Keywords: artificial intelligence; machine learning; AMPs; evolutionary algorithms; molecular
descriptors; complex networks; proteogenomics

1. Introduction

The rise of resistance to antimicrobial agents evidenced in the last decades have
caused excess healthcare costs worldwide [1]. The microbial natural resistance process,
moved by evolutionary events, has been accelerated by the over-prescription and misuse of
antibiotics [2]. This worrying situation has encouraged the search of new antibiotics from
antimicrobial peptides (AMPs) with the ability to overcome resistance, mainly given by
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their versatile mode of action [3].Indeed, AMPs are not only considered for the development
of antibiotics to treat multi-resistant bacterial strains [4,5], but also they are promising for
the developing of antitumoral [6], antiviral [7], antifungal agents [8] and so on.

The discovery of peptides with relevant biological activities is a real challenge consid-
ering the great diversity of AMPs in terms of origin, structure, mode of action, activity, and,
on the other hand by considering the overabundance of natural-occurring non-bioactive
peptides [8]. Thus, several AMP databases with associated machine learning (ML)-based
classifiers have been developed for over one decade, in order to assist wet-lab researchers
in the long development process of peptide-based drugs [9]. AMP databases such as
DAMPD [10], CAMPR3 [11], LAMP [12], DRAMP [13], ADAM [14], DBAASP [15] have in-
corporated ML predictors trained with alignment-free (AF) protein features such as amino
acid (aa) and pseudo-aa composition, structural features, word frequency-based features,
physicochemical aa properties with influence on the AMP activity, and some others [16,17]
(Table 1). Figure 1 illustrates how databases and ML algorithms have been integrated to
assist the discovery/design of AMPs for the developing of peptide drugs.
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Figure 1. Workflow illustrating peptide drug discovery. The strategy involves the screening of query
peptides from either natural or synthetic sources by applying ML models trained with the information
stored in AMP databases. ML algorithms also assist the optimization/design step of lead peptides by
means of a fitness/selection criterion [18,19].

The prediction tools built up with Support Vector Machine (SVM) and Random Forest
(RF) based classifiers have been widely applied, but hardly considered the natural imbal-
ance between the AMPs and non-AMPs [18]. On the other hand, emerging ML techniques
such as Deep-Learning Neural Networks [18–21] and those based on the Rough Set The-
ory [22,23] have been applied to improve certain classification pitfalls like the quality in the
learning phase and the classification boundaries between AMPs and non-AMPs, respec-
tively. Although most of the classical predictive tools have focused on if a query peptide
is an AMP or not, without targeting a specific biological activity among the reported for
the AMPs [24], the current tendency is to address a hierarchical multi-level classification
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by downstream considering the specific biological activities of the AMPs as labels e.g., the
antibacterial, antifungal, antiviral and antitumoral among others.

The most popular hierarchical multi-label classifiers, also listed in Table 1, are the
following: (i) the iAMP-2L, a two-level classifier trained with Chou’s pseudo amino acid
composition (PseACC) [25], aimed at identifying AMPs and their five functional types [26],
(ii) the iAMPpred predictor that combines compositional, physicochemical, and structural
features into Chou’s general PseACC for training a SVM multi-classifier [16], (iii) the
MLAMP, a RF-based classifier built up with a non-classical PseACC sequence formulation
incorporating a Grey Model that firstly discriminates AMP from non-AMPs, and then
subclassify their biological activities into antibacterial, anti-cancer, antifungal, antiviral,
and anti-HIV [27], (iv) the Antimicrobial Activity Predictor (AMAP) [28], a hierarchical
multi-label classifier targeting 14 biological activities that is built up with SVM and XGboost
tree [29] algorithms trained with amino acid composition (ACC) features, (v) the AMPfun
webserver containing RF-based models that firstly classify AMPs and non-AMPs and after-
wards address the prediction of AMPs functional activities including their possible target
types [30], and more recently, the (vi) AMPDiscover [31] and the (vii) ABPFinder webservers
(https://protdcal.zmb.uni-due.de/ABP-Finder/index.php; accessed on 7 March 2022) con-
taining hierarchical RF-based classifiers built up with protein descriptors from the ProtDCal
software [32] to firstly detect AMPs and antibacterial peptides (ABPs), respectively. While
the AMPDiscover uses several downstream RF models to predict AMPs specific functions
(antibacterial, antifungal, antiparasitic and antiviral), the ABP-Finder sub-classifies ABPs
according to the Gram staining type of the potential targets (Gram-positive, Gram-negative
bacteria, or broad-spectrum peptides with expected activity against both types of bacteria)
by using a multi-classifier. The high success classification rates of both tools stems from
considering the StarPep database [33] which is probably the most comprehensive curated
repository of AMPs so far, and from performing an applicability domain (AD) analysis for
the proposed ML models [31]. Both, AMPDiscover and ABP-Finder defined ADs for their
corresponding RF-based models, however, AMPDiscover perform a rigours AD analysis at
applying a consensus-based decision from five different approaches [31].

Despite the great number of reported ML-based tools for AMPs prediction, only few
ones have considered the lack of balance among either the specific activities of AMPs
or among their putative targets, as well as the AD of their corresponding models. The
imbalance among AMPs and non-AMPs as well as the existing one among AMP activities
was addressed by applying the synthetic minority over-sampling technique (SMOTE)
during the IAMPE and MLAMP building [27,34] while the ABP-Finder addressed the
imbalance among the bacterial target types of the ABPs (Gram+, Gram- and Gram+/-
bacteria) by training a RF multi-classifier with a cost matrix weighting the different types
of misclassified cases according to the imbalance ratio between the two classes (https:
//protdcal.zmb.uni-due.de/ABP-Finder/index.php; accessed on 7 March 2022).

On the other side, artificial intelligence (AI)-derived approaches like evolutionary algo-
rithms have been applied to optimize lead candidates retrieved from the high-throughput
screening in drug discovery. Evolutionary algorithms are inspired on several evolutionary
events occurring in nature; they generally start with a small population of peptides identi-
fied as putative leads due to its relevant biological activities. The optimization is carried
out by the generation of offspring peptides from these initial peptides by applying several
operators simulating natural evolutionary process like cross-over and mutation operators,
a parent and survival selection algorithms [40,41]. A parent selection algorithm is firstly
applied on the initial peptide population to select the best parent peptides for the offspring
generation. The survival aims at selecting a subset of good individuals (new population)
from the generated offspring peptides. Then, the new peptide population will be iteratively
subjected to the parent selection algorithm, evolutionary operators and the survival selec-
tion until finding an offspring peptide meeting a termination condition (selection criteria
in Figure 2). The selection criteria can be represented by a fitness function which can be

https://protdcal.zmb.uni-due.de/ABP-Finder/index.php
https://protdcal.zmb.uni-due.de/ABP-Finder/index.php
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a ML model scoring peptide bioactivity. This selection process may be accompanied to
experimental evaluations against the desired biological activities [42] (Figure 2).

Table 1. Summary of the most relevant ML approaches, from the classical to the emerging ones, for
assisting the discovery of bioactive peptides from AMPs.

Classical AMP Prediction Tools

Integrated to
Database ML Algorithm Peptide features Implementation Ref.

CAMPR3
RF, SVM,
ANN, DA

AAC, net charge,
hydrophobicity http://www.camp3.bicnirrh.res.in/prediction.php [11]

DRAMP 3.0 ANN, SVM, RF Secondary structure features http://shicrazy.pythonanywhere.com/ [13]

ADAM SVM AAC http://bioinformatics.cs.ntou.edu.tw/adam/tool.html [14]

DBAASPv3.0
Threshold
value-based
discrimination

Physicochemical properties
acconuting for the
interaction with membrane

https://dbaasp.org/tools?page=general-prediction [15]

Independent
Tools

ClasssAMP * RF, SVM Sequence-based features http://www.bicnirrh.res.in/classamp/predict.php [35]

iAMPpred * SVM
compositional,
physicochemical, and
structural features

http://cabgrid.res.in:8080/amppred/server.php [16]

iAMP-2L ** k-NN PseAAC http://www.jci-bioinfo.cn/iAMP-2L [25]

AmPEP RF Sequence-based features https://cbbio.online/software/AmPEP/ [36]

amPEPpy RF Global protein sequence
descriptors https://github.com/tlawrence3/amPEPpy [37]

AMPScannerv1 ** RF Physicochemical features https://www.dveltri.com/ascan/v1/index.html [38]

AMPfun ** RF

AAC-based features,
physicochemical features
and word frequency-based
features

http://fdblab.csie.ncu.edu.tw/AMPfun/index.html [30]

AMAP ** SVM and
XGboost tree AAC-based features http://amap.pythonanywhere.com/ [28]

Emerging AMP prediction tools

MLAMP ** RF Non-classical PSeAAC http://www.jci-bioinfo.cn/MLAMP [27]

IAMPE RF, k-NN, SVM,
XGboost NMR-based features http://cbb1.ut.ac.ir/AMPClassifier/Index [34]

AMPDiscover ** RF/DNN Non-classical protein
features (ProtDCal) https://biocom-ampdiscover.cicese.mx/ [31,39]

ABP-Finder ** RF Non-classical protein
features (ProtDCal) https://protdcal.zmb.uni-due.de/ABP-Finder/index.php [Unpub]

AMPScannerv2 DNN AA alphabet https://www.dveltri.com/ascan/v2/ascan.html [19]

