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Spatial transcriptomic technologies capture genome-wide readouts across biological
tissue space. Moreover, recent advances in this technology, including Slide-seqV2,
have achieved spatial transcriptomic data collection at a near-single cell resolution.
To-date, a repertoire of computational tools has been developed to discern cell type
classes given the transcriptomic profiles of tissue coordinates. Upon applying these
tools, we can explore the spatial patterns of distinct cell types and characterize how
genes are spatially expressed within different cell type contexts. The kidney is one
organ whose function relies upon spatially defined structures consisting of distinct
cellular makeup. Thus, the application of Slide-seqV2 to kidney tissue has enabled
us to elucidate spatially characteristic cellular and genetic profiles at a scale that
remains largely unexplored. Here, we review spatial transcriptomic technologies, as
well as computational approaches for cell type mapping and spatial cell type and
transcriptomic characterizations. We take kidney tissue as an example to demonstrate
how the technologies are applied, while considering the nuances of this architecturally
complex tissue.
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APPLICATIONS OF SPATIAL TRANSCRIPTOMICS

Unbiased spatial transcriptomics adds in situ spatial context to single cell RNA data providing
a powerful tool to characterize the spatial location for whole transcriptome sequencing (10x
Genomics, 2007; Chen et al., 2015; Stegle et al., 2015; Ståhl et al., 2016; Rodriques et al.,
2019; Liao et al., 2021; Longo et al., 2021; Nature Methods, 2021; Stickels et al., 2021). This is
accomplished with two technologies, Spatial Transcriptomics (ST or Visium) and Slide-seqV2
(10x Genomics, 2007; Ståhl et al., 2016; Rodriques et al., 2019; Stickels et al., 2021). Other
technologies, such as MERFISH (targeted), GeoMxTM (targeted), DBiT-seq, and Stereo-seq (BGI),
allow for higher resolution, in some cases even subcellular, detection of RNA (Chen et al.,
2015, 2021; Liu et al., 2020; Zollinger et al., 2020; Su et al., 2021). However, they tend to
be more complex to implement. Both ST and Slide-seqV2 use uniquely barcoded beads with
Oligo(dT) to capture polyadenylated RNA. ST has a larger feature size (avg 1–10 cells per spot,
50 µm beads with 100 µm spacing between beads (10x Genomics, 2007) than Slide-seqV2
[avg 1–3 cells per spot, 10 µm beads (Rodriques et al., 2019; Stickels et al., 2021)] and thus
has relatively limited resolution compared to the near single cell resolution in Slide-seqV2.
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On the other hand, ST allows for profiling of a large area of tissue
(typically the entire cross section) while a single Slide-seqV2 array
only covers a 3 mm diameter of tissue so multiple arrays on serial
cryosections are needed to cover the entire tissue cross section.
The other advantage of ST is the ability to co-stain the same
tissue slice from which the spatial transcriptome is captured with
hematoxylin and eosin staining (H&E) for histology or targeted
antibodies. Slide-seqV2 and ST capture similar numbers of UMIs
across the same spot area (Stickels et al., 2021).

Human and mouse kidneys across health and disease
have been profiled with both ST and Slide-seqV2 (Raghubar
et al., 2020; Lake et al., 2021; Melo Ferreira et al., 2021).
Raghubar et al. (2020) used ST to examine spatial transcriptomic
differences between sex and species of human and mouse
kidney tissue revealing differences in gene expression correlating
with male versus female kidneys and human versus mouse
kidneys. Raghubar et al. (2020) used ST to characterize spatial
transcriptomics and in particular immune cell clusters in human
kidney tissue and mouse models of kidney tissue subjected to
ischemia/reperfusion injury and cecal ligation puncture (Melo
Ferreira et al., 2021). Raghubar et al. (2020) used both ST and
Slide-seqV2 to spatially define altered injury states and a fibrotic
niche in human kidney biopsies from healthy, acute kidney
injury (AKI), and chronic kidney disease (CKD) participants
(Lake et al., 2021).

