
Integrated bioinformatics,
network pharmacology, and
artificial intelligence to predict
the mechanism of celastrol
against muscle atrophy caused
by colorectal cancer

Ming Wu1 and Yan Zhang2*
1Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China,
2Department of Orthopedics, Gongli Hospital of Pudong New Area, Shanghai, China

Muscle atrophy due to colorectal cancer severely reduces the quality of life and

survival time of patients. However, the underlying causative mechanisms and

therapeutic agents are not well understood. The aim of this study was to screen

and identify the microRNA (miRNA)–mRNA regulatory network and therapeutic

targets of celastrol in colorectal cancer causing muscle atrophy via blood

exosomes. Datasets were downloaded from the Gene Expression Omnibus

online database. Differential expression analysis was first performed using the

blood exosome dataset GSE39833 from colorectal cancer and normal humans

to identify differentially expressed (DE) miRNAs, and then, transcriptional

enrichment analysis was performed to identify important enriched genes.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses were performed by FunRich software.

Using the muscle atrophy sample GSE34111, the DE mRNAs in the muscle

atrophy sample were analyzed, a regulatory network map was established

based on miRNA‒mRNA regulatory mechanisms, further GO and KEGG

enrichment analyses were performed for the DE genes in muscle atrophy via

Cytoscape’s ClueGO plug-in, and the network pharmacology pharmacophore

analysis method was used to analyze the celastrol therapeutic targets, taking

intersections to find the therapeutic targets of celastrol, using the artificial

intelligence AlphaFold2 to predict the protein structures of the key targets, and

finally using molecular docking to verify whether celastrol and the target

proteins can be successfully docked. A total of 82 DE miRNAs were

obtained, and the top 10 enriched target genes were identified. The

enrichment of the 82 miRNAs showed a close correlation with muscle

atrophy, and 332 DE mRNAs were found by differential expression analysis in

muscle atrophy samples, among which 44 mRNA genes were involved in
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miRNA‒mRNA networks. The DE genes in muscle atrophy were enriched for

30 signaling pathways, and 228 target genes were annotated after

pharmacophore target analysis. The NR1D2 gene, the target of treatment,

was found by taking intersections, the protein structure of this target was

predicted by AlphaFold2, and the structure was successfully docked and

validated using molecular docking. In our present study, colorectal cancer

likely enters the muscle from blood exosomes and regulates skeletal muscle

atrophy through miRNA‒mRNA regulatory network mechanisms, and celastrol

treats muscle through NR1D2 in the miRNA‒mRNA regulatory network.

KEYWORDS

bioinformatics, oncology, muscular atrophy, celastrol, miRNA–mRNA network,
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Introduction

Cachexia is a severe atrophy syndrome (Newton et al., 2020);

in many chronic diseases, such as cancer, acquired immune

deficiency syndrome, and tuberculosis, there is a dramatic loss

of weight (Miao et al., 2017). Between 50% and 80% of cancer

patients have significant symptoms characterized by fatigue

(Khatib et al., 2018), loss of muscle and fat, and generalized

inflammation (Miyaguti et al., 2020). Colorectal cancer is a

common form of cancer (Li et al., 2020) and is also associated

with cachexia (Alsolmei et al., 2019). The most striking feature of

cachexia is the depletion of skeletal muscles (Vinke et al., 2020).

Malignant cachexia not only reduces the quality of life of the

patient (Gomes et al., 2021) but can also make radiotherapy and

chemotherapy less effective and shorten the patient’s life

expectancy considerably (Zhou et al., 2021).

Many factors produced by the body and cancer cells,

including inflammatory cytokines, contribute to the cachexia

of tumors (Sirniö et al., 2019). The recent literature has reported

that the exosomes of tumor cells also play an important role in

cachexia (Fan et al., 2022). Tumor exosomes are nanoscale

vesicles that are secreted extracellularly by cancer cells (Chai

et al., 2020) to transport substances and information in the tumor

and the tumor microenvironment (Rocha et al., 2019). The

exosomes (Li et al., 2021) of tumor cells and microRNAs

(miRNAs) (Di et al., 2021) in exosomes play regulatory roles

in malignant tumor pathogenesis. Moreover, the miRNA‒

mRNA regulatory mechanism plays an important regulatory

role in colorectal cancer muscle atrophy (Miao et al., 2021).

