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Neutrophils constitute a critical part of innate immunity and are well known for their ability
to phagocytose and kill invading microorganisms. The microbicidal processes employed
by neutrophils are highly effective at killing most ingested bacteria and fungi. However,
an alternative non-phagocytic antimicrobial mechanism of neutrophils has been proposed
whereby microorganisms are eliminated by neutrophil extracellular traps (NETs). NETs
are comprised of DNA, histones, and antimicrobial proteins extruded by neutrophils during
NETosis, a cell death pathway reported to be distinct from apoptosis, phagocytosis-induced
cell death, and necrosis. Although multiple laboratories have reported NETs using various
stimuli in vitro, the molecular mechanisms involved in this process have yet to be defini-
tively elucidated, and many questions regarding the formation and putative role or function
of NETs in innate host defense remain unanswered. It is with these questions in mind that
we provide some reflection and perspective on NETs and NETosis.

Keywords: neutrophil, apoptosis, necrosis, phagocytosis, inflammation

NEUTROPHIL TURNOVER AND HOMEOSTASIS
Neutrophils are short-lived granulocytes that mature in bone mar-
row for several days (Bainton et al., 1971; Weissman et al., 2001).
During maturation, these cells acquire key functional attributes,
including the ability to phagocytose and kill microorganisms
(Bainton et al., 1971; Glasser and Fiederlein, 1987; Weissman et al.,
2001; Rosenbauer and Tenen, 2007; Pillay et al., 2010). After matu-
ration, neutrophils are released into the bloodstream and circulate
and/or marginate for 10–24 h before migrating into tissues, where
they may function for an additional 1–2 days before they undergo
apoptosis and are cleared by macrophages or dendritic cells
(Cartwright et al., 1964; Fliedner et al., 1964; Bainton et al., 1971;
Savill et al., 1989; Voll et al., 1997; Fadok et al., 1998; Huynh et al.,
2002; Martin et al., 2003; Rigby and DeLeo,2012). In addition,neu-
trophils in the total blood granulocyte pool (circulating and mar-
ginating) can be removed by the liver, spleen, and bone marrow,
although the precise mechanism for this turnover process remains
incompletely determined (reviewed by Summers et al., 2010). The
neutrophil lifespan is highly regulated, as it is critical to remove
spent/effete neutrophils as a means to prevent accidental release of
cytotoxic molecules and associated host tissue damage (Edwards
et al., 2003; Duffin et al., 2010; Bratton and Henson, 2011; Milot
and Filep, 2011). Neutrophil turnover in an adult human is typi-
cally on the order of 1011 cells per day (Athens et al., 1961; Dancey
et al., 1976; Rankin, 2010). While the hematopoietic system is able
to regulate steady-state levels of circulating neutrophils, it can also
be switched to an emergency granulopoiesis response to accom-
modate the increased demand for neutrophils during infection
(Hirai et al., 2006; Panopoulos and Watowich, 2008).

The neutrophil lifespan is regulated by a balance of pro-
and anti-apoptotic factors present in the environment. Cytokines
and other factors such as interleukin (IL)-1β, IL-2, IL-4, IL-15,

interferon-γ, granulocyte colony-stimulating factor (G-CSF),
granulocyte-macrophage colony-stimulating factor (GM-CSF),
and lipopolysaccharide (LPS) can prolong and/or enhance neu-
trophil function and delay apoptosis for several days (Colotta et al.,
1992; Duffin et al., 2010). Although enhancing neutrophil function
and survival presumably favors elimination of invading microbes,
the persistence of these cytotoxic host cells increases the potential
for prolonged inflammation and host tissue damage. Therefore,
it is not surprising that neutrophil turnover is a highly regulated
process.