Our group used Slide-seqV2 to develop a spatial
transcriptomic atlas of human and mouse kidney tissue in
health and disease (Marshall et al., 2021). We profiled two mouse
models of disease, early diabetic kidney disease (DKD, BTBR
ob/ob) and uromodulin autosomal dominant tubulointerstitial
kidney disease (ADTKD, UMOD-KI). The study also contains
nine human participants with both cortex and medulla biopsies,
one with early DKD and one with injury due to sustained
tumor compression. Slide-seqV2 revealed the spatial location
of LYVE1+ macrophages in human medulla with injury due
to sustained tumor compression. In mice with early DKD,
we revealed changes in the cellular organization of spatially
restricted glomeruli. In UMOD-KI mice, we identified the
spatial locations of diseased fibroblasts, macrophages, and
Trem2+macrophages as well as an upregulation of the unfolded
protein response (UPR) pathway in thick ascending limb (TAL)
tubules. These results altogether demonstrated the utility of
spatial transcriptomics technologies combined with downstream
computational analysis to uncover previously unknown human
and mouse kidney physiology. Throughout this review, we will
discuss such computational approaches for cell type mapping
as well as spatial cell type and transcriptomic characterizations
focusing on kidney tissue.

PREPROCESSING OF SPATIAL
TRANSCRIPTOMICS DATA

The Slide-seqV2 reads are first aligned and mapped to the
human or mouse reference transcriptome using tools such as
STAR aligner (Dobin et al., 2013). After standard quality control
protocols, including filtering based on the number of genes and

UMIs per bead, the Slide-seqV2 data is turned into an expression
matrix where rows correspond to beads and columns to genes.
Additionally, per bead, native spatial coordinates are preserved
across 2-D tissue space.

MAPPING THE CELL TYPE FROM
scRNA-SEQ DATA

The first step in the analysis of Slide-seqV2 data is to assign cell
type identities to each bead. Accurate cell type classification is
aided by external scRNA-seq datasets from published materials,
where cell types are already annotated (Halpern et al., 2017; Lake
et al., 2021; Subramanian et al., 2021). Different computational
techniques have been developed to perform such analysis. First,
we will focus on a method that was originally developed
(Rodriques et al., 2019), NMFreg. Since typical scRNA-seq data
is high dimensional (e.g., >10 thousands cells × >20 thousands
genes, where each cell is annotated with specific known cell
type), the scRNA-seq expression matrix is projected to a low-
dimensional basis of factors by selection of highly variable
genes followed by NMF (Lee and Seung, 1999). Choosing the
number of dimensions of the low-dimensional space is not trivial;
In the Slide-seq paper (Rodriques et al., 2019), the authors
evaluated different numbers of dimensions k to semi-manually
assign a value to the parameter (they showed that the biological
interpretation is roughly consistent across different ks). Every
factor is then assigned a unique cell type. To do so, for every
cell in the scRNA-seq data, the method computes a loading for
all factors, and assigns the cell the factor of maximum weight.
Since each cell was previously annotated with a cell type identity,
the cell type distribution for the cells assigned to each factor
can be calculated. Every factor is then assigned the cell type
of maximum count.

Having acquired a set of “metagene” factors for each cell type
category, the method next utilizes this set of features to map Slide-
seqV2 beads to cell types. Each bead’s gene expression profile is
approximated as a non-negative sum of the factors using non-
negative least square regression (NNLS). Since each factor can be
mapped to a unique cell type, the factor loading for each bead can
be converted to cell type loading. The cell type with highest load
is selected to define the cell type identity for each bead, and the
beads that do not have a single dimension with clearly highest
load (e.g., beads having uniform load over all the dimensions,
or having >1 dimensions with �0 load) are filtered out. More
recent developments of spatial transcriptomics cell type mapping
techniques will be discussed in the next chapter.