Chinese medicine has been in clinical practice in China for

thousands of years (Shan et al., 2020). Numerous studies have

shown that herbs have important anticancer activities (Wang

et al., 2020). Celastrol, a natural product with a wide range of

biological activities (Ma et al., 2022), has been documented for

the treatment of colorectal cancer (Zhang W. et al., 2022) and is

also useful in the treatment of cancerous malignancies (Yadav

et al., 2022). Bioinformatics analysis has previously been reported

for the study of muscle injury (Sun et al., 2018). Network

pharmacology is a common analytical method for analyzing

drug targets and can be used to find targets of drug actions

using a network pharmacology approach (Jiang et al., 2019).

Currently, only 20–25% (Nurminen and Hytönen, 2018) of

protein structures are known due to the limitations to protein

structure resolution, which makes research into drugs for disease

treatment difficult. AlphaFold2 (Jumper et al., 2021) is a new

artificial intelligence (AI) biocomputing technology that is able to

accurately predict the structures of proteins, greatly reducing the

difficulty of drug development (Schauperl and Denny, 2022).

In this study, blood exosome data from colorectal cancer

were used to analyze differentially expressed (DE) miRNAs, and

then, DE mRNAs were analyzed in muscle atrophy samples to

model the miRNA‒mRNA regulatory network and to analyze the

potential network targets of celastrol for the treatment of

colorectal cancer-related muscle atrophy based on network

pharmacology using AlphaFold2 and molecular docking for

molecular dynamics validation. The overall goal was to

provide new insights into the potential miRNA‒mRNA

regulatory mechanisms of colorectal cancer muscle atrophy

and the targets of celastrol therapy and explore the role of the

AI AlphaFold2 in drug development.

Materials and methods

Data collection

First, the keywords “colorectal cancer” and “muscular

atrophy” were retrieved from the Gene Expression Omnibus

(GEO) database (Barrett et al., 2013), and the GSE39833 (Ogata-

Kawata et al., 2014) and GSE34111 (Gallagher et al., 2012)

microarray datasets were selected as research objects for

download. GSE39833 is a microarray dataset of miRNAs on

the GPL14767 platform, which includes exosome samples from

11 healthy controls and 88 colorectal cancer patients.

GSE34111 is a microarray chip dataset for muscular

dystrophy disease, and the platform is GPL570. We selected

six healthy samples from the control group and 12 samples from

the muscular dystrophy group for data analysis.
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Analysis of differentially expressed
miRNAs

The samples were grouped according to the two groups of the

GSE39833 dataset and analyzed by the “limma” package (Ritchie

et al., 2015) in R (4.1.0) software. |Log2(fold change)| > 1 and p <
0.05 were used as screening conditions to identify significant DE

miRNAs.

Transcription factors of DE miRNAs and
enrichment analysis

According to the functional enrichment and interactive

network analysis tool FunRich (3.1.3), TFs enriched with DE

miRNAs were determined, and the top 10 significant TFs were

graphically displayed. Gene Ontology (GO) terms were

annotated and mapped by FunRich software, including

biological processes, cell composition, and molecular function,

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways were identified.

Analysis of differentially expressed mRNAs

In the GSE39833 dataset, we selected samples from six

healthy controls and 12 patients with muscle atrophy in the R

software package “limma” for differential expression analysis,

with the filtering conditions |log2 FC (fold change)| > 0.5 and p <
0.05. DE mRNAs with significant expression were screened out.

DE miRNA target gene prediction and
construction of the miRNA‒mRNA gene
regulatory network

The miRNA target genes were predicted within three

databases: miRTarBase, miRDB, and TargetScan.

Subsequently, we constructed miRNA‒mRNA gene regulatory

networks for the screened DE miRNAs with DE mRNAs based

on miRNA‒mRNA regulatory mechanisms. Cytoscape (version

3.9.0) was used to visualize miRNA‒mRNA gene regulatory

networks.

Enrichment analysis of differentially
expressed mRNAs

DE mRNAs were imported into Cytoscape’s ClueGO plug-in

(Bindea et al., 2009), and “Homo sapiens” was selected for GO

enrichment analysis, including the biological process, cell

composition, and molecular function, as well as KEGG

signaling pathway enrichment analysis, and the map was drawn.

Construction of a network target for
celastrol

PharmMapper is an online platform for pharmacophore

matching and potential identification of targets. The

PharmMapper (http://www.lilab-ecust.cn/pharmmapper/) database

was used to select the top 600 ranked targets for pharmacophore

target prediction. The names of the analyzed target genes were

annotated in the UniProt (https://www.uniprot.org/) database by

selecting the species “Homo sapiens,” and the network was

constructed in Cytoscape based on the drug–target relationships.