ACP-DL DNN Binary profile feature and
K-mer sparce matrix https://github.com/haichengyi/ACP-DL (Standalone) [20]

xDeep-AcPEP * DNN
Physicochemical,
biochemical, evolutionary
and positional

https://app.cbbio.online/acpep/home [21]

Methods listed in Table 1 are currently active (Accessed on 7 March 2022) * Multi-label classifiers allowing the
prediction of specific biological activities (antibacterial, antifungal, antiviral, antitumoral and others) from AMPs
** Hierarchical multi-label classifiers addressing firstly AMPs detection and in the second level their specific
biological activities. ACC: amino acid composition, ANN: artificial neural networks, DA: discriminant analysis,
DNN: deep neural networks, k-NN: k- nearest neighbours, NMR: nuclear magnetic resonance, PseAAC: pseudo
amino acid composition, RF: random forest, SVM: support vector machine.

http://www.camp3.bicnirrh.res.in/prediction.php
http://shicrazy.pythonanywhere.com/
http://bioinformatics.cs.ntou.edu.tw/adam/tool.html
https://dbaasp.org/tools?page=general-prediction
http://www.bicnirrh.res.in/classamp/predict.php
http://cabgrid.res.in:8080/amppred/server.php
http://www.jci-bioinfo.cn/iAMP-2L
https://cbbio.online/software/AmPEP/
https://github.com/tlawrence3/amPEPpy
https://www.dveltri.com/ascan/v1/index.html
http://fdblab.csie.ncu.edu.tw/AMPfun/index.html
http://amap.pythonanywhere.com/
http://www.jci-bioinfo.cn/MLAMP
http://cbb1.ut.ac.ir/AMPClassifier/Index
https://biocom-ampdiscover.cicese.mx/
https://protdcal.zmb.uni-due.de/ABP-Finder/index.php
https://www.dveltri.com/ascan/v2/ascan.html
https://github.com/haichengyi/ACP-DL
https://app.cbbio.online/acpep/home
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Figure 2. Workflow illustrating the main steps of evolutionary and genetic algorithms. Both ap-
proaches are very similar, in fact the use of evolutionary and genetic terms have been interchangeable.
Genetic algorithms particularly use a fixed-length binary array to represent peptides as genes into a
chromosome-like structure.

The genetic algorithm is the most popular technique among the evolutionary ap-
proaches where the peptides with promising biological properties (initial solution) are
encoded as binary strings into chromosome-like structures, called genotypes. The opti-
mization process is performed by evolving each chromosome toward optimized solutions
by iteratively applying genetic recombination (crossover) operators and survival fitness
functions that is somehow similar to the parent selection mechanism [40,42–44]. Optimized
solutions in the case of peptides consist in generating structural entities with optimized
biological properties e.g., peptides showing a trade-off among their pharmaceutical potency,
solubility, haemolytic and toxicity properties [42] (Figure 2).

Despite AI-derived approaches have been largely applied to the rational search and
design of bioactive peptides; most of them are represented by classical ML and evolutionary
algorithms that frequently also use canonical sequence-based features as peptide descriptors
and therefore have been documented in literature [18,45,46]. However, there is a growing
number of emerging computational approaches effectively applied to the search/design of
bioactive peptides that are comprehensively revisited here (Table 1).

Most of the non-standard approaches are represented by classical ML algorithms
which are either trained with non-conventional peptide features [31] or combined with
sequence alignment methods [47]. In addition to the singularity of these predictors; pre-
processing steps managing the natural imbalance between bioactive and inactive peptides
have been hardly applied to the AMPs predictions [27,34] as well as no big data solutions
have been implemented yet to address scalability problems. As mentioned before, other less-
known ML algorithms in the field of protein/peptide science like those based on the Rough
Sets Theory (RST) are being currently intended for peptide classification/design [22,48].
Moreover, a non-conventional methodology that analyses the known chemical space of
bioactive peptides by similarity networks was developed to identify the most relevant ones
for each specific biological activity [33]. Such representative peptides were recently used



Antibiotics 2022, 11, 936 6 of 32

in multi-query similarity searches against the StarPep database to repurpose AMPs for
specific activities such as antiparasitic and tumour homing [49,50].

By other side, evolutionary algorithms that simulate sequence evolution have been
recently applied to design/optimize peptides having a pharmaceutical activity [51,52]. Last
but not least, computational tools used in proteogenomic analyses are being modified for
uncovering cryptic peptides with biological activities in natural sources [53,54]. From now
on we go deeper into these emerging approaches in peptide search and design

2. Non-Classical Peptide Features for Bioactivity Prediction
2.1. Peptide Features Inspired in Molecular Descriptors Used in Cheminformatics

There is a set of chemoinformatics-derived peptide features considered as “non-
conventional” because of its in-house development; however, have been successfully ap-
plied in the recognition of bioactive peptides by ML-based classifiers [31,55–58]. The defini-
tion of these peptide/protein features is generally inspired on the mathematical formalisms
applied to the calculation of molecular descriptors for small organic molecules [59,60],
which have been traditionally used to Quantitative-Structure-Activity Relationship (QSAR)
studies for drug design/search. Most of them are classified as topological descriptors since
they consider the connectivity either between adjacent amino acids (aas) or between aa
groups by using both algebraic and statistic invariants [32,61,62].

Those based on algebraic forms express protein/peptide structural topology through
the definition of connectivity or adjacency matrices. The elements of these matrices (nij or eij)
reflect topological relationships between the aas or aa groups, they are equal to 1 if i and j are
adjacent otherwise take the value of 0. Topological indices (TIs) are estimated by applying
several algorithms on the connectivity/adjacency matrix. The most common algorithms
for the TIs calculation involve the powers of the topological matrix, the multiplication of a
property vector by the topological matrix and the multiplication of vector-matrix-vector
(Figure 3). Many of the most popular TIs within the cheminformatic have been defined by
these algebraic formalisms, such as the Winner index (W) [63], the Randić invariant (χ) [64],
Broto–Moreau autocorrelation (ATSd) [65], the Balaban index (J) [66], and the spectral
moments introduced by Estrada [59]. Thus, many of them were reformulated to describe
the spatial topology of aa sequences at different structural levels, e.g., linear sequences (1D),
pseudo-secondary structure (2D) and the 3D-dimensional space [61,62] (Figure 3).
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syndrome [67]. Each peptide representation defines a singular topological matrix (TM) encoding
structural features at different degrees. In addition to the several ways to represent the topology of a
peptide (linear, circular, 2D-Cartesian), several algebraic formalisms/operators can be applied on
the TM to calculate different topological indices (TIs) types. n represents the nodes in the peptidic
representations (linear, circular, and Cartesian) as well as in their corresponding TMs, which may
contain some elements in red font (e.g., n4 and 1) to highlight differences in structural encoding
from the cyclopentapeptide. N indicates the number of rows and columns of matrices involved in
TI calculation.

On the other hand, there is another set of topological descriptors that also comes
from the chemoinformatic field that have been applied to the identification and design
of AMPs [31,52,56,58]. They are not formulated by using algebraic forms but rather they
rely on descriptive statistics as invariant operators on the aa properties either along the
sequence or the 3D protein structure. In this case, the 1D or 3D topology is encoded by the
application of classic cheminformatics algorithms that consider the neighborhood such as
autocorrelation [65], Kier-Hall’s electro-topological state [68], Ivanshiuc-Balaban [69], and
Gravitational-like operators [70].

2.1.1. Topological Indices from Algebraic Forms

Among the TIs defined for small molecules, the spectral moments formalism probably
is one of the most extended to characterize proteins and peptides structures [61,62,71,72].
The spectral moments may encode peptide structures through the definition of their corre-
sponding topological matrixes and the application of the trace operator on the k-th power
of such matrixes (Figure 3).

A sort of stochastic spectral moments applied to the electronic or charge delocalization
of the aas within the peptide backbone and the entropy involved on such delocalization,
were applied to model the bitter tasting threshold of dipeptides by linear discriminant
and regression analyses [57]. These non-standard peptide features provided accuracies
higher than 83% in the detection of bitter taste, and the regression models could explain the
experimental variance of the bitter tasting threshold in more than 80%. It was shown the
non-standard peptide descriptors correlate with the bitter taste as good as or even better
than other well-known peptide features like the z-scale [73].

The spectral moments have been also applied to characterize bacteriocins. Bacte-
riocins are peptidic toxins produced and exported by bacteria as a defense mechanism
to kill or inhibit the grow of other strains but the producer. The bacteriocins are very
attractive for the development of new antibiotics and anticancer agents, however their
high structural diversity represents a challenge for alignment-based predictive tools. Since
the hydrophobicity and basicity of bacteriocins are relevant for their antibacterial activity,
Agüero-Chapin et al. introduced the 2D-Hydrophobicity and Polarity (2D-HP) maps to
pseudo-fold bacteriocin protein sequences in order to derive a set of spectral moments en-
coding information beyond the linear sequence [74] (Figure 4). These TIs are implemented
in the Topological Indices to Biopolymers (TI2BioP) software [75] and were useful to build
an AF model based on Linear Discriminant Analysis with a higher sensitivity (66.7%) than
the attained by InterProScan (60.2%). In addition, they could detect cryptic bacteriocins,
ignored by alignment methods [74].
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Figure 4. Different structural representations for the channel-forming domain of Colicin E1 (pdb
2I88). A—Primary structure, B—Pseudo secondary Cartesian map of hydrophobicity (H) and polarity
(P) (2D Cartesian (HP) map), C—Three-dimensional structure. The 2D Cartesian protein map is an
arbitrary bidimensional arrangement (pseudo-folding) of the protein/peptide sequences bearing
higher-order useful patterns than contained in linear sequences.