CELL TYPE IDENTIFICATION WITH
SEURAT TRANSFER LEARNING

A second approach for assigning cell type identities to beads is
Seurat’s transfer learning method (Stuart et al., 2019). Similar
to NMFreg, an scRNA-seq data set is utilized to elucidate cell
type labels in a spatial transcriptomics query data set. First,
the data of both the reference and the query are projected to

Frontiers in Physiology | www.frontiersin.org 2 January 2022 | Volume 12 | Article 809346

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-809346 December 31, 2021 Time: 17:45 # 3

Noel et al. Slide-seqV2 Spatial Transcriptomics in Kidney

a shared lower-dimensional space. Anchors are then defined
to map pairs of similar data points between the reference and
the query, based on the amount of shared overlap between
their respective neighborhoods. Next, weights are allocated to
each anchor in order to emphasize mappings between similar
biological states. The weights are based on the following criteria:
(1) The distance between the query bead and k nearest reference
neighbors and (2) The number of mutual nearest neighbors
between the query bead and reference cell. Finally, cell type
annotations from scRNA-seq are transferred along these anchors
to the spatial transcriptomics reference using a weighted voter
classifier (Kuncheva and Rodríguez, 2014). As a result of either
the NMFreg or Seurat transfer learning methodologies, not
only is each bead informed by a gene expression profile and
spatial location, but also its overarching cell type identity. In
Marshall et al. (2021), Seurat transfer learning presented higher
consistency with physiologically known structures than NMFreg
for all cell types in human tissue and in collecting ducts (CD),
vascular smooth muscle cells (vSMC), and distal tubules in mouse
tissue. An overview of mapped cell types in mouse and human
tissue is shown in Figure 1.

DECOMPOSING SPATIAL
TRANSCRIPTOMIC SPOTS INTO
MULTIPLE CELL TYPES

One caveat of many spatial transcriptomics methods, including
Slide-seqV2, is that data points are not necessarily representative
of single cells. Even in near single-cell resolution spatial
transcriptomic technologies such as Slide-seqV2, while data
points are about the size of a single cell, their fixed locations
may overlap with and capture mRNA from multiple cells. This is
particularly apparent when spatial transcriptomics technologies
are applied to kidney tissue, wherein the cell type landscape is
dense and complex (Chabardès-Garonne et al., 2003; Raghubar
et al., 2020). As a result, one collective shortcoming of methods
like NMFreg and Seurat transfer learning is that they assume
a one-to-one relationship between cell types and data points.
More recent approaches have tried to dissect the multifaceted cell
type profile of spatial transcriptomics spots, leading to a higher-
resolution understanding of cell type distributions across tissue
space. One method is RCTD, or robust cell type decomposition
(Cable et al., 2021). RCTD leverages a generalized linear model
for the total counts per gene on each data point. Specifically,
counts are assumed to be Poisson distributed with the rate
parameter being the product of the total molecules corresponding
to a query data point and a mixture metric representative of
the contribution of each gene to all cell types. In particular, one
component of the mixture metric is the weighted sum of the
average gene expression profiles per cell type (derived from a
scRNA-seq reference dataset). One notable asset of RCTD is that
it explicitly incorporates into its model platform effects that may
mask true biological signals. Ultimately the weights that best
fit the observed gene counts in a query data point indicate the
proportions of each cell type captured by this data point.

A second example of a method that is able to decompose
spatial transcriptomic spots into multiple cell types is SPOTLight
(Elosua-Bayes et al., 2021). SPOTLight follows the same
trajectory as NMFreg, using both NMF and NNLS at its essence,
but incorporates a more biologically driven initialization step and
additional NNLS step. First, SPOTLight learns a k-dimensional
set of factors (k = number of cell type categories) from a scRNA-
seq reference via NMF. While the initial factorization may be
chosen to be random, here, the authors chose to initialize the
matrices so that they encode gene markers for each cell type in the
first matrix, and cell type identities of cells in the second matrix.
NMF is then run to find the factorization of genes by factors
and factors by cells that best fits the scRNA-seq reference. An
initial round of NNLS derives the loadings of the basis of factors
defined in the previous step for every spatial transcriptomics spot.
A second round of NNLS formalizes the relationship between
spots and cell types as follows: First, it defines a matrix of factors
by cell types, where every column represents the median factor
profile per cell type (derived from the first NMF step). Second,
the spatial transcriptomic spots are decomposed into a weighted
combination of these cell type profiles.

In comparison to RCTD, SPOTlight does not account for
platform effects. On the other hand, RCTD has two modes:
doublet, which assumes a maximum of two cell types per
data point and full, which allows for >2 cell types. The
authors forewarn that performance is largely dictated by the
mode that the user opts for; in particular, full mode may be
subject to overfitting the data. In the context of the kidney,
which is complex and tightly structured, doublet mode is not
a safe assumption to make. On the other hand, SPOTlight
does not make this distinction and searches for the maximum
number of cell types, and its proven accuracy is based
on this framework.