AlphaFold2 prediction of the protein
structure

AlphaFold2 is an artificial intelligence program that predicts

protein structure online. We selected the target gene NR1D2 for

celastrol, found the corresponding human species protein number in

the UniProt database, performed an online structure prediction

search in AlphaFold2 (https://alphafold.ebi.ac.uk/search), and

downloaded a PDB format file of the corresponding

NR1D2 protein structure, a display map of the protein structure,

the protein sequence map used, and the predicted confidence map.

Molecular docking

The 2D structure of the small-molecule ligand celastrol was

downloaded from the PubChem database. NR1D2 was selected

as the protein receptor, and the PDB file predicted by the AI

AlphaFold2 was used. AutoDockTools was used to read the

protein receptor file, which was converted into the PDBQT

format after hydrotreating ion modification. This structure

was then converted to a 2D structure to draw active pockets.

Finally, AutoDock Vina was used for molecular docking, and the

model with the lowest free energy was selected for visualization.

Statistical analysis

R (4.1.0) was used for bioinformatics analysis, and the R

package was used for statistical analysis. p < 0.05 was considered

statistically significant.

Results

Identification of 82 DE miRNAs

To identify blood exosomal DEmiRNAs caused by colorectal

cancer, the GSE39833 dataset was first analyzed for differences,

and under the filtering conditions of |logFC| > 1 and p < 0.05, a
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total of 82 DE miRNAs were obtained in the colorectal cancer

group compared to the healthy group (Figure 1A), with

33 upregulated genes and 49 downregulated genes (Figure 1B).

Transcription factor enrichment of
differentially expressed miRNAs

After the identification of DE miRNAs, the important TFs

enriched by DE miRNAs were further identified by TF

enrichment analysis, and the top 10 genes (YY1, NFYA,

ESRRA, SP1, ZFP161, RORA, EGR1, SP4, POU2F1, and E2F1)

were graphically displayed (Figure 2).

Enrichment analysis of differentially
expressed miRNAs

To determine the functions and signaling pathways of DE

miRNA enrichment, FunRich software was used for GO and

KEGG enrichment analyses of DE miRNAs. Biological process

(BP) (Figure 3A) enrichment included regulation of circadian

rhythm and lipid metabolism, cellular component (CC)

(Figure 3B) enrichment included nucleosome and exosomes,

and molecular function (MF) (Figure 3C) enrichment

included transcription factor activity and mRNA binding.

KEGG (Figure 3D) enrichment included RNA polymerase I

promoter opening and the circadian rhythm pathway.

Identification of differentially expressed
mRNAs in muscular atrophy

To identify DE mRNAs in the muscle atrophy samples,

differential expression analysis was performed on the

GSE34111 dataset using the limma package of R software, and

FIGURE 1
Identification of 82 DE miRNAs. Identification of differentially expressed exosomal miRNAs in colorectal cancer and healthy human blood. (A)
Volcano map of genome-wide DE miRNAs. (B) Heatmap showing the total upregulated and downregulated miRNAs screened. Green and red
represent downregulated and upregulated miRNAs, respectively. miRNAs, microRNAs.

FIGURE 2
Transcription factor enrichment of differentially expressed
miRNAs. Enrichment analysis of transcription factors, with the top
10 genes enriched for display. The blue bars are the proportion
enriched, and the red bars indicate the p-values of the
enrichment proportions.
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a total of 332 DE mRNAs were obtained in the muscle atrophy

group compared to the healthy group under a filter of |logFC| >
0.5 and p < 0.05 (Figure 4A), of which 127 were upregulated and

205 were downregulated. The results are displayed in a heatmap

in Figure 4B.

Prediction of target genes for differentially
expressed miRNAs and construction of
miRNA‒mRNA gene regulatory networks

To further identify the miRNA‒mRNA gene regulatory

network of colorectal cancer that regulates muscle atrophy via

exosomes, we predicted the target genes of DE miRNAs using

three databases and subsequently intersected the predicted target

genes with DE mRNAs to obtain intersecting genes.