2.1.2. Topological Indices from Descriptive Statistics

The cheminformatic-derived protein descriptors that have been widely applied to
the prediction and design of bioactive peptides were developed and implemented by
Ruiz-Blanco et al. in the ProtDCal software [32]. ProtDCal provides a great diversity of
protein/peptide descriptors thanks to its divide-and-conquer methodology that considers
both the aa properties and those estimated for groups, which can be modified by the
neighbourhood through the application of classic previously-mentioned chemoinformatics
algorithms. The modified properties of the aas or their resulting groups are later aggregated
using statistical operators to estimate local or global descriptors either at sequence or 3D
structural level. Although a more detailed description of ProtDCal’s protein descriptors can
be found in [32], the Figure 5 shows an schematic representation of the protein descriptor
generation process of ProtDCal. The diversity of ProtDCal’s protein descriptors represented
by different families stems from combinatorically applying different aa properties, the ways
to consider the vicinity to the target aa by several operators, the criteria used to group the
aas as well as the invariant operator used for aggregating aa properties within the same
array (Figure 5).

ProtDCal’s descriptors have been involved in the discovery of antibacterial peptides by
developing a non-conventional multi-target QSAR models [56]. Despite the AMPs selected
for training were evaluated against multiple targets (Gram-positive bacterial strains), they
could be integrated in the same model by modifying their ProtDCal’s descriptors through
the Box-Jenkins moving average operator. This operator allows modifying the sequence-
based descriptors by subtracting the corresponding mean of the descriptors of all AMPs
assayed against the same Gram-positive bacterial strain. This is a way to particularize a
sequence-based descriptor by incorporating information about the experimental conditions
or biological assays. With this kind of descriptors, the multi-target cheminformatic model
displayed percentages of correct classification higher than 90.0% in both training and
prediction (test) sets [56].
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Similarly, the same authors also applied the Box-Jenkins moving average operator to
develop non-conventional multi-task QSAR models able to predict simultaneously antibac-
terial activity and toxicity [58]. This time, the continuous response variables measured on
AMPs such as minimum inhibitory concentration (MIC), cytotoxic concentration at 50%
(CC50), and haemolytic concentration at 50% (HC50) were transformed in a binary variable
labelled as (1) referred to high antibacterial activity/low cytotoxicity, and (−1) assigned
to low antibacterial activity/high cytotoxicity. The ProtDCal’s descriptors that usually
encodes only peptide features were modified by the Box-Jenkins moving average operator
in order to consider the variability implying the evaluation of the antimicrobial activity
and toxicity on different biological systems. Thus, a multi-task QSAR model displayed
an accuracy higher than 96% for classifying/predicting peptides was built by using LDA
discriminant [58].

ProtDCal’s descriptors have also been involved in the design of new peptides that
inhibit the E. coli ATP synthase, as putative antibiotics [52,76]. ProtDCal’s descriptors,
implemented in PPI-Detect [77], were applied to predict interactions between peptides and
the main subunits of E. coli’s (Ec) and human’s (Hs) F1Fo-ATP synthase. Those peptide
with a maximum and a minimum interaction likelihood with EcF1Fo and HsF1Fo were
selected for in vitro assays. An overall of three peptides resulted attractive for further
optimization steps in the design of new antibiotics [52,76].

More recently, ProtDCal’s protein descriptors were successfully applied to improve
the prediction performance of the existing alignment-free models by using the largest ex-
perimentally validated non-redundant peptide dataset reported to date, the StarPepDB [78],
together with Random Forest (RF) classifiers [31]. Pinacho-Castellanos at al. not only
built RF-based models for identifying AMPs, but also addressed the main biological ac-
tivities reported for them (antibacterial, antifungal, antiparasitic, and antiviral) as end-
points. The specific functions of AMPs were either directly predicted or by a hierarchi-
cal classification that first consider the antimicrobial activity. RF-based models, devel-
oped with ProtDCal’s descriptors aimed to predict specific activities of AMPs, showed
a higher effectivity and reliability than 13 freely available prediction tools. The best re-
ported models were implemented in the AMPDiscover tool [31], publicly available at
https://biocom-ampdiscover.cicese.mx/ (accessed on 7 March 2022). Ruiz-Blanco et al.
also applied successfully ProtDCal’s descriptors to predict antibacterial peptides by using
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RF-based models trained with StarPepDB instances and, in a second step they are predicted
on what bacterial targets according to their Gram-staining classification could be active by
using a multi-classifier. These two RF-based models were implemented in the web server
ABP-Finder: https://protdcal.zmb.uni-due.de/ABP-Finder/ (accessed on 7 March 2022)
which is freely available but unpublished yet.

2.2. Integration of Peptide Features from Heterogenous Sources

Considering previous experiences in protein functional classification where protein
features from heterogeneous sources have been integrated to improve classification rates;
we wonder if this strategy has been applied to peptide classification? In this sense, the
integration/combination of alignment-based (AB) and alignment-free (AF) protein features
in machine learning models have been evaluated for such purpose. For example, Galpert
et al. improved orthologs classification at the twilight zone (<30% of identity) by combining
AB and AF protein similarity measures in supervised big data classifiers [79]. It has also
been shown that the integration of AB and AF methods gives the best exploration of highly
diverse protein classes, such as the nonribosomal peptide synthases (NRPS) represented by
their A-domains [80]. Other examples of feature integration methods for remote homology
detection can be found in [81], and the one of Borozan’s et al. [82], based on weighted
aggregation which is a very inclusive approach avoiding the loss of information.

Regarding AMPs classification improvements by integrating AB and AF peptide
features, an algorithm applying AB measures and the SVM algorithm trained with AF
pairwise measures was published for increasing AMPs prediction sensitivity [47]. The
algorithm consists in two stages. Firstly, AMPs are identified by Basic Local Alignment
Search Tool (BLAST) scores, and those peptides that cannot be unequivocally identified
by pairwise alignments were inputted in an SVM-based classifier built with AF pairwise
similarity scores. The AF similarity scores were estimated with the Lempel–Ziv’s com-
plexity algorithm [83]. The integrative algorithm achieved higher sensitivity performance
for AMPs prediction than the prediction tools implemented within the first version of
CAMPR3 database [11] and the integrated method proposed by Wang et al. [84]. Wang
and colleagues had previously proposed a similar algorithmic workflow where BLAST is
used to firstly classify a query peptide against a training set made up by 870 AMPs and
8661 non-AMPs. Classification label is transferred to the query peptide from the matching
with highest similarity score. Query peptides that did not match with any within the
training set were encoded by protein features like ACC and PseACC and the aas by five of
their physicochemical and biochemical properties. As the number of generated features
were relatively high, a rigorous feature selection step was performed by applying both the
Maximum Relevance, Minimum Redundancy (mRMR) method [85] and the Incremental
Feature Selection method [86] before building a Nearest Neighbour (NN)-based predictor.
The NN algorithm assign the label AMP or non-AMP to a query peptide according to the
class of the nearest neighbour.

Despite the efforts for integrating AB and AF features in a classification peptide system;
they have actually been combined through their corresponding algorithms and have not
been included in the same model or function. In this sense, AB and AF similarity scores
could be combined to build an unique classifier for AMP prediction, as Galpert et al. did it
for ortholog detection [79].

2.3. NMR-Based Features for Peptides

In 2020, the IAMPE webserver (http://cbb1.ut.ac.ir/; accesed on 17 March 2022) was
released for an accurate prediction of AMPs by using classical ML-based classifiers trained
with both conventional and 13CNMR-based features. The non-conventional 13CNMR-based
features for peptides were defined from the quantitative NMR spectra for 13C isotope of
the naturally-occurring aas. Firstly, 13CNMR-based features for each aa were calculated
using 13CNMR spectra signals. Secondly the aas were grouped according to their 13CNMR-
based features by applying Fuzzy c-means clustering algorithm. The resulting aa clusters
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were used to extract feature vectors along the peptide sequences according to classical
“composition”, “transition” and “distribution” patterns. Despite the new information pro-
vided by such non-conventional peptide descriptors, authors suggested their combination
with physicochemical features to yield higher accuracy for the prediction of active AMP
sequences [34].

3. Breakthroughs of ML Algorithms in the AMP Prediction
3.1. Data Imbalance and Multi-Label Classification in the Prediction of AMPs—New
Algorithm Approaches

As mentioned in the Introduction, data imbalance is an issue to tackle in the classifi-
cation of potential peptide sequences. Here, we collected some other reported solutions
combining two-level classifiers with imbalance management in both, the first level binary
AMP/non-AMP problem, and the second level multi-label functional type problem. For
example, the authors of MAMP-Pred [87] proposed two alternative imbalance management
methods: (i) under-sampling of the non-AMP class, and (ii) weighting sequences according
to the imbalance ratio; the second one being eligible after the experiment process. Then,
they used pruned sets and label combinations, considering label correlations, to transform
the RF binary classification. For the classification assessment, the Matthew’s correlation
coefficient was selected for the first level, and the multi-label metrics: Exact-Match Ratio
(EMR), Hamming-Loss (H-Loss), Accuracy (Acc), Precision (Precision, Recall), Ranking-
Loss (RL), Log-Loss, One-error (OE), F1-Measure (F1-Mic, F1-Mac), for the second level.
As they assessed, MAMP-Pred outperformed iAMP-2L (proposed in 2013 as a two-level
multi-label classifier) because of the feature extraction process involved ACC and its eight
physicochemical selected properties, besides the classification process.

