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Lower Levels of Human MOB3B Are Associated with Prostate 
Cancer Susceptibility and Aggressive Clinicopathological 
Characteristics

Mps one binder (MOB) proteins are integral components of signaling pathways that control 
important cellular processes, such as mitotic exit, centrosome duplication, apoptosis, and 
cell proliferation. However, the biochemical and cellular functions of the human MOB 
(hMOB) protein family remain largely unknown. The present study investigated the 
association between hMOB3B expression and clinicopathological characteristics of prostate 
cancer (PCa).Study subjects included 137 PCa patients and 137 age-matched benign 
prostatic hyperplasia (BPH) patients. hMOB3B expression was estimated using real-time 
PCR and compared with clinicopathological parameters of PCa. hMOB3B mRNA expression 
was significantly lower in PCa tissues than in BPH control tissues (P < 0.001). According to 
receiver operating characteristics curve analysis, the sensitivity of hMOB3B expression for 
PCa diagnosis was 84.7%, with a specificity of 86% (AUC = 0.910; 95% CI = 0.869-
0.941; P < 0.001). hMOB3B expression was significantly lower in patients with elevated 
prostate specific antigen (PSA) levels (≥ 10 ng/mL), a Gleason score ≥ 8, and metastatic 
disease (any T, N+/M+) than in those with low PSA levels, a low Gleason score, and non-
metastatic disease (each P < 0.05). In conclusion, low levels of hMOB3B are closely 
associated with aggressive clinicopathologic features in patients with PCa. Our results 
suggest that hMOB3B may act as a tumor suppressor in human PCa. 
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INTRODUCTION 

Prostate cancer (PCa) is the second most frequently diagnosed 
cancer and the sixth leading cause of cancer death in men world-
wide with an approximately 14% (903,500) of total new cancer 
cases and 6% (258,400) of the total cancer deaths in males in 
2008 (1). In Korea, PCa is the fifth most common cancer in men, 
and its incidence is the most rapidly increasing of all cancers 
(2). PCa shows an extremely heterogeneous clinical course, rang-
ing from indolent to aggressive, metastatic lethal disease (3). 
Consequently, there is a great need to accurately estimate the 
tumor characteristics of PCa so that appropriate treatment op-
tions can be considered. Currently, histopathological analysis 
(including tumor stage and grade) and serum prostate specific 
antigen (PSA) levels are key determinants of therapeutic deci-
sion-making. However, none of the histological criteria or bio-
markers reported to date show sufficient sensitivity and speci-
ficity for detecting, monitoring, or determining the prognosis of 

PCa (4, 5). Thus, there is a critical need for methods capable of 
predicting oncologic outcomes and responses to therapy in PCa 
patients. The abnormal expression of certain genes in cancer 
cells is closely related to distinct aspects of tumor progression, 
including tumor growth, invasion, and metastasis. Proper cell 
division requires the precise coordination and execution of sev-
eral events in the cell cycle, including centrosome duplication, 
DNA replication, mitotic spindle assembly, chromosome seg-
regation, and cytokinesis (6). A failure in the execution or prop-
er timing of any of these events could lead to chromosome seg-
regation defects, resulting in aneuploidy or polyploidy (7-9). 
 Mps one binder (MOB) was originally identified in yeast as a 
regulator of mitotic exit and cytokinesis, and was later identi-
fied as a tumor suppressor (10). hMOB1 can bind to and acti-
vate mammalian large tumor suppressor (LATS) and nuclear 
Dbf2-related (NDR) kinases (LATS1, LATS2, NDR1, and 2) by 
targeting and activating these kinases at the plasma membrane 
(11, 12). Increased expression of LATS1 or LATS2 inhibits tumor 
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cell growth by inducing cell cycle arrest or apoptosis (10, 11, 13-
15). Recent studies show that hMOB1 is downregulated in color-
ectal and non-small cell lung cancers (9, 12). hMOB2 binds to 
the same domain on NDR1/2, but does not bind to LATS1/2; 
binding of hMOB2 to NDR1/2 kinases inhibits the phosphory-
lation of NDR and thereby blocks kinase activation (16). hMOB2 
is classified as an inhibitor of NDR signaling, whereas hMOB1 
is classified as a co-activator of the NDR/LATS signaling casca-
des (17, 18). The human MOB protein family consists of six mem-
bers: hMOB1A, 1B, 2, 3A, 3B, and 3C (18). Unfortunately, alth-
ough hMOB1 and 2 have been extensively studied, the biologi-
cal roles and binding partners of hMOB3A/B/C are unknown 
(18). Recent studies revealed that all six hMOBs are abundantly 
expressed in human prostate tissue (10), and that methylation-
induced gene silencing of hMOB3B occurs in PCa (19). Based 
on previous research, we hypothesized that hMOB3B acts as a 
tumor suppressor, and that its loss of function contributes to 
the carcinogenesis and aggressiveness of human PCa. Here, we 
compared the expression levels of hMOB3B in normal and pros-
tate cancer tissues to examine the contribution of this gene to 
prostate carcinogenesis. Also, and more importantly, we inves-
tigated the effect of hMOB3B on the clinicopathological charac-
teristics of PCa in Korean men.
 