Furthermore, based on the mechanism of miRNA‒mRNA

regulation, a miRNA‒mRNA network was constructed using

Cytoscape (Figure 5), in which there were 44 mRNAs and

22 miRNAs (hsa-miR-484, hsa-miR-654–5p, hsa-miR-610,

hsa-miR-1305, hsa-miR-575, hsa-miR-760, hsa-miR-934, hsa-

miR-936, hsa-miR-342–3p, hsa-miR-140–5p, hsa-miR-338–5p,

hsa-miR-1197, hsa-miR-767–3p, hsa-miR-586, hsa-miR-

1225–5p, hsa-miR-296–5p, hsa-miR-513a-5p, hsa-miR-622,

hsa-miR-1299, hsa-miR-1182, hsa-miR-483–3p, and hsa-

miR-920).

Enrichment analysis of differentially
expressed mRNAs in muscular atrophy

To determine the GO and KEGG enrichment programs of

DE mRNAs, the ClueGO plug-in was used for the enrichment

analysis of DE mRNAs. BP (Figure 6A) enrichment included

FIGURE 3
Enrichment analysis of differentially expressedmiRNAs. GO and KEGG enrichment analyses of DEmiRNAs. (A) Bar diagram of BP. (B)Histogram
of CC. (C)Histogram of MF. (D) Bar diagram of KEGG. GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function;
KEGG, Kyoto Encyclopedia of Genes and Genomes.
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regulation of lipid transport and positive regulation of lipid

biosynthetic processes, CC (Figure 6B) enrichment included

proteinase and proteinase sarcomeres, and MF (Figure 6C)

enrichment included actin filament binding and phospholipid

transporter activity (Figure 6D). KEGG enrichment included

pyruvate metabolism and the TGF-beta signaling pathway.

FIGURE 4
Identification of differentially expressedmRNAs inmuscular atrophy. Identification of DEmRNAs inmuscle samples frompatients withmuscular
dystrophy and healthy individuals. (A) Volcano map of genome-wide DE mRNAs. (B) Heatmap showing all of the upregulated and downregulated
mRNAs screened. Green and red represent downregulated and upregulated mRNAs, respectively.

FIGURE 5
Prediction of target genes for differentially expressed miRNAs and construction of a miRNA‒mRNA gene regulatory network. miRNA‒mRNA
gene regulatory network. miRNAs are shown as triangles, and target genes are shown as ovals. Red indicates upregulated genes, and green indicates
downregulated genes.
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Construction of the celastrol
pharmacophore target network

To create a target network map of celastrol, pharmacophore

target genes were predicted by the PharmMapper database, and

228 genes were successfully annotated by the UniProt annotation

database. The mRNAs of the annotated pharmacophore genes

were intersected with those of the miRNA‒mRNA gene network

to obtain NR1D2, the drug therapeutic target gene celastrol. The

annotated genes were then imported into Cytoscape software to

complete the network construction of celastrol and target genes

(Figure 7).

Artificial intelligence AlphaFold2 predicts
the NR1D2 protein structure

To confirm the protein structure of NR1D2, the human

protein number Q14995 of the gene was first found through

the UniProt online database and then predicted by the AI

AlphaFold2, which automatically identifies the amino acid

sequence of the protein based on the protein code (Figure 8A)

and calculates the sequence to generate the spatial structure of the

protein (Figure 8B).

Celastrol docks with NR1D2 molecules

To further validate the network pharmacological predictions,

the drug target celastrol for the treatment of colorectal cancer

muscular atrophy was elaborated. We performed molecular

docking validation of the protein structure of the target gene

NR1D2, with center_x = −2.472, center_y = 1.935, and

center_z = −10.225 as the active center for docking and selected

the lowest free energy of −8.4 for demonstration (Figures 9A–C).

Discussion

Cancer can lead to wasting and muscle atrophy (Chang et al.,

2021). When complications of severe muscle atrophy occur with

cancer cachexia, it can produce high mortality rates, especially in

advanced tumors; moreover, no effective treatment drugs are

currently available (Dasgupta et al., 2020).