Another example of imbalance management can be found in [88] where the authors
tried to identify peptides with dedicated anti-CoV antimicrobial function on an imbalanced
dataset with relatively insufficient positive data. They used NearMiss under-sampling and
balanced RF to build the classification model, and the sensitivity, specificity and geometric
mean for the unbiased evaluation.

Ensemble learning has also been used to cope with class imbalance in the binary
AMP/non-AMP prediction tool Ensemble-AMPPred [89]. The prediction model based
on ensemble methods (RF, max probability voting, majority voting, adaptive boosting, or
extreme gradient boosting) was combined with feature extraction (vectors of 517 numerical
descriptors representing peptide sequences), feature engineering (hybrid feature generation
by the fusion of various selected features using a logistic regression model) and feature selec-
tion to improve classification accuracy after the application of a balancing clustering-based
proportionate stratified random sampling that selected peptide sequences representing the
positive and negative data. Thus, representative sequences selected from each cluster were
used as training data, while the other remaining sequences, as testing data.

A recent report in [90] presents a multi-label framework HMD-AMP to hierarchically
annotate peptide sequences into AMP/non-AMP, and then, into eleven functional classes
that can be small and extremely imbalanced classes. The classification framework includes
an embedding layer of protein sequences, a protein language encoder, a feature transformer
and a hierarchical deep forest model. An ablation study and a reduced feature test demon-
strate the effectiveness of the framework based on the detailed structural information of
AMPs to improve the accuracy of the prediction model and to manage data imbalance
problem. At each function prediction level, the model demonstrates a cascade forest struc-
ture where each cascade level is an ensemble of decision tree forests, and different types of
forests are included to make the model diverse. It’s worth noting that deep forest does not
rely on backpropagation, so it is suitable for training data with either imbalance labels or
small sample sizes, hence preventing the model from overfitting.
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3.2. Deep-Learning in the Recognition of AMPs

The lack of samples in the positive class, as well as, the ambiguity in the negative
class are key issues concerning deep learning models in AMP prediction as stated in
review [91]. The starting point for knowledge discovery in this rough scenario is the correct
representation of raw data. Precisely, deep learning provides a solution to the human
expert dependence problem of featurization, which is known as representation learning;
but also allows the application of some widely-used features in peptide machine learning
by means of unsupervised embeddings (pretrained representations that can be fine-tuned
with specific downstream supervised tasks), learned embeddings (usually one-hot or one-
letter encoding on the amino-acid level, producing a dimension-reduced dense vector for
subsequent layers), or engineered features (physicochemical or evolution-based properties).

In generative approaches for AMP discovery, recently reviewed in [92], the reliance on
expertise-engineered features may limit the generation of candidates qualitatively distinct
from known AMPs, or the limited number of known structures of the annotated peptides
may reduce the effectiveness of structured-based models [93]. On the contrary, those
attribute-controlled models based on recurrent neural networks, variational autoencoders,
adversarial autoencoders, generative adversarial networks may encourage novelty of
designed sequences. That is the case of the specific bidirectional conditional generative
adversarial network developed in AMPGAN v2 [94] that learns data driven priors through
generator-discriminator dynamics and controls generation using conditioning variables.
Thus, a learned encoder mapping data samples into the latent space of the generator
implements the bidirectional component that aids iterative manipulation of novel, diverse,
and application-tailored candidate peptides.

The diversity target in generative models has been also tackled with a semi-supervised
learning approach combined with a variational autoencoder (VAE) that can simultaneously
learn from the large unlabelled peptide sequence databases and a limited number of labelled
sequences as in PepCVAE [95]. In this case, a controlled generative model is learned from
large unlabelled peptide database for the encoder and decoder losses, together with a much
smaller labelled dataset (peptides with reported antimicrobial annotation) for the classifier
loss, that is, using a large unlabelled corpus to capture the distribution with VAE, and a
small labelled corpus to learn a certain controlling attribute code.

Also with VAE generation, the report in [96] used the Giant Repository of AMP
Activity (GRAMPA) [97] to apply an improved automated semi-supervised approach based
on stochastic long short-term memory (LSTM) encoder-decoder networks for generating
promising new sequences and an experimental investigation, resulting in low minimal
inhibitory concentration (MIC) AMPs against Escherichia coli, Staphylococcus aureus, and
Pseudomonas aeruginosa. In this approach, the decoding from the same point in the latent
space may result in a different peptide being generated and is dependent on the random
seed set prior to running. Thus, the VAE is trained on a curated AMP dataset followed
by the development of a regression model for activity prediction and the subsequent
development of the latent space. Then, new AMP sequences are identified from the latent
space (by sampling) and, subsequently, the AMPs are produced and characterized with
their corresponding MIC values. This method produces peptides with similar MICs as the
input reference peptides, but with novel sequences not found in the training set; at the
same time, without imposing thresholds on peptide characteristics or otherwise biasing
output post-sequence generation. As a result, a list of newly generated active peptides
includes non-canonical AMPs of low helicity and low net charge.

An alternative data augmentation method is presented in [98] to improve the recog-
nition of neurotoxic peptides via a convolutional neural network model. Novel potential
neurotoxic peptides were discovered from the best performed model in a simulation
dataset among the transcriptome of an endemic spider of South Korea, Callobius koreanus
(C. koreanus). The BLAST-based augmentation method was intended to improve the gener-
alization property of the model.
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Specifically, for candidate short peptide generation, the authors in [99] combined LSTM
generation and bidirectional LSTM classification to design short novel AMP sequences with
potential antibacterial activity against E. coli. The models were trained using sequences
with proven low MICs and tuned with Bayesian hyperparameter optimization.

Some other deep learning methods are reviewed in [100] as a promising approach to
meet short-length peptides requirements [101] where they combine deep convolutional
neural network with reduced aa composition comprising clustered aas on the basis of
evolutionary information, substitution score, hydrophobicity, and contact potential energy.
As a result, a short peptide of 20 aa was selected by Deep-AmPEP30 from sequences
extracted from the gut commensal fungus C. glabrata genome and experimentally validated
to have antibacterial activities similar to ampicillin.

In a recent review [39], the authors presented some reasons to select ML approaches
over deep learning ones in AMP prediction and design, when a fair balance is required
among high accuracy and generalization capability, interpretability and low computational
cost. However, some improvements like parameter tuning or model hybridization may
lead to more robust deep learning classifiers in this field.

3.3. Rough Sets Theory in the Classification of AMPs

As an example of model hybridization, the authors in [48] presented a codon-based
genetic algorithm combined with rough set theory methods to find a peptide active against
S. epidermidis. Their rough set theory method provided explicit boundaries between physic-
ochemical properties that active sequences possess and inactive sequences do not possess.
Since this method produced explicit decision components, they could test sequences con-
taining multiple components. They were inspired in their previous publication [22] where
they tried to reduce false discovery rate with a rough set-based classification method gener-
ating similarity rule set boundaries between active and non-active peptides based on their
physicochemical properties.

Another example of the rough set theory application can be found in [102] where
they implemented a rough set classification framework together with a Rough Set Quick
Reduct and Rough Set Relative Reduct based on an improved Harmony Search algorithm
to classifyAnti-HIV-1 peptides. Specifically, they hybridized a rough set-based feature
selection technique, with population-based meta-heuristic algorithms (Particle Swarm Opti-
mization), to classify the peptide sequences and solve dimensionality problems. Besides, a
fuzzy set classification framework [23] was also intended to cope with limited and severely
skewed high-dimensional space for short (<30 aa) AMP activity prediction.

4. Other Methodologies Than Classical ML for Identifying and Modelling AMPs
4.1. Homology-Based Prediction and Modelling of AMPs

The most popular approaches in addition to classical machine learning algorithms
for the identification of AMPs in databases are local alignments which are represented
by BLAST and FASTA tools [103,104]. Although local alignments have been successfully
applied by using iterative rounds and filters such as the presence of signal peptides, aa
patterns and gene vicinity during AMP searches [105–107], they can fail in identifying
some AMP sequences [55], if compared to pattern-matching searches [107,108]. There are
two main ways for searching for sequences by patterns: hidden markov models (profile-
HMM) [109] or regular expressions (REGEX) [110]. Both the REGEX and profile-HMM
methodologies work similarly for the identification of AMPs. Firstly, a set of homologous
sequences are aligned and the multiple sequence alignment (MSA) is inputted to a specific
program such as Pratt [111] or HMMER [112] for the identification of REGEX patterns or
profile-HMM, respectively. Currently, instead of building REGEX patterns and profile-
HMMs, they are available for many protein families at the Prosite [113] and Pfam [114]
databases where a query sequence/peptide can be identified. The pattern/profile-based
searches for AMPs can be complemented with the identification of signal peptides and
other structural filters. In fact, improved versions of databases have incorporated MSA,
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profiles-HMM and molecular modelling for AMPs detection [11,115,116]. Even so, when a
query peptide could be high-scored against profile-HMMs from different peptide families,
it is advisable to use a prediction tool combining different protein signature recognition
methods such as InterProScan [117].