Molecular control of neutrophil turnover or apoptosis is medi-
ated by several mechanisms, including extrinsic pathways induced
by extracellular signals and intrinsic pathways induced by intra-
cellular signals. These signals include those triggered by death
receptors, which bind ligands that activate caspases to promote
apoptosis, mitochondrial release of cytochrome c, and processes
mediated by the BCL-2 protein family (Edwards et al., 2003; Duffin
et al., 2010). Spontaneous or constitutive apoptosis in neutrophils
is an example of intrinsic apoptosis. Apoptosis elicited by FAS,
tumor necrosis factor (TNF)-α, or TNF-related apoptosis induc-
ing ligand (TRAIL), caused by the binding of these extracellular
ligands to the cognate receptor anchored on the cell surface, is
an example of extrinsic pathway apoptosis (Kennedy and DeLeo,
2009; Duffin et al., 2010). Phagocytosis may also lead to neu-
trophil apoptosis (Watson et al., 1996; Kobayashi et al., 2002; Zhang
et al., 2003; Kennedy and DeLeo, 2009). Neutrophil phagocytosis-
induced apoptosis or phagocytosis-induced cell death (PICD)
promotes the resolution of infection by disposing spent or effete
neutrophils containing dead or partially digested microbes in
a non-inflammatory manner (Kennedy and DeLeo, 2009). This
process is described below in the context of the resolution of
inflammation.
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NEUTROPHILS AND THE INFLAMMATORY RESPONSE
The importance of neutrophils in the immune response is under-
scored by human diseases caused by defects in neutrophil function,
which result in increased risk of infection from bacteria and fungi
(Nauseef and Clark, 2010). For example, neutropenia, which can
be medically induced by cytotoxic drugs or cancer therapy, is asso-
ciated with significant morbidity (Bodey et al., 1966; Dale et al.,
1979; Frøland, 1984; Tobias and Schleien, 1991). In addition, the
inflammatory response, which from a cellular perspective is largely
comprised of neutrophils, is critical for defense against invad-
ing microorganisms. On the other hand, timely resolution of the
inflammatory response is an important process that returns the
host immune system to pre-infection homeostasis. Historically,
neutrophils were considered to have a passive part in inflamma-
tion resolution; however, this view has changed over time, and
it is now known that neutrophils actively help to resolve inflam-
mation by blocking and scavenging chemokines and cytokines
(Ariel et al., 2006), and also produce pro-resolving lipid medi-
ators (Ariel et al., 2006; Serhan et al., 2008). Thus, given that
neutrophils contain and produce a vast array of cytotoxic mol-
ecules and contribute to the regulation of inflammation, it should
not be unexpected that these cells are involved in – or are the
primary cause of – a variety of inflammatory disorders. For
instance, in chronic obstructive pulmonary disease, the aminopep-
tidase activity of leukotriene A4 hydrolase (LTA4H) is inhibited,
causing accumulation of proline-glycine-proline, which in turn,
promotes neutrophil recruitment and chronic lung inflamma-
tion (Weathington et al., 2006). In mouse models, recruitment
of neutrophils has been shown to be involved in arthritis (Chou
et al., 2010) and multiple sclerosis (Carlson et al., 2008; Liu et al.,
2010). More notably, recent studies have demonstrated that neu-
trophils and neutrophil responses (rather than bacterial pathogens
per se) are the cause of severe pneumonia and tissue destruc-
tion in animal models of bacterial respiratory tract infection
(Bartlett et al., 2008; Diep et al., 2010). Thus, it is clear that
unchecked neutrophil activation and neutrophil lysis are phe-
nomena that can have a significant negative impact on health of
the host.

RESPONSE TO INFECTION
Neutrophils are recruited rapidly to the site of infection in response
to chemotactic stimuli released by the host and/or invading
microorganism. Inasmuch as neutrophils are the most abundant
leukocyte in humans, there can be a tremendous influx of neu-
trophils to the site of infection. At such sites, neutrophils bind and
ingest microorganisms through a process known as phagocyto-
sis (reviewed in Rigby and DeLeo, 2012). Ingested microbes are
typically destroyed by the combined effects of NADPH oxidase-
derived reactive oxygen species (ROS) and cytotoxic molecules
delivered from cytoplasmic granules into the phagosome. Neu-
trophil granules contain numerous antimicrobial peptides (AMPs)
and proteins, and matrix protein-degrading proteases, includ-
ing alpha-defensins, cathelicidins, azurocidin, cathepsins, lacto-
ferrin, lysozyme, proteinase-3, gelatinase, collagenase, and elastase
(Faurschou and Borregaard, 2003; Nauseef and Clark, 2010; Rigby
and DeLeo, 2012). Of note, these cytotoxic agents are normally
targeted into the formed phagosome, thereby limiting inadvertent