Additional notable methods have been developed to increase
our confidence of both singular and multiple cell type calls per
spot. Confidence in cell type classifications can be hindered
by the sparse UMI-capture rate of spatial transcriptomic spots
in comparison to scRNA-seq. FIST addresses this issue by
imputing transcriptomes based on spatial relationships of data
points (Li Z. et al., 2021). SPICEMIX utilizes both intrinsic
transcriptomic information and the spatial relationships of
data points to infer cell type identities (Chidester et al.,
2021). Cell2Location utilizes a Bayesian model to predict cell
type identities (Kleshchevnikov et al., 2020). Lastly, CellDART
tackles the problem of identifying the cell type composition
of each spot by leveraging neural networks (Bae et al.,
2021).

SPATIAL CURATION OF CELL TYPE
IDENTITIES

The cell type identities assigned from the observed gene
expression markers through computational techniques is a noisy
estimate. For example, the set of mRNAs detected in a 2-D
plane might not be representative of the global distribution.
As a result, it is advantageous to have prior knowledge of the
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FIGURE 1 | Mapped cell types in human and mouse kidney tissue. In Slide-seqV2, a 10 µm cryosection of kidney tissue is melted onto an array containing 10 µm
beads which bind to messenger RNA. Once library preparation is complete, spatially barcoded cDNA corresponding to each bead is assigned a cell identity using
Seurat transfer learning. Example mouse, human cortex, and human medulla tissue with all cell types mapped are shown. Individual mappings of podocytes,
proximal tubules, and thick ascending limbs are shown for the mouse and human cortex arrays, while vascular smooth muscle, collecting duct principal cell, and
thick ascending limb are shown for the human medulla array. Scale bars = 500 µm.
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spatial distribution of cell types across cross-sectional tissue space
as a method of further filtering out noisy cell type calls. For
example, we know that podocytes occur solely within circular
structures called glomeruli (Garg, 2018), and distal convoluted
tubules (DCT) and principal cells of the collecting duct (CD-
PC) form tubular structures (McCormick and Ellison, 2015). In
our work, we have implemented automated methods to identify
and filter out isolated podocyte or distal tubule calls that do not
occur within these denser structures. Specifically, cell type calls
that have less than k nearest neighbors with the cell type identity
of interest are filtered out (Marshall et al., 2021).

Furthermore, we can use prior knowledge about the known
vicinity of multiple cell type classes to hone in on biologically
sensical cell type calls. For example, granular cells, macula densa,
and glomeruli are known to be adjacent to each other in a
structure called the juxtaglomerular apparatus (JGA)(Briggs and
Schnermann, 1996). The polygon encapsulating each of these
structures can be found and a filtration system can be set up
where only those within x units of each other are maintained.
Similarly, intercalated cells of the collecting duct (CD-IC) occur
within larger tubular structures made up of CD-PC (Rao et al.,
2019). Again, we can isolate instances of CD-IC that occur within
x units of the edge of any CD-PC structure.

Lastly, certain cell types are thought to occur only within
certain regions of tissue. In the kidney, two such regions are
the cortex and the medulla. Our prior knowledge (Kriz and
Kaissling, 2008) suggests that cell types belonging to glomerular
structures (i.e., podocytes, mesangial cells, and endothelial cells)
and proximal tubule cells occur only within the cortex. On the
other hand, DCT, CD-IC, CD-PC, and the thick ascending limb
(TAL) are enriched and form dense structures within the medulla.
We can use our knowledge of these distributions of cells across
the cortex and medulla to delineate the two regions, and further
filter cell types that are called in the unlikely zones.

Not only are cell type calls trusted based on the agreement
between their spatial distribution and known morphology of
kidney tissue, but we can also verify their identities by looking
at the relative expression of known cell type marker genes.
Furthermore, cell type proportions can be computed and
compared between Slide-seqV2 arrays and Hybridization Chain
Reaction (HCR) images (Choi et al., 2018; Marshall et al., 2021).