As we previously mentioned, the molecular modelling complements AMPs pattern-
based searches by confirming expected three-dimensional (3D) structural features char-
acterizing them. The 3D structure can be also integrated into homology-based searches
to identify homologous sequences sharing low identity but retaining a great structural
conservation. Such structural similarities have enabled the detection of AMPs in databases
with higher accuracy [9]. When the structures of peptides are not experimentally elucidated,
two modelling techniques are suggested: homology-based and ab initio modelling. The
homology-based modelling uses the structure experimentally-determined from available
homologous as template to infer the 3D structure of novel peptides, but rather using
structural than sequence similarities, especially if the query and template are remote homol-
ogous [118]. By contrast, the ab initio method is used to predict the structures of peptides
with yet unknown homologs. The prediction of the 3D protein structure starts from scratch
requiring an energy model describing the main factors that contribute to the stability of the
folding process and an efficient method for the conformational space exploration of the
peptide chain [119]. However, homology-based approaches are more suitable for peptides
when homologs are identified. In fact, the second release of BACTIBASE [115] incorporated
the MODELLER program [120], as a tool for the 3D structure prediction of query peptides
by homology to known bacteriocins [115]. Besides, the incorporation of 3D structure pre-
diction tools to AMP databases provide another filter for an accurate identification of query
AMPs, the 3D structure can be used for scoring peptide-cellular target interactions which is
a crucial step for the in-silico design of novel AMPs [121].

Especially, since classical ML algorithms were recently reviewed in [18], we have
addressed here, traditional homology-based approaches applied to the search and the
modelling of AMPs, and will describe next, the most singular algorithms.

4.2. Emerging ML-Independent Methodologies for AMP Prediction/Design

In this section, we will address other emerging methodologies regardless of ML
approaches and classical homology-based approaches for AMP discovery. Firstly, we
want to highlight the AMPA webserver (http://tcoffee.crg.cat/apps/ampa, accessed on
7 March 2022), developed to detect antimicrobial stretches within the protein sequences.
The antimicrobial regions detected in proteins can serve as new templates for AMP design,
especially those uncovered within proteins no related with the defense function. AMPA
algorithm does not depend on homology-based searches since it estimates an antimicrobial
index (AI) to each aa, derived from half-maximal inhibitory concentration (IC50) values in
high-throughput screening experiments, encoding the propensity of each aa to be present
in an AMP sequence. As low IC50 values correspond to high activity, aas with low AIs
are more likely to be part of an AMP. By applying a sliding-windows analysis along the
protein sequence, AMPA generates an antimicrobial profile based on the AIs. Those regions
scored below certain threshold are considered putative antimicrobial domains [122]. The
singularity of this approach is that it doesn’t either rely on building machine learning
models or similarity searches against AMP databases. However, potentially conserved
antimicrobial regions can be checked in conjunction with the T-coffee alignment tool [123].

On the other hand, complex networks have been applied to explore the chemical
space of AMPs aimed to discover structural entities with promising biological activi-
ties that also could serve as template for peptide drugs design/optimization. In this
sense, Marrero-Ponce et al. were the pioneers on this topic by publishing a seminal of
related works [33,78,124]. Firstly, Marrero-Ponce et al. analyzed both the diversity among
25 AMP databases and the showed within each one. The study revealed some AMP
databases contained common sequences showing certain overlapping degree. After re-
moving duplicates among AMP databases, a representative set of 16 990 non-redundant
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AMPs was collected, which probably was the most comprehensive and exhaustively cu-
rated AMP dataset at that moment [124]. This relevant dataset was further enriched and
structured in a graph database called StarPepDB (http://mobiosd-hub.com/starpep/;
accessed on 17 March 2022) integrating 45 120 unique peptide sequences from 42 AMPs
databases (Figure 6), with their metadata (origin organisms, function, biological target,
source database, chemical modifications, cross-referenced entries to UniProt, PDB and
PubMed) [78].
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Figure 6. Chronological listing of AMP databases used in StarPep Database (StarPepDB) compilation.
After collecting web pages from a large variety of bioactive peptide databases (see Table 1 in Ref. [78]),
their contents were integrated into a graph database that holds total of 71.310 nodes and 348.505
relationships. In this graph structure, there are 45.120 nodes representing peptides (unique sequences)
and the rest of the nodes are connected to peptides for the describing metadata.

StarPepDB has a star-like network architecture where a central node represents the
peptide sequence and is connected to neighbour nodes labelled with the metadata. The
edges depict a relational and unidirectional connection of the central node by a using
a set of selection criteria “produced by”, “assessed against”, “related to”, “compiled in”
with its corresponding metadata nodes such as the origin, target, function and database,
respectively. Peptide nodes besides the sequence also contain peptide’s ID and length,
while the metadata nodes have the ‘name’ property and relationships have the ‘db-ref’
property (referred as source database) [78]. Finally, different network topologies can be
visualized by applying filtering criteria on StarPepDB. For example, it is possible to display
a network of those peptides (central nodes) “related to” (edges) function “antibacterial”
(metadata node) and “compiled in” (edges) the ADP database (metadata node).

Thus, the StarPepDB structure together with the StarPep toolbox allows building
customized networks and their visualization. The visual and analytics exploration of the
network by extracting some centralities measures (e.g., weighted degree or harmonic cen-
tralities) allows identifying the most relevant bioactive peptides in the network (Figure 7).
Furthermore, peptide subsets can be either retrieved from the graph database by sequence
identity searches or by applying filtering criteria such as peptide length, sequence mo-
tifs/patterns, physicochemical properties, and other metadata.

More recently, the same research group encoded each peptide sequence with a set of
molecular descriptors bearing non-redundant structural information to set alignment-free
(AF) pairwise similarity/distance relationships among the peptide nodes of the network
by using a general pipeline as show in Figure 7. The resulting chemical space represented
by these AF similarity networks are explored by visual inspection in combination with
clustering and network science techniques [49,50].

Here, we show the chemical space network (CSN) of 174 non-redundant Anti-Biofilm
Peptides (ABPs) (Figure 8) by applying the StarPep Toolbox flowchart represented above.
Networks become more interpretable through visual inspection if having a community
structure. Note that communities of ABPs may represent some biologically relevant regions

http://mobiosd-hub.com/starpep/
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from the chemical space where bioactive compounds reside. Hence, we have explored the
CSNs by varying the similarity threshold until a well-defined community structure emerged.
In this way, a final CSN has been analyzed by adjusting the similarity threshold to 0.65, at
network density of 0.0068, achieving 20 ABP outliers (singletons) with atypical or unique
sequences (Figure 8). Also, for each peptide discovered to be a relevant node, additional
information (metadata) is available in Supplementary Materials (File S1, SI1-A and B).
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Figure 7. StarPep Toolbox flowchart. A flow diagram guiding the automatic construction and visual
graph mining of similarity networks (see Figure 1 in Ref. [33]). Networks can be clustered, and
communities are optimized using the Louvain method [125]. Moreover, the centrality of each node
can be particularly measured by harmonic, community hub-bridge, betweenness, and weighted
degree. Centrality is crucial to perform scaffold extractions because peptides are ranked according to
their centrality score, and then redundant sequences are removed, prioritizing the most central. Thus,
scaffold extractions depend on the type of centrality applied.
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Figure 8. Visualizing the similarity network (Chemical Space Network, CSN) of a set of 174 non-
redundant Anti-Biofilm Peptides (ABP_98% identity) at threshold t = 0.65 and density = 0.068, using
the (A) three main PCAs as coordinated of each ABPs, and (B) Fruchtermann Reingold layout
algorithm. Node colour represents the community (e.g., the biggest communities represented by
cluster 3, 10 and 12 are in blue, purple and green colours, respectively), and node size symbolizes
the centrality values. There are 20 ABP outliers (singletons). This figure has been created using the
software starPep toolbox (version 0.8), available at http://mobiosd-hub.com/starpep; accessed on
17 March 2022.
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Once a community structure is found, we rank nodes in decreasing order according
to the community Harmonic centrality measure for retaining the top-k of the ranked list.
Particularly, the top 10 exposes densely connected groups of nodes like cliques, which are
defined to be complete subgraphs. These related sequences may be forming families in the
chemical space of ABPs. These central peptides within each local leading community are
given in SI1-B, and they may be representing sequence fragments or naturally occurring
peptides that could be identified as starting structures for lead discovery. For instance, the
peptide starpep_00000, starpep_05561, starpep_00361 are the most central nodes of the CSN
(all in cluster 10). ABPs starpep_03668, starpep_04267, starpep_00004 and starpep_07895,
starpep_12531, starpep_012529 are more central inside Communities 3 and 12, respectively
(Figure 8 and SI1-C).

As can be observed in Table in SI1-C, some neighbor nodes within the communities
may be representing a family of similar ABPs. Another example of closely related sequences
can be seen in the 3 members of the Cluster 3 (see all ABPs in Community 3 in SI1-B). The
peptides inside this cluster have the same length of 12 aas. So, it is expected that there are
many ABPs with similar centrality values in the CSN, and it is advisable to extract some
non-redundant ABPs from communities than just selecting the highest-ranked ones. To
clearly extract central but non-redundant ABPs from each cluster (scaffold extraction, see
Figure 7), we sort ABPs according to the decreasing order of their harmonic values. Then,
the redundant sequences are removed at a given % of sequence identity. We have used an
identity cutoff of > 35% to consider that a particular sequence is related to already-selected
central ABPs and, as a consequence, removed from the CSN. Finally, the non-redundant
44 ABPs were ranked according to their decreasing values of Harmonic measure. The
sorted list is given in SI1-D, and the top ranked peptides are those having relatively small
similarity paths to all other nodes in the CSN.