extracellular release and potential damage to host tissues (Nauseef
and Clark, 2010).

It is well documented that neutrophil PICD occurs following
ingestion of numerous microorganisms in vitro (Watson et al.,
1996; Colamussi et al., 1999; Engelich et al., 2001; Kobayashi
et al., 2003a,b, 2012; Kennedy and DeLeo, 2009), and in vivo
this phenomenon likely promotes clearance of effete neutrophils
containing dead or dying microbes (Figure 1; Kobayashi et al.,
2012). Importantly, this process would prevent local host tissue
damage that can occur if these spent host cells are not removed
and undergo lysis, and thus ultimately promotes the resolution of
inflammation (Whyte et al., 1993; Savill, 1997; Kobayashi et al.,
2002, 2003a, 2012; Kim et al., 2004; Iyoda et al., 2005; Ariel et al.,
2006; Kobayashi and DeLeo, 2009; Rigby and DeLeo, 2012). Such a
process is considered normal for neutrophils during infection and
healthy for the host. On the other hand, pathogenic microorgan-
isms circumvent killing by neutrophils, and in doing so ultimately
alter the normal process of neutrophil turnover during infection,
by either delaying apoptosis or causing neutrophil lysis (Kobayashi
et al., 2003a, 2010; DeLeo, 2004; Voyich et al., 2005). The result-
ing neutrophil lysis releases tissue-damaging molecules, not only
allowing pathogen survival but also exacerbating the inflamma-
tory response (Figure 1). This process can lead to disease and can
be considered unhealthy for the host. As one example, some strains
of Staphylococcus aureus are known to cause lysis of human neu-
trophils after phagocytosis (Rogers and Tompsett, 1952; Voyich
et al., 2005, 2006; Kobayashi et al., 2010). Indeed, the possibility
that S. aureus survive after phagocytosis and ultimately dissem-
inate to cause disease (which can be explained at least in part
by neutrophil lysis after trafficking) has been reviewed recently
(Thwaites and Gant, 2011). These authors describe neutrophils as
“Trojan horses” for the dissemination or metastasis of S. aureus
(Thwaites and Gant, 2011). In accordance with the observations
in vitro, S. aureus is an abundant cause of pyogenic infections in
humans. Therefore, the ability of S. aureus to cause neutrophil
lysis is likely a component of virulence.

NEUTROPHIL EXTRACELLULAR TRAPS AND NETOSIS
Until fairly recently, phagocyte biologists were content with a
model of neutrophil function in which these phagocytes bind,
ingest, and subsequently kill microorganisms. The idea that neu-
trophils would extrude DNA in a cytolytic process that captures
microorganisms was unheard of – until Brinkmann et al. (2004)
reported the formation of structures known as neutrophil extracel-
lular traps (NETs). These unique structures, which are discussed
in detail in this issue of Frontiers in Immunology, are composed
of DNA, histones, and antimicrobial proteins, and can ensnare
pathogens. Since the report by Brinkmann et al. (2004), extracel-
lular traps have been shown to be produced in vitro by a number of
different cell types, including neutrophils, mast cells, eosinophils,
and endothelial cells (Palić et al., 2007; von Köckritz-Blickwede
et al., 2008; Yousefi et al., 2008; Chuammitri et al., 2009; Katzen-
back and Belosevic, 2009; Aulik et al., 2010; Gupta et al., 2010;
Wardini et al., 2010; Webster et al., 2010; Lin et al., 2011; Scap-
inello et al., 2011). Moreover, recent studies have investigated
possible mechanisms for the induction of NETs. For example, it
has been reported that formation of NETs requires activation of
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FIGURE 1 | Possible outcomes of the interaction of microbes with
neutrophils. Phagocytosis and killing of microorganisms by
neutrophils (polymorphonuclear leukocyte, PMN) triggers host cell
apoptosis and ultimate removal by macrophages (MΦ) or dendritic
cells. This process promotes resolution of the inflammatory response
(A). Pathogenic microbes such as Staphylococcus aureus can cause
lysis of PMN after phagocytosis, thereby facilitating