DOWNSTREAM ANALYSES

Once cell type identities are well-defined across spatial
transcriptomic data, the spatial distribution of data points
can be explored at two levels: (1) cell types and (2) gene
expression profiles within certain cell types. In terms of the
former, we can simply ask what the cell type composition looks
like in a tissue section at large, or in the medulla or cortex regions.
Furthermore, we may be interested in the neighborhoods of
certain cell types. That is, what cell types often neighbor a cell
type of interest. In our work, we target cell type neighborhoods
of Trem2+ and LYVE1+macrophages using k nearest neighbors
(Marshall et al., 2021). Lastly, we can look at the morphology of
cell type structures. Utilizing computational geometry (Gillies

et al., 20071; Bellock et al., 2021), we can compute the convex
hull or alpha shape of the coordinates of cell types, and compute
the area of these polygons. We can then ask if, on average,
these metrics shift across groupings of arrays (e.g., healthy and
diseased samples).

The full potential of spatial transcriptomics arises when we
look into the spatial distribution of cell types, paired with their
gene expression profiles. Searching for spatially non-random
distributions of gene expression can be done independent of
cell type information, but it is hard to distinguish gene hits
that are simply markers for cell types, which themselves are
characterized by distinct spatial organization. For this reason, it
is useful to look for spatially non-random genes within specific
cell types. Several methods currently exist that accomplish this
task of discovering spatially non-random genes. In the first
Slide-seq paper (Rodriques et al., 2019), the authors presented
a permutation-based approach, which compares the distribution
of randomly selected beads (while accounting for the total
number of transcripts for each bead) with the distribution
of beads expressing the specific gene of interest. They also
defined spatially overlapping/anticorrelating gene pairs, regional
gene enrichment and other interpretable measures using similar
permutation based methods, to tackle important biological
questions such as quantification and visualization of local
transcriptional responses to injury. It is notable, however, that
the permutation processes they used were time-consuming and
included manual downstream filtering.

Another study introduces SPARK (Sun et al., 2020), which
utilizes a generative, generalized linear model, argued to be more
statistically robust and computationally efficient than preceding
methods. It assumes that gene counts can be modeled by an
over dispersed Poisson distribution, where the rate parameter is
dictated by a non-spatial component (weighted sum of covariates,
including batch information, cell-cycle information etc.), and
a spatial component, dictated by either a gaussian distribution
(representative of a localized gene expression pattern) or periodic
distribution. Each component has a different variance, and
the method addresses the null hypothesis that the variance
of the spatial component is 0. The SPARK developers argue
that a generative statistical model is far more efficient than
permutation-based approaches.

Another unique advantage of coupling gene expression data
with spatial information is inferring cell interactions. Previously,
cell interactions were drawn from scRNA-seq, identifying ligand-
receptor co-expression across cell type pairs (Cabello-Aguilar
et al., 2020; Lu et al., 2021). However, there was no way of
knowing if identified signaling was truly occurring between cell
types in close vicinity to each other. With the onset of new
spatial transcriptomics technologies, new methods have been
developed to increase our confidence in identifying signaling
between cell types by accounting for spatial information. Giotto
looks for coexpression of ligand-receptor pairs, specifically within
cell types in close vicinity to each other (Dries et al., 2021b),
while MESSI is a method that uses multi-task learning to

1Gillies, S., et al. (2007). Shapely: Manipulation and Analysis of Geometric Objects.
Available online at: https://github.com/shapely/shapely/blob/main/CITATION.txt
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predict response genes to intracellular and intercellular signals,
considering expression from neighboring cells (Li D. et al., 2021).

CONCLUSION

In this manuscript, we have reviewed the biological and
computational basis of spatial transcriptomics analysis, with an
example of cell type mapping and downstream applications in
kidney tissue. Spatial transcriptomics technologies are evolving
at a rapid pace and extending beyond transcriptomics into
metabolomics and proteomics (Lundberg and Borner, 2019;
Ganesh et al., 2021; Yuan et al., 2021). The integration of unbiased
spatial omics technologies will provide a powerful set of tools
to characterize disease processes in intact tissue (Dries et al.,
2021a). We hope that these technologies will not only develop
data rich atlases of healthy and diseased tissues, but also provide
a platform for advances in the fundamental understanding of
disease mechanisms and highlight new therapeutic targets.
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