This workflow allows the extraction of the most representative nodes/peptides de-
scribing the biologically-active chemical space (SI1-D). This representative subset can be
used for multi-query similarity searches against peptide databases to retrieve all possi-
ble hits (Figure 9). The multi-query similarity search consists in using both the most
central/representative nodes of the network communities and also the so-called single-
tons (isolated peptide nodes) as references/queries to retrieve the most similar peptides
from databases by using local alignments. The best matches against the reference/query
chemical space are determined by the maximum fusion rule by firstly ranking-down the
similarity scores, to retrieve the best match between a query peptide and a target database
and afterwards the best similarity scores are ranked for all reference peptides. Some studies
have demonstrated that fusion by similarity scores and the maximum fusion rule are the
best parameters for these models [126,127].

The integrated collection of 45 120 bioactive peptides registered in StarPepDB (http:
//mobiosd-hub.com/starpep/; accessed on 17 March 2022), that probably is the largest
and most diverse bioactive peptide database to date, can be used for the discovering
of central peptide nodes targeting an specific biological activity in the Chemical Space
Networks (CSNs) and for taking advantage of them in multi-query similarity searches [33].
In this sense, Marrero-Ponce et al. explored different similarity networks of antiparasitic
peptides (APPs) from StarPepDB to identify the most relevant and non-redundant APPs,
that were later used as queries in similarity-based searches to identify potential APPs among
non-labelled peptides as such in the StarPepDB. The proposed multi-query similarity
search strategy outperformed state-of-the-art machine learning models aimed at APPs
prediction like the AMPDiscover (https://biocom-ampdiscover.cicese.mx; accessed on
17 March 2022) and the AMPFun (http://fdblab.csie.ncu.edu.tw/AMPfun/index.html;
accessed on 17 March 2022) webservers [30,31]. The methodology will also permit the
design of new APPs by using the motifs found among the repurposed APPs [49]. More
recently, a similar workflow using CSNs was applied to identify the most relevant tumor-
homing peptides (THPs) within the StarPepDB. Such THPs were considered as queries
(Qs) for multi-query similarity searches that apply a group fusion (MAX-SIM rule) model.

http://mobiosd-hub.com/starpep/
http://mobiosd-hub.com/starpep/
https://biocom-ampdiscover.cicese.mx
http://fdblab.csie.ncu.edu.tw/AMPfun/index.html
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The resulting similarity searching models outperformed state-of-the-art tools for THPs
detection, and the best one was applied to repurpose AMPs from the StarPepDB as THPs.
Novel THP leads were identified as well as new motifs accounting for their TH activity [50].
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5. Models of Sequence Evolution for the Design and Optimization of
Bioactive Peptides

Several in silico computational approaches inspired in molecular evolution events
have been applied to the design and optimization of a peptide with a promising biological
activity, known in medicinal chemistry as a “leading compound”. These algorithms are
aimed to produce offspring peptides from a parent (hit peptide) until the “desired property”
is meet according to selection criteria conducted either by ML prediction models or by
biological assays (Figure 2). The offspring generation process can be iterated until reaching
optimized peptidic scaffolds showing a trade-off between desirable/undesirable activi-
ties. The simulation process for generating offspring have evolved from inducing random
mutations within the peptide sequence until guiding such aa substitutions under directed
evolution concepts [41,128,129]. Although, algorithms inducing random mutations are
commonly applied to generate sequence diversity in the peptide library, they could render
unpredictable results that should be carefully analysed with selection algorithms. By con-
trast, computational algorithms inspired on directed mutagenesis have focused the design
and optimization of “leading peptides” by guiding the generation of peptide offspring
incorporating secondary structure features that influence positively on the antimicrobial
activity such as amphipathic helices, kinked amphipathic helices, and other structures
aimed to interact with lipid membranes [130].

Schneider et al. were the pioneers to apply simulated molecular evolution (SME)
algorithms as a strategy for a rational peptide design by coupling the in silico generation
of peptidases cleavage sites of 12 residues long to a selection mechanism represented by
trained ANN [131,132]. The design was oriented to this region by generating offspring
from a 12-residue sequence/peptide (parent sequence) which was iteratively mutated until
meeting the best ANN quality classification metrics, used as a selection criterion of the de-
sign. The offspring sequence simulation was performed by introducing random mutations
according to Gaussian-distributed probability values around the parent sequence. The
mutation degree (small or large) is then conditioned by the estimation of position-specific
mutability and the selected aa distance matrix [131,132]. As the position-specific mutability
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is averaged resulting the same for every position in the sequence; the aa mutation degree is
determined by the aa substitution/scoring matrix type such the Grantham matrix [133],
the Myata matrix [134], and the Risler matrix [135].

This SME approach was later applied by the same group to the optimization of
anticancer peptides (ACP) aimed at improving their membranolytic activity and cell-type
selectivity [51,136]. In [51], a known α-helical ACP served as the parent sequence for the
generation of the offspring (ACP-derivatives). So that the generated offspring peptides
retained similarity with the initial structural/property space and thus enabling a systematic
optimization; the mutation function was controlled. This time the SME approach was
accompanied with experimental measurements as a selection criteria or fitness objective
within the optimization scheme. They used the half-effective concentration (EC50) on the
breast cancer cell line MCF7 and the secondary structure preferences by circular dichroism
(CD) spectroscopy as experimental filters. A similar SME protocol was applied in [136]
to optimize the cell-type selectivity of the highest-scored candidate toward non-cancer
cells and human erythrocytes. This candidate termed AmphiArc2 peptide resulted from
the screening of virtual libraries generated by more advanced algorithms incorporating
secondary structures features (alpha and amphipathic helices) that influence positively on
the membranolytic action [130]. AmphiArc2 was selected as a parent sequence in the SME
algorithm in which the mutated sequences (offspring) are generated from it. The offspring
was scored according to a fitness function, defined by the anticancer activity and selectivity
with respect to non-transformed cells. The best offspring was selected as a parent for the
following optimization iteration [136].

Although the SME approach and the generation of oriented libraries toward certain
secondary structures, relevant for the interaction with lipid membranes, have represented
a step forward in the design and optimization pipeline of AMPs and ACPs [130,136], there
still room for improving the simulation of molecular evolution of the offspring peptides. In
this sense, algorithms that traditionally have been used for simulating sequence evolution
in the field of molecular phylogenetics were recently applied to provide more rationality to
the peptide library generation [52]. These algorithms were initially developed to evaluate
the accuracy of MSA and phylogenetic reconstruction tools by generating sets of related
simulated protein sequences from known phylogenies. The most representative ones are:
ROSE (Random Model of Sequence Evolution) [137], SIMPROT (Simulation Protein Evolu-
tion) [138], and INDELible (Insertions and Deletions Simulator) [139]. In general, they are
controlled by several evolutionary parameters such as tree topology, evolutionary distance
matrices, mutation rate, insertion and deletion probabilities to simulate the evolution of
offspring from a parent sequence. Ruiz-Blanco et al. incorporated the ROSE algorithm into
the de novo design pipeline of peptide inhibitors of E. coli ATP synthase [52,76]. As parent
peptides, both the natural inhibitor (IF1) of the mitochondrial ATP synthase and fragments
of interfaces involved in protein—protein interactions between subunits of E. coli ATP syn-
thase, were selected to generate peptide libraries. The residue conservation degree on these
parent peptides was identified by MSAs within each class. A consensus parent peptide with
its corresponding conservation scoring profile was estimated so different mutation rates to
each position in the sequence could be assigned. This mutation probability vector together
with a user-defined phylogenetic tree with a known topology and branch lengths guided
the probabilistic function performing mutations, insertion and deletions on the parent
peptide [52,76]. On the other hand, the sequence diversity of the offspring peptides in the
library can be controlled by calibrating ROSE parameters against the pairwise identity [81].
A predefined binary phylogenetic tree with 1023 nodes and depth 9 implemented in ROSE
was used in [52,76] for the generation of diversity-oriented libraries. The Figure 10 shows a
schematic description of the ROSE algorithm.

Peptide libraries were screened by the PPI-Detect [77], an SVM-based model that
predicts peptide interactions with both domains of the E. coli and human ATP synthases.
As selection criterion, the high-scored interacting peptides with the E. coli ATP synthase
but showing low values with the human’s were subsequently evaluated by in vitro inhi-
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bition tests. At applying advanced SME algorithms involving more evolutionary mod-
els/parameters like ROSE makes easier subsequently screening steps to find lead peptides
at high success rate.
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Figure 10. The binary mutation guide tree used by ROSE to mutate the parent/root peptide. The
binary tree topology is determined by the number of nodes (1023), depth (9) and average distance
(dav = 5–20 PAMs). Peptide library may be selected either from internal or terminal nodes of the
tree. The identity percentage of the offspring peptides respect to the parent/root peptide is coloured-
illustrated. Red colour means closely-related peptides to the parent while blue colour represents
those distantly-related ones.

6. Considerations in the Workflow for the High-Throughput Discovering of
Bioactive Peptides
6.1. Brief Comparisons between High-Throughput (HT) and Classical Methods

The classical approach for discovery of bioactive peptides has changed from analysing
biological extracts/fluids to perform a wide-genomics and proteomics search. In this sense
both next-generation sequencing (NGS) technologies and mass spectrometry (MS)–based
proteomics combined with bioinformatic tools have provided suitable approaches for
the large-scale identification of bioactive peptides outperforming the classical methods.
These last ones usually include a purification step combined with bio-guided assays,
which require higher amount of biomass from the subject organism. Although they can
determine the biological activity of bioactive compounds relatively at high accuracy, are
time-consuming and the yield of bioactive compounds is low as well as the coverage of
the chemical space [140]. On the contrary, the HT analyses can be performed with around
1 cm3 or 0.5–1 g of fresh or preserved tissues, for genomic/transcriptomic or proteomic
purposes, respectively [53,141,142]. Generally, the HT methods allow covering the whole
picture for potential bioactive compounds much faster. Despite HT methods usually
require of powerful computational resources, both NGS and MS-based proteomics are
becoming cheaper and their corresponding workflows are continuously optimized within
the discovery process as well, resulting in a long-term sustainable approach [143,144].
Moreover, HT OMICs technologies yield a big amount of free public data, allowing the
decentralization of the knowledge for the biodiscovery process.