escape/dissemination of the invading pathogen and release of
cytotoxic molecules that cause host tissue damage and disease (B).
NETs ensnare and may kill microbes, but there is accompanying lysis
of neutrophils and release of cytotoxic molecules that are known to
cause host tissue damage and promote inflammatory disease. In this
regard, the outcome of NETosis and the formation of NETs should be
similar to that in (B; i.e., disease; C).

the Raf-MEK-ERK pathway through protein kinase C (Hakkim
et al., 2011) and histone citrullination (Neeli et al., 2008; Li et al.,
2010; Hemmers et al., 2011; Leshner et al., 2012). These find-
ings suggest that NETosis and formation of NETs involves specific
signal transduction events. Thus, it is tempting to advocate the
importance of these structures in host defense due to the apparent
simplicity and elegance of the phenomenon by which they occur.
However, many questions remain about the role of NETs in host
defense and the molecular mechanisms underlying their forma-
tion are incompletely characterized. In addition, the evidence for
formation of NETs in vivo is not very compelling, and whether
the formation of NETs is of benefit to the host remains an open
question. Indeed, it was suggested early on that NETs form only
under extreme circumstances and can injure host tissues (Clark
et al., 2007).

While use of NETs appears as an alternative mechanism for
pathogen control and elimination, production of NETs and NETo-
sis (as a cytolytic process) seems at variance with the highly
regulated control of neutrophil turnover (including PICD) and
homeostasis, as discussed above. That is, utilization of NETs for
host defense contrasts with the considerable effort made by the

host to prevent inadvertent neutrophil lysis, release of cytotoxic
agents, and post-lysis sequelae, such as inflammatory disorders.
Notably, NETs have been implicated in a number of pathologic
processes consistent with inflammatory disorders involving lysed
neutrophils and cytotoxic molecules from neutrophils. For exam-
ple, NETs can cause collateral damage in the form of endothe-
lial and tissue damage (Clark et al., 2007; Ma and Kubes, 2008;
Marin-Esteban et al., 2012) and may be partially responsible for
sputum viscosity and tissue damage in cystic fibrosis patients
(Papayannopoulos et al., 2011). NETs have been implicated in sys-
temic lupus erythematosus and systemic vasculitis (Hakkim et al.,
2010; Amulic and Hayes, 2011; Bosch, 2011; Garcia-Romo et al.,
2011; Lande et al., 2011; Villanueva et al., 2011; Knight and Kaplan,
2012; Liu et al., 2012), gout, asthma, keratinocyte damage, and
lupus nephritis (Mitroulis et al., 2011; Marin-Esteban et al., 2012),
and may also be involved in the hyper reaction of the immune sys-
tem by triggering physiological signals and causing pre-eclampsia
(Gupta et al., 2005, 2006; Brinkmann and Zychlinsky, 2007). NETs
are present in transfusion-related acute lung injury (Thomas et al.,
2012), atherosclerotic carotid arteries (Döring, 2012), are toxic to
vasculature (Clark et al., 2007; Gupta et al., 2010; Villanueva et al.,
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Table 1 | Microbial susceptibility to NETs.