FIGURE 6
Enrichment analysis of differentially expressed mRNAs in muscular atrophy. GO and KEGG enrichment analyses of DE mRNAs. (A) Circle
diagram of BP. (B) Circle diagram of CC. (C) Circle diagram of MF. (D) Circle diagram of KEGG. The color represents the p-value; the darker the color
is, the smaller the p-value is. The size of the circle represents the number of genes. BP, biological process; CC, cellular component; MF, molecular
function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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The proliferation of tumor cells results in the secretion of a

large number of vesicles, including exosomes, which may play a

broad regulatory role in the development of cancer cachexia (Rao

et al., 2020). Celastrol has been reported in the past literature to

have anticancer effects on colon cancer (Moreira et al., 2022),

inhibit colorectal cancer by inducing apoptosis in colorectal

cancer cells (Zhang H. et al., 2022), have significant inhibitory

effects on colorectal cancer (Wang S. et al., 2019), have good

therapeutic effects on muscle atrophy (Kitahata et al., 2022),

resist muscle atrophy (Gwag et al., 2013), and induce muscle fiber

preservation (Gwag et al., 2015). In our present study, we used

bioinformatics to analyze the potential miRNA‒mRNA

regulatory network of colorectal cancer via exosomes to

regulate muscle atrophy through network pharmacology and

the AI AlphaFold2 in an attempt to elucidate the possible

regulatory mechanisms of celastrol via the miRNA‒mRNA

regulatory network on colorectal cancerous muscle atrophy.

The blood exosome dataset GSE39833 from colorectal cancer

and normal humans was first downloaded through the GEO

database. Differential expression analysis by the limma package

yielded 82 DE miRNAs. Of these miRNAs, 33 were upregulated

and 49 were downregulated. Subsequently, 82 DE miRNAs were

analyzed for TF enrichment and then for GO and KEGG

enrichment. The results of GO enrichment showed regulation

of circadian rhythm, lipid metabolism, nucleosome, exosomes,

and transcription factor activity. KEGG enrichment results

FIGURE 7
Construction of the celastrol pharmacophore target network. The “drug–pharmacophore target” network. The drug ryanodine is in themiddle,
and the network dots are the annotated successful pharmacophore gene targets (yellow indicates the drug and the corresponding disease target
gene). The middle line is the target relationship linkage.
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showed the RNA polymerase I promoter opening and circadian

rhythm pathway. Then, 332 DE mRNAs were obtained by

differential expression analysis of the muscle atrophy sample

GSE34111. mRNA targets were obtained by online database

analysis of DE miRNAs, and a regulatory network model

diagram was established according to the principle of

FIGURE 8
Artificial intelligence AlphaFold2 predicts the NR1D2 protein structure. Protein structure of the therapeutic target geneNR1D2 predicted by the
AI AlphaFold2. (A) Coding sequence of NR1D2. (B) Protein structure predicted by the AI AlphaFold2.

FIGURE 9
Celastrol docks with NR1D2 molecules. Molecular docking of the small-molecule ligand celastrol to the protein receptor of the target gene
NR1D2. (A,B) Lowest free energy molecular docking. (C) Molecular docking of the lowest free energy protein surface.
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miRNA‒mRNA regulation, with 22 miRNAs and 44 mRNAs in

the network. Of these, CEBPD has been reported to be a

biomarker for amyotrophic lateral sclerosis (Sun et al., 2022).

BDNF can improve muscle atrophy by promoting nerve

regeneration (Yongguang et al., 2022) and is a target for

skeletal muscle inflammation (Aby et al., 2021). TP53INP2 is

a key regulator of skeletal muscle (Sala and Zorzano, 2015) and

regulates muscle atrophy due to cancer cachexia by activating

autophagy (Penna et al., 2019). Piezo1/KLF15/IL-6 axis-induced

muscle atrophy (Hirata et al., 2022) is an important regulatory

pathway for muscle atrophy in mice (Jagasia and Wagner, 2022).

SLC6A8 knockdown results in a decrease inmuscle mass (Duran-

Trio et al., 2022). KLF2 regulates skeletal muscle injury and

regeneration (Manoharan et al., 2019). ALPK3 is associated with

cardiomyopathy (Jorholt et al., 2020). MAML1 is essential for

normal muscle production (Shen et al., 2006). ITGB1BP2 is likely

to be involved in myotube fusion (Jaka et al., 2017). SLC1A4 is

involved in the regulation of myocytes (Frese et al., 2015). Spry1

and Spry4 regulate the human aortic smooth muscle cell

phenotype through differential Akt/FoxO/cardiomyosin

signaling (Yang et al., 2013). ZFP36 targets myogenic

transcripts and may play a role in adult muscle stem cells

(Bye-A-Jee et al., 2018). BASP1 plays an important role in

vascular smooth muscle (Santiago et al., 2021). KCNQ5 is

involved in smooth muscle contractility regulation (Wang L.