MATERIALS AND METHODS

Study population
This case-control study was included 137 cases of newly diag-
nosed PCa and 137 age-matched benign prostatic hyperplasia 
(BPH) controls. The study cases were recruited from patients 
with histologically confirmed primary adenocarcinoma of the 
prostate at our hospital. Controls were selected from a database 
of BPH patients who underwent transurethral resection of the 
prostate (TURP), and were one-to-one matched (as far as pos-
sible) according to age and date of blood sampling. Controls with 
high PSA (serum PSA levels > 2.5 ng/mL) underwent transrec-
tal prostate biopsy before TURP to rule out the presence of can-
cer, and those with PSA levels > 10 ng/mL were excluded from 
the study. Subjects with a suspicious history of previous man-
agement for PCa or incomplete medical records were also ex-
cluded. Gleason grade and 2002 TNM stage were used as prog-
nostic factors. Gleason grade was measured in 12-core transrec-
tal biopsy, TURP, or radical prostatectomy specimens. Tumor 
stage was estimated from the radical prostatectomy specimens, 
or from computed tomography (CT), magnetic resonance im-
aging (MRI), or bone scan results. 

RNA extraction and construction of cDNA 
TRIzol (1 mL; Invitrogen, Carlsbad, USA) was added to BPH con-
trol and PCa tissues and homogenized in a 5 mL glass tube. The 
homogenate was transferred to a 1.5 mL tube and mixed with 

200 μL chloroform. After incubating for 5 min at 4°C, the homo-
genate was centrifuged for 13 min at 13,000 × g at 4°C. The up-
per aqueous phase was transferred to a clean tube and 500 μL 
isopropanol was added, followed by incubation for 60 min at 
4°C. The tube was then centrifuged for 8 min at 13,000 × g and 
4°C. Next, the upper aqueous phase was removed, mixed with 
500 μL of 75% ethanol, and centrifuged for 5 min at 13,000 × g 
and 4°C. After the upper aqueous layer was discarded, the pel-
let was dried at room temperature, dissolved with diethylpyro-
carbonate (DEPC)-treated water, and stored at -80°C. The qual-
ity and integrity of the RNA were confirmed by agarose gel elec-
trophoresis and ethidium bromide staining, followed by visual 
examination under ultraviolet light. cDNA was then prepared 
from 1 μg f RNA by random priming with a First-Strand cDNA 
Synthesis Kit (Amersham Biosciences Europe GmbH, Freiburg, 
Germany) according to the manufacturer’s protocol.