Species Susceptibility Reference

VIRUSES

Feline leukemia virus Modulates NET formation Wardini et al. (2010)

Human immunodeficiency virus (HIV)-1 Infectivity reduced Saitoh et al. (2012)

Influenza A H1N1 Modulates NET formation Narasaraju et al. (2011)

BACTERIA

Actinobacillus suis Reduction in bacterial numbers Scapinello et al. (2011)

Aeromonas hydrophila Survives Brogden et al. (2012)

Bacillus anthracis Only unencapsulated strains killed Papayannopoulos and Zychlinsky (2009); Szarowicz and Friedlander

(2011)

Burkholderia pseudomallei Reduction in bacterial numbers Riyapa et al. (2012)

Escherichia coli Reduction in bacterial numbers Grinberg et al. (2008); Marin-Esteban et al. (2012)

Group A streptococcus Survives Buchanan et al. (2006); Lauth et al. (2009)

Group B streptococcus Survives Carlin et al. (2009)

Haemophilus influenzae Survives Juneau et al. (2011)

Listeria monocytogenes Reduction in bacterial numbers Ramos-Kichik et al. (2009)

Mannheimia haemolytica Reduction in bacterial numbers Aulik et al. (2010)

Mycobacterium canettii Survives Ramos-Kichik et al. (2009)

Mycobacterium tuberculosis Survives Ramos-Kichik et al. (2009)

Pasteurella multocida Reduction in bacterial numbers Scapinello et al. (2011)

Porphyromonas gingivalis Survives Delbosc et al. (2011); Palmer et al. (2011)

Pseudomonas aeruginosa Survives von Köckritz-Blickwede et al. (2008); Douda et al. (2011); Young et al.

(2011); Khatua et al. (2012)

Salmonella typhimurium Reduction in bacterial numbers Brinkmann et al. (2004)

Shigella flexneri Reduction in bacterial numbers Brinkmann et al. (2004)

Staphylococcus aureus Dependent on ratio Döring et al. (2011)

Staphylococcus epidermidis Survives Cogen et al. (2010)

Streptococcus pneumonia Survives Beiter et al. (2006); Wartha et al. (2007); Midon et al. (2011)

Streptococcus pyogenes Reduction in bacterial numbers von Köckritz-Blickwede et al. (2008)

Streptococcus suis Reduction in bacterial numbers Scapinello et al. (2011)

Yersinia enterocolitica Reduction in bacterial numbers Casutt-Meyer et al. (2010)

Yersinia pestis Survives Casutt-Meyer et al. (2010)

PROTOZOA

Eimeria bovis Reduction in parasite numbers Behrendt et al. (2010)

Leishmania amazonesis Dependent on ratio Guimarães-Costa et al. (2009)

Leishmania donovani Survives Gabriel et al. (2010)

Plasmodium falciparum Trapped Baker et al. (2008)

Toxoplasma gondii Reduction in parasite numbers Abi Abdallah et al. (2012)

FUNGI

Aspergillus fumigatus Growth inhibited McCormick et al. (2010)

Aspergillus nidulans Growth inhibited Bianchi et al. (2011)

Candida albicans Growth inhibited, blastospores survive Urban et al. (2006); Menegazzi et al. (2012)

Candida glabrata Growth inhibited Springer et al. (2010)

Cryptococcus gatti Survives Springer et al. (2010)

2011; Saffarzadeh et al., 2012), and facilitate thrombosis where
they could provide a scaffold for red blood cell adhesion (Fuchs
et al., 2010, 2012; Van Den Berg and Reitsma, 2011; Brill et al.,
2012). NETs may also contribute to cancer-associated thrombosis,
since neutrophils from mice with experimentally induced can-
cers are more likely to form NETs than those from control mice
(Demers et al., 2012). It is also of note that extracellular histones,
a signature component of NETs, contribute to host death during
sepsis (Xu et al., 2009). Whether the structures reported as NETs in

these aforementioned inflammatory syndromes are distinct from
the remains of necrotic neutrophils is unclear, but in any case the
process or phenomenon is associated with a negative outcome for
the host – similar to the prediction in the model described in
Figure 1.