et al., 2019). There is an association between NR1D2 clock gene

expression and mitochondrial quality control, while impaired

oxidative capacity and mitochondrial function contribute to

Duchenne muscular dystrophy (Hardee et al., 2021). MRC1 is

a biomarker for macrophage relief of cisplatin-induced

sarcopenia (Hong et al., 2021). The miRNA‒mRNA network

that we make regulates other genes in the network, such as

TRIM26, UGDH, LRRN3, ATP8B1, ACOT9, LAMB3, TTC39B,

CSF3, SLC25A34, ZC3H6, MTHFD2, APOLD1, PCBP3,

FAM129A, RAB37, ZNF793, SEC61A1, IER5, TSPAN6,

P2RY14, THBD, ADH1B, USP53, MYO5C, MARCKSL1,

ZSWIM5, and NYNRIN. The regulation of these genes needs

further research.

Subsequently, we conducted GO and KEGG enrichment

analyses on DE mRNAs. GO enrichment mainly included the

regulation of lipid transport, positive regulation of the lipid

biosynthetic process, mitochondrion and sarcomere, actin

filament binding, IL-17 signaling pathway, and

phospholipid transporter activity. KEGG enriched

30 signaling pathways, among which the important

signaling pathways included the citrate cycle (TCA cycle),

ascorbate and aldarate metabolism, drug metabolism, TGF-

beta signaling pathway, tyrosine metabolism, sphingolipid

metabolism, fatty acid degradation, pyruvate metabolism,

TNF signaling pathway, relaxin signaling pathway, and

fluid shear stress and atherosclerosis. The citrate cycle

(TCA cycle), pyruvate metabolism, and fatty acid

degradation have also been predicted to be important

signaling pathways in muscle atrophy in spinal cord injury

(Huang et al., 2021). The TGF-beta signaling pathway has

been previously reported to play an important regulatory role

in muscle atrophy (Yoshihara et al., 2022) and is an important

signaling pathway in the regulation of muscle atrophy (Liu

et al., 2014). Sphingolipid metabolism also affects muscular

atrophy but is rarely considered (De Larichaudy et al., 2012).

Ascorbate and aldarate metabolism, drug metabolism,

tyrosine metabolism, pyruvate metabolism, the TNF

signaling pathway, the relaxin signaling pathway, the IL-17

signaling pathway, and fluid shear stress and atherosclerosis

need further study.

The therapeutic targets of celastrol were analyzed by

pharmacophore target analysis of network pharmacology,

and 228 genes were successfully annotated and then

intersected with mRNAs of the miRNA‒mRNA regulatory

network to find the disease target gene NR1D2 for drug

treatment. In GeneCards, NR1D2 is presented as a

transcriptional repressor that coordinates circadian rhythms

and metabolic pathways in a hemoglobin-dependent manner.

NR1D2 is a component of complex transcriptional machinery

that controls circadian rhythms and forms a key pathway in the

biological clock by directly repressing the expression of the core

clock components ARNTL/BMAL1 and CLOCK. It also

regulates genes involved in metabolic functions, including

lipid metabolism and inflammatory responses. In the

previous literature, NR1D2 was shown to regulate

mitochondrial function by regulating the circadian rhythm,

and impaired mitochondrial function leads to Duchenne

muscular dystrophy. Many important signaling pathways in

the KEGG enrichment of DE mRNAs in muscle atrophy are

also associated with hypo, including lipid metabolism and

inflammatory responses.

We then used the AI AlphaFold2 on the protein structure of

NR1D2 to predict the human protein structure of the gene,

successfully molecularly docking it to celastrol.

AlphaFold2 is a revolutionary change in the field of biology,

demonstrating the power of AI, which is changing the way drugs

are developed, greatly accelerating the development of new drugs,

and helping millions of patients around the world who are unable

to develop drugs because of unknown protein structures.

AlphaFold2 will be a powerful AI weapon in the fight against

various diseases. We offer a new strategy for drug development

by combining bioinformatics, network pharmacology, and

artificial intelligence.

Conclusion

In this study, we identified a potential miRNA‒mRNA

regulatory network of colorectal cancer regulating muscle

atrophy through exosomes in a bioinformatics approach.

There are 22 miRNAs and 44 mRNAs in this network.
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Molecular docking validation by the AI AlphaFold2 predicted the

structure of the NR1D2 protein and revealed the molecular target

of celastrol for the treatment of colorectal muscular atrophy.

AlphaFold2 will help develop potential therapeutic drugs for

more diseases.
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