Real-time PCR
To quantify the expression of hMOB3B, real-time PCR was per-
formed using a Rotor Gene 6000 instrument (Corbett Research, 
Mortlake, Australia). Real-time PCR assays using SYBR Premix 
EX Taq (TAKARA BIO INC., Otsu, Japan) were carried out in mi-
cro-reaction tubes (Corbett Research, Mortlake, Australia) using 
hMOB3B (6,528 bp) sense (5́ -GTG GCA GGA TGA TCT CAA-
3́ ) and antisense (5́ -CGG CAC AGG ATC TTC TTG-3́ ) primers. 
The PCR reaction was performed in a final volume of 10 μL, com-
prising 5 μL of 2 × SYBR Premix EX Taq buffer, 0.5 μL of each 5́  
and 3́  primer (10 pM/μL), and 1 μL of sample cDNA. The prod-
ucts were purified with a QIAquick Extraction kit (QIAGEN, Hil-
den, Germany), quantified in a spectrometer (Perkin Elmer 
MBA2000, Fremont, USA), and sequenced using an automated 
laser fluorescence sequencer (ABI PRISM 3100 Genetic Analyz-
er, Foster City, USA). A known concentration of the PCR product 
was then 10-fold serially diluted from 100 pg/μL to 0.1 pg/μL 
and used to establish a standard curve. The real-time PCR con-
ditions were as follows: 1 cycle at 96°C for 20 sec, followed by 40 
cycles of 3 sec at 96°C for denaturation, 15 sec at 60°C for anneal-
ing, and 15 sec at 72°C for extension. The melting program was 
performed at 72-95°C, with a heating rate of 1°C per 45 sec. Spec-
tral data were PCatured and analyzed using Rotor Gene Real-
Time Analysis Software 6.0 Build 14 (Corbett Research, Mort-
lake, Australia). All samples were run in triplicate. Glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) was used as an 
endogenous RNA reference gene. Gene expression was normal-
ized to the expression of GAPDH.

Statistical analysis
Clinical variables such as age, PSA, prostate size, and BMI were 
compared using the Mann-Whitney U-test. To evaluate tumor 
characteristics, Gleason scores were classified as ≤ 7 and ≥ 8, 
and the clinical stage was categorized as ≤ T4 or metastatic dis-
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ease (any nodal or distant metastasis). Statistical analysis was 
performed using SPSS 20.0 software (SPSS Inc., Chicago, IL, USA), 
and a P value < 0.05 was considered statistically significant.

Ethics statement
The study protocol of collection and analyses of all samples was 
reviewed and approved by the institutional review board of Chung-
buk National University (IRB approved number 2006-01-001). 
Informed consent was obtained from each subject.
 

RESULTS

Baseline characteristics
Table 1 lists the baseline clinical and pathologic characteristics 
of the 137 BPH controls and the 137 PCa patients. The mean 
age of the PCa patients and controls was 69.2 yr. The serum PSA 
level was higher in PCa patients than in the BPH controls (124.9 
± 380.6 vs. 4.0 ± 5.2; P < 0.001). There was no significant differ-
ence between cases and controls regarding prostate size (P =  
0.037). Among the 137 PCa patients, 72 (52.6%) underwent rad-
ical prostatectomy and the other 65 (47.4%) underwent pallia-
tive TURP. Stage and Gleason grade at diagnosis were as follows: 
91 cases had localized-to-advanced disease (T2-4N0M0) and 
46 (33.6%) had metastatic disease (any T, N+/M+); the Gleason 
score was ≤ 7 and ≥ 8 for 64 (46.7%) and 73 (53.3%) patients, 
respectively.

Expression levels of hMOB3B mRNA in normal and cancer 
tissues
To identify whether hMOB3B is involved in prostate cancer sus-
ceptibility, we compared mRNA expression levels in BPH and 
PCa tissues. The median hMOB3B mRNA expression level in PCa 
tissues was significantly lower (median 426.2 × 104 copies per 

μg; IQR, 197.6-637.0) than that in BPH tissues (median 1,108.5 
×104 copies per μg; IQR, 797.0-1,428.0) (P < 0.001, Table 1 and 
Fig. 1). According to receiver operating curve (ROC) statistical 
analysis, the sensitivity of hMOB3B expression for diagnosing 
prostate cancer was 84.7%, with a specificity of 86% at a refer-
ence value of 737.5 × 104 copies per μg (AUC, 0.910; 95% CI, 0.869-
0.941; P < 0.001) (Fig. 2).