Given the association of NETs and NETosis with inflammatory
disorders, and coupled with a highly regulated neutrophil turnover
process, the frequency with which formation of NETs occurs
should be fairly low. Indeed, even under optimal NET-inducing
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conditions in vitro, only one-third of activated neutrophils, and
perhaps as few as 10%, make NETs (Brinkmann and Zychlin-
sky, 2007; Fuchs et al., 2007; Munafo et al., 2009). The kinetics
of NETosis vary depending on type and concentration of stim-
ulus, isolation procedure of neutrophils, and the sensitivity of
the detection method (Fuchs et al., 2012). Despite the fact that
NET formation is stimulated by pathogens, it is still not clear
whether NETosis that occurs during host-pathogen interactions
is a programmed mechanism, a hijacking of host pathways by
pathogen-produced factors, or simply an incidental component of
neutrophil lysis. For instance, S. aureus is well known to cause lysis
of neutrophils in vitro and in vivo, but the pathogen has also been
reported to induce NETs (Brinkmann et al., 2004; Jann et al., 2009;
Yipp et al., 2012). It is also not clear whether the release of NETs
always leads to cell death (and the possibility of host tissue damage)
or if it is an extrusion of DNA by intact cells (Yousefi et al., 2009;
Remijsen et al., 2011; Guimarães-Costa et al., 2012; Yipp et al.,
2012). Although it is difficult to understand how neutrophils can
remain intact and viable after release of nuclear DNA, the question
of whether NET formation always causes cytolysis or can occur
with intact cells is important and must be resolved by the field.

One could hypothesize that the formation of NETs represents
a directed host defense mechanism. If the process is host-directed,
does this suggest there is an advantage to the use of NETs for
removal of microbes versus traditional phagocytosis-based uptake
and subsequent killing of microbial invaders? The antimicrobial
activities of NETs have been ascribed to the histones, AMPs, and
other cytoplasmic components associated with extracellular DNA.
However, it is important to note that NETs provide a low con-
centration of AMPs compared to that present in the phagosome,
and NETs lack the ability to produce microbicidal ROS. Pub-
lished studies to date suggest that the formation of NETs does
not lead to the universal killing of all microorganisms, although
NETs can reduce the burden of selected of microorganisms in vitro
(Table 1). This finding is perhaps not surprising, since solu-
bilized azurophilic granule components isolated from disrupted
neutrophils have varied capacity to kill different bacterial species

(Bertram et al., 1986; Joiner et al., 1989; Levy et al., 1999; Palazzolo-
Ballance et al., 2008; Nordenfelt et al., 2009). Moreover, several
microorganisms are known to circumvent killing by NETs using
a variety of strategies, including altering bacterial surface affin-
ity to NETs (Wartha et al., 2007; Carlin et al., 2009; Juneau et al.,
2011) and secreting NET-degrading DNases (Beiter et al., 2006;
Buchanan et al., 2006; Midon et al., 2011; Palmer et al., 2011).
As an alternative hypothesis, the formation of NETs (especially
if it requires lysis of neutrophils) could be considered an inci-
dental event rather than something intended by the host innate
immune system. An incidental process seems more consistent with
our understanding of the regulation of neutrophil turnover and
homeostasis.

CONCLUDING PERSPECTIVE
Neutrophil extracellular traps have been suggested as an alterna-
tive or additional component of the innate host defense against
microorganisms. Although progress has been made, many ques-
tions related to NET formation and function remain unanswered.
Do NETs commonly occur in vivo? Compelling evidence is lack-
ing. Are NETs formed by live neutrophils or does the process (i.e.,
NETosis) always result in cytolysis? If it is accompanied by neu-
trophil lysis, how does this phenomenon fit with what we know
about the control of neutrophil turnover and the host efforts to
prevent inflammatory syndromes? Importantly, is the pathway that
leads to the formation of NETs a host-directed mechanism or sim-
ply an incidental phenomenon in neutrophils? These and other
questions can only be answered by continued investigation into
the biology and function of NETs.
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