Hence, the integration of OMICs approaches is more recommendable than the classical
ones at the early stage of bioactive peptide discovery. However, bioassays-guided methods
are still valid and complementary at advanced phases of the research [140,145].
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6.2. Optimized Workflow for the Large-Scale AMPs Discovery from
Profiled/Unexplored Organisms

Despite the advances in the discovery of bioactive peptides, improved protocols are
still needed to increase the accuracy in both their large-scale identification and functional
characterization, which is a major challenge, nowadays. Figure 11 illustrates the overall
steps for the HT bioactive peptide discovery from model and unexplored organisms.

In order to analyze OMICs data released by NGS and MS-based HT proteomics,
several computational/bioinformatic tools and platforms have been developed. Among
them, for the de novo genome/transcriptome assembly we can mention, i.e., MIRA [146],
Spades [147], CAP3 [148], OASES [149] and the Trinity package [150] including the de novo
assembler and the TransDecoder for ORFs prediction (https://github.com/TransDecoder/
TransDecoder/releases; accessed on 17 March 2022). Other ALL-IN-ONE licensed software
like the toolbox CLC Genomic Workbench (CLC Bio-Qiagen, Aarhus, Denmark) [151] and
OMICsBox (BioBam Bioinformatics, Valencia, Spain) [152], have integrated several tools for
the complete workflow, including the de novo assemblers, custom/online/cloud functional
annotation options with Blast+ [153], eggNOG [154], KEGG [155], providing as well as a
set of functional analyses and statistical tests (i.e., Gene Ontology, deferential expression
analyses and enrichment).

Among the NGS analyses, the RNA-seq has gained relevance because it can explore the
coding regions of the genome by assembling, annotating and comparing expression profiles
of the resulting transcripts [141,156]. Since elucidating the transcriptome demands lower
computational cost than whole genome, and also provide useful information, its number
has increasingly growth in databases. In this sense, transcriptomes from the same or related
species are translated, usually with the TransDecoder or Six-Frame Translations Tool (S-FTT)
(https://github.com/iracooke/protk; accessed on 17 March 2022), then annotated, and
thus considered as reference database for improving protein identification in proteomics
analyses from a target organism [157]. These are the grounds of proteogenomic analyses
where genomic, transcriptomic and proteomic data are combined to assist the discovery
of peptides from MS–based proteomic data, especially if they are not present in protein
databases such as UniprotKB and other related ones (i.e, Swiss-Prot, TrEMBL and UniRef),
the protein section of NCBI, Mendeley and ProteomExchange consortium [158]. On the
other hand, the proteomic data can also be used to confirm gene expression [159].

Antibiotics 2021, 10, x FOR PEER REVIEW 22 of 33 
 

profiles of the resulting transcripts [141,156]. Since elucidating the transcriptome demands 
lower computational cost than whole genome, and also provide useful information, its 
number has increasingly growth in databases. In this sense, transcriptomes from the same 
or related species are translated, usually with the TransDecoder or Six-Frame Translations 
Tool (S-FTT) (https://github.com/iracooke/protk; accessed on 17 March 2022), then anno-
tated, and thus considered as reference database for improving protein identification in 
proteomics analyses from a target organism [157]. These are the grounds of proteoge-
nomic analyses where genomic, transcriptomic and proteomic data are combined to assist 
the discovery of peptides from MS–based proteomic data, especially if they are not present 
in protein databases such as UniprotKB and other related ones (i.e, Swiss-Prot, TrEMBL 
and UniRef), the protein section of NCBI, Mendeley and ProteomExchange consortium 
[158]. On the other hand, the proteomic data can also be used to confirm gene expression 
[159]. 

 
Figure 11. Optimized workflow for the high-throughput (HT) AMPs discovery from profiled and/or 
unexplored organisms. The figure summarizes the main phases in the AMPs discovery using ge-
nomic, transcriptomic and proteomic data from profiled or underexplored organisms. The figure 
depicts the pipeline for de novo HT discovery from un(der)explored organisms using OMICs ap-
proaches (shown in the top-left panel), and from nucleotide and proteomic information available at 
public databases (top-right). Genomic information publicly available at NCBI (Genome database 
https://www.ncbi.nlm.nih.gov/genome/; accessed on 17 March 2022) and transcripts encoding pro-
tein sequences under 100 aa length provided by the Transcriptome Shotgun Assembly (TSA) data-
base (https://www.ncbi.nlm.nih.gov/genbank/tsa/; accessed on 17 March 2022), can be screened 
with the computational tool ampir for fast genome-wide prediction of AMPs [160]. Likewise, the 
remaining transcripts encoding peptides sequences ranging 5-100 aas length, usually discarded in 
transcriptomic analyses, can be translated with the six-frame translations tool (S-FTT) [157,161] after 
ORFs prediction with the TransDecoder. Considering bioactive peptides include animal toxins 
which are usually rich in cysteine, the aa sequences obtained with S-FFT can be either analyzed by 
the Proteomic toolkit (https://github.com/iracooke/protk; accessed on 17 March 2022) to identify 
cysteine-rich regions to discover novel Short Secreted Cysteine Rich (SSCRs) peptides, or by the 
Machine Learning (ML) tool ToxClassifier, that enables a simple and consistent discrimination of 
toxins from non-toxin sequences [162]. In addition, new tools like the pypgatk package [163] can 
recover a significant number of cryptic peptides of biomedical interest from pseudogenes, long non-
coding RNAs (lncRNAs) and other non-canonical coding transcripts produced by alternative splic-
ing. These filtering tools can be applied together CD-HIT [164] to screen nucleotide databases before 
custom and non-redundant peptide databases building for proteogenomic analyses or HT 

Figure 11. Optimized workflow for the high-throughput (HT) AMPs discovery from profiled and/or
unexplored organisms. The figure summarizes the main phases in the AMPs discovery using genomic,

https://github.com/TransDecoder/TransDecoder/releases
https://github.com/TransDecoder/TransDecoder/releases
https://github.com/iracooke/protk


Antibiotics 2022, 11, 936 22 of 32

transcriptomic and proteomic data from profiled or underexplored organisms. The figure depicts the
pipeline for de novo HT discovery from un(der)explored organisms using OMICs approaches (shown
in the top-left panel), and from nucleotide and proteomic information available at public databases
(top-right). Genomic information publicly available at NCBI (Genome database https://www.ncbi.
nlm.nih.gov/genome/; accessed on 17 March 2022) and transcripts encoding protein sequences under
100 aa length provided by the Transcriptome Shotgun Assembly (TSA) database (https://www.ncbi.
nlm.nih.gov/genbank/tsa/; accessed on 17 March 2022), can be screened with the computational
tool ampir for fast genome-wide prediction of AMPs [160]. Likewise, the remaining transcripts
encoding peptides sequences ranging 5-100 aas length, usually discarded in transcriptomic analyses,
can be translated with the six-frame translations tool (S-FTT) [157,161] after ORFs prediction with the
TransDecoder. Considering bioactive peptides include animal toxins which are usually rich in cysteine,
the aa sequences obtained with S-FFT can be either analyzed by the Proteomic toolkit (https://github.
com/iracooke/protk; accessed on 17 March 2022) to identify cysteine-rich regions to discover novel
Short Secreted Cysteine Rich (SSCRs) peptides, or by the Machine Learning (ML) tool ToxClassifier,
that enables a simple and consistent discrimination of toxins from non-toxin sequences [162]. In
addition, new tools like the pypgatk package [163] can recover a significant number of cryptic
peptides of biomedical interest from pseudogenes, long non-coding RNAs (lncRNAs) and other
non-canonical coding transcripts produced by alternative splicing. These filtering tools can be applied
together CD-HIT [164] to screen nucleotide databases before custom and non-redundant peptide
databases building for proteogenomic analyses or HT annotation. Finally, the StarPepDB with
its associated tools [33] may have several roles within the presented workflow by providing non-
redundant bioactive databases and also at reducing custom peptide databases with the identification
of the most relevant peptides for proteogenomic analyses. Moreover, bioactive peptides detected in
HT screening can be classified and clustered with StarPep in different categories according to their
biomedical potential (e.g., AMPs, antitumor, antibacterial, antiparasitic, etc.).

In general, the overall proteomic approach for the discovery of bioactive peptides
includes the following steps: (i) protein digestion, (ii) peptide separation, (iii) peptide
fragmentation and MS spectra acquisition, (iv) peptide identification using MS spectra
database by similarity searches or by de novo sequencing. In this sense, steps (i) and
(ii) are addressed by several sample preparation protocols which selection determine
the best yields/results. Specifically, for bioactive peptide discovery, it is advisable the
solid-phase-enhanced sample-preparation (SP3) protocol [165] since it reaches a wider
coverage of peptides than the filter-aided sample preparation (FASP) [166]; moreover, is
less complicated and faster than the in-solution digestion (ISD) [167].

Besides to protocol improvements in sample processing [161], there have been ad-
vances in the peptide identification step by applying several computational strategies
that have also refined their bioactivity prediction [159]. In addition to use transcriptomic
data to increase peptide detection accuracy, the inclusion of custom databases is being
applied to characterize the part of the proteome that remains unannotated. In this sense,
composite databases have been explored for a deeper proteomic characterization of the
salivary glands from Octupus vulgaris looking for revealing underexplored bioactive pep-
tides/toxins from previous studies [54,157,161]. The composite database comprised data
from the UniProtKB, built from de novo transcriptome assembly of Anterior (ASGs) and
Posterior Salivary Glands (PSGs), combined with those retrieved from all transcriptomes
available from the cephalopods’ PSGs. In addition, a comprehensive non-redundant AMPs
database [124] was also included to provide additional insights about bioactive compounds
such as putative AMPs [54]. In a previous work the same AMP subset was also considered
as custom database to characterize the Ascidian tunic proteome by shotgun proteomics [53].
The computational analysis of the raw data implied searches against the Uniprot database
(Bacteria and Metazoan section) and the AMP database. The Ascidian tunic revealed
the presence of AMPs from both eukaryotes and prokaryotes and the “Biosynthesis of
antibiotics” pathway was among the most significant ones, which support this tissue as an
interesting reservoir of bioactive peptides/toxins and its role on the interactions Ascidians
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and their associated organisms. The AMP subset integrated in these previous analyses
was published by Aguilera-Mendoza and probably was the most comprehensive and non-
redundant AMP database reported so far [124], that later was updated in the StarPepDB
(http://mobiosd-hub.com/starpep/; accessed on 17 March 2022) [78], as mentioned above.

Other important handicaps in the workflow of proteogenomic analysis are the False
Discover Rate generated at analysing large protein/peptide databases [168–170] and the
probable loss of information represented by small size transcripts encoding protein frag-
ments < 100 aas that could be discarded by the TransDecoder [54,157,161], the tool dedicated
to identify candidate coding regions within transcripts generated by de novo RNA-Seq, and
such small-sized fragments could account for bioactive peptides. In order to perform a
wider proteome analysis looking for uncovered AMPs and peptide toxins in the PSGs of
O. vulgaris, contigs discarded in previous proteogenomic analyses (<100 aas) were trans-
lated with the S-FTT and then included in the protein database [54]. To optimize further
proteogenomic analyses (i.e., time of analyses, FDR), or peptide annotation, sequences
redundancy should be reduced with the CD-HIT [164] since the S-FTT generates many
peptides sharing high similarities that could affect the overall peptide identification when
increasing the FDR [170].

Other filters within the computational pipeline to process proteomic data have been
applied to refine the search of peptide toxins against both canonical and custom databases.
For example, the search can be framed against those toxins/peptides having signal peptides,
responsible for their transport and secretion. Signal peptides have shown to contain
common features across all life kingdoms [171]. In addition, cysteine-rich secretory proteins
(CRISPs), small toxins (<100 aas) commonly found within the secretions of animal venoms,
can be extracted from protein databases, to enrich reference databases for increasing
proteomic toxin peptides detection [172]. Besides, the custom protein/peptide database
can also be screened with ML-based tools e.g., ToxClassifier, that enables simple and
consistent discrimination of toxins from non-toxin sequences [162], allowing the discovery
of novel toxin-like bioactive peptides. Moreover, the fast genome-wide prediction of AMPs,
using the ampir R package [160] can be used in the pipeline to retrieve novel peptides with
antimicrobial signatures from public nucleotide databases, de novo transcriptomes/genomes
assemblies, or as a filtering step before using S-FTT. More recently, new tools for the creation
of proteogenomic databases considering the translation of pseudogenes, long non-coding
RNAs (lncRNAs) and other non-canonical coding transcripts produced by alternative
splicing, have allowed the identification of a significant number of cryptic peptides that
may show interesting biological activities [163].

7. Concluding Remarks

Protein features inspired on molecular descriptors from chemoinformatics have emerged
as successful predictors for AMPs activities. Particularly, ProtDCal’s descriptors have been
recently incorporated in two RF-based webservers (AMPDiscover and ABPFinder) tar-
geting AMPs predictions as well as their specific activities and putative bacterial targets.
Moreover, ProtDCal’s descriptors have been involved in the design of antibiotic peptides
by predicting their interaction to druggable targets from E. coli.

Among the recent ML approaches, undoubtedly DNNs have been the algorithm of
choice for AMPs prediction in emerging tools. However, recently it has been shown that
deep learning models’ performance in AMP prediction is comparable to the one of classical
ML algorithms being their use mostly advisable when the performance gains justify the
associated computational cost.

Currently, the network science implemented in StarPep is being applied as one of the
top emerging approaches, regardless of ML, to assist the search and design of bioactive
peptides through the identification of lead peptides within the known chemical space.
On the other hand, methodologies that simulate sequence evolution in the phylogenetics
field have been repurposed to assist the optimization of such peptide leads by generating
diversity-oriented libraries which are strictly controlled by evolutionary parameters.
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New considerations in analysing genomic, transcriptomic and proteomic data for
AMPs discovery from either profiled or underexplored organisms are being also applied.
Several filtering steps have been proposed to reduce the FDR in AMPs detection when
custom databases are included, but at the same time, to encompass the highest number and
diversity of peptides as possible.

8. Future Research Directions

Despite a great diversity of peptide features (classical and non-classical) that has been
used in AMPs prediction/design, most of those features are sequences- or property- based;
however, the 3D structural information of AMPs has not been deeply exploited for such
aims [173–175]. Although experimental determinate 3D structures of AMPs are used in
minor proportion than their sequences, the 3D structure prediction tools are becoming
more accessible and less computational demanding when considering new advances in
both software and computer architectures [176,177]. These facts will ease the gradually
inclusion of 3D structural features in the prediction models.

Another alternative for the inclusion of higher structural information in AMPs encod-
ing is the use of artificial representations, which have been commonly used in comparative
analyses of DNA and proteins and in QSAR-type modelling [81]. The integration of peptide
features from heterogeneous sources e.g., from pairwise alignments and peptide sequences
into the same classifier could be another outlook for improving the classification rates of
AMPs. The main problem is to figure out a framework to integrate them (the resulting
features, not the source methodologies) into ML models training. As a clue for future
research directions, the alignment- based and -free similarity measures were successfully
integrated for training bigdata ML-based classifiers for orthologs detection [79]. Bigdata
solutions applied to the prediction/optimization of AMPs have not been explored yet in
spite of the fact that the number of AMPs has grown in databases as well as the number of
features/descriptors that can be derived from them. Bigdata platforms could be applied
when performing virtual screening of millions of peptides, especially if they are described
with computationally demanding structural descriptors. As previously mentioned, it
would be advisable that future ML models for the AMP prediction could consider the
natural imbalance ratio between AMPs and non-AMPs as well as the existing one among
the AMPs activities. Moreover, the prediction of AMPs activities should be addressed
with fuzzy-based models since they generally show overlapping activities which are not
evenly-distributed within the AMP population [23]. Therefore, the resulting predictions
for AMPs activities may be scored with probability values and not only treated as a binary
value. On the other hand, for peptide leads optimization, the offspring generation step is
crucial for the overall process. This step generally is carried out by evolutionary algorithms
that introduce structural diversity among child peptides somewhat randomly. Although
these AI-based algorithms have been continuously evolving to guide such diversity in
order to gain optimization efficiency; there is still room for improvements in this direction.
Thus, the algorithms commonly used in phylogenetics for simulating sequence evolution
could provide more rationality to the generation of offspring peptides since they have been
designed with more evolutionary parameters that can be strictly controlled [52,76].

Finally, StarPep is probably the most promising methodology regardless of ML ap-
proaches, that has been reported so far. The complex network theory implemented in this
tool has provided a different outlook to address several steps in peptide drug discovery
process. StarPep bears particular analysis tools that have not previously reported for pep-
tides, such as (i) the chemical space analysis of AMP databases by similarity networks,
(ii) the identification of the most representative and non-redundant subset of AMPs from
the original chemical space, (iii) the mapping of unlabelled peptide datasets on similarity
networks built with the representative AMPs (iv) the multi-query similarity searches using
representative peptides against target databases. Consequently, StarPep is becoming in
a competing tool to the existing ML-based methods since it has being giving clues of
improved classification rates [49,50], and because of its great potentialities for the identifica-
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tion and optimization of new peptide leads from either in silico generated peptide libraries
or released data by the Omics techniques (Figure 11).

The effort of StarPepDB developers to gather all AMP databases in a non-redundant
database [124] has shown a direct impact for the AMPs prediction tools [31]. However, the
annotation quality for the reported AMPs must still be improved as well as the information
on their biological or molecular targets. It is urgent that AMPs activity evaluations can be
harmonized under the same protocols to construct more reliable benchmark datasets for
the accuracy sake of the computational analysis tools. The diverse computational methods
available for AMPs discovery are a powerful tool for the accurate design of peptide drugs.
The growing availability of 3D structural descriptors and scoring functions will allow
developing more effective in silico peptide drug design technologies. The assembling
of ML methods with peptide-protein docking and molecular dynamics seems to be an
effective alternative as well [178]. If all these aspects were considered for the computational-
assisted search/design of peptide drugs, the next-generation of AMP leads will be more
valuable for developing therapeutic agents to face challenging health problems such as
cancer, infectious diseases and more recently, COVID-19.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics11070936/s1. File S1—Additional data relative to the analysis of the Chemical Space
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to ABPs. SI1-B—Node properties of the 174 ABPs embedded in the similarity network representing
the ABPs chemical space. SI1-C—More central ABPs according to network centrality measures.
SI1-D—ABPs selected as queries for multi-query similarity searches.
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