Relationship between hMOB3B mRNA expression levels 
and clinicopathologic features
hMOB3B mRNA expression was significantly lower in patients 
with elevated PSA levels (≥ 10 ng/mL) than in those with low 
PSA levels (P = 0.001). In addition, hMOB3B expression was 
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Fig. 1. hMOB3B mRNA expression levels in normal and cancer tissues. BPH, benign 
prostatic hyperplasia; CaP, prostate cancer.

Fig. 2. Receiver operating characteristic (ROC) curve generated to calculate the sen-
sitivity and specificity of hMOB3B for detecting prostate cancer. AUC, area under the 
curve.
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Table 1. Clinicopathologic characteristics of prostate cancer patients and BPH controls

Characteristics BPH PCa P value

No. 137 137
Age (yr; range) 69.2 (46-85) 69.2 (48-86) 0.994 
PSA ± SD (ng/mL) 4.0 ± 5.2 124.9 ± 380.6 < 0.001
Prostate size (gram) 38.8 ± 23.0 41.3 ± 22.2 0.387 
Operation (%)
   TURP
   Radical prostatectomy

137 (100) 65 (47.4)
72 (52.6)

Gleason score, No. (%)
  ≤ 7
  ≥ 8

64 (46.7)
73 (53.3)

Stage (%)
   T1-4N0M0
   Metastatic (any T N+/M+)

91 (66.4)
46 (33.6)

hMOB3B expression, median  
   (IQR; × 104 copies per μg)

1,108.5  
(797.0-1,428.0)

426.2  
(197.6-637.0)

< 0.001

P values were obtained from the Mann-Whitney U-test. BPH, benign prostatic hyper-
plasia; PCa, prostate cancer; IQR, interquartile range; SD, standard deviation; TURP, 
transurethral resection of the prostate. 
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Table 2. hMOB3B mRNA expression levels according to PSA, Gleason score, and 
metastasis status in prostate cancer patients

Characteristics No 
hMOB3B expression, median  

(IQR; × 104 copies/μg)
P value

PSA
  ≤ 10
  > 10

38
99

545.2 (382.9-730.3)
349.6 (123.6-569.9) 

0.001

Gleason score
  ≤ 7
  ≥  8

64
73

509.8 (300.6-687.3)
320.9 (96.9-545.2)

< 0.001

Stage
   T1-4N0M0
   any T N+/M+

91
46

491.1 (299.2-716.4)
243.8 (96.4-448.4)

< 0.001

P values were obtained from the Mann-Whitney U-test. IQR, interquartile range; PSA, 
prostate specific antigen; SD, standard deviation.

Fig. 3. Relationship between hMOB3B mRNA expression levels and clinicopathologic 
features in prostate cancer. (A) PSA, (B) Gleason score, and (C) metastatic status. 
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significantly lower in cancer tissue specimens from patients with 
a higher Gleason score (≥ 8) and metastatic disease (any T, N+/
M+) than in samples from those with a lower Gleason score (≤ 7) 
and non-metastatic disease (T2-4N0M0) (each P < 0.001) (Ta-
ble 2 and Fig. 3A-C). 

DISCUSSION

In this study, we identified a relationship between hMOB3B ex-
pression and an increased risk of PCa. In addition, hMOB3B ex-
pression was closely associated with clinicopathologic features 
in patients with PCa. MOB proteins are crucial regulators of NDR 
family kinases and are conserved from yeast to humans. Mem-
bers of the MOB protein family regulate mitosis, cell prolifera-
tion, apoptosis, centrosome biology, and morphological chang-
es (12, 20). Signal transduction cascades control essential bio-
logical processes such as cell division, morphogenesis, cell grow-
th, and controlled cell death/apoptosis (21). The vast majority 
of signaling cascades transmit extra- and intracellular inputs 
via protein kinases (11, 22). A conserved property of MOB pro-
teins is its association with and activation of NDR (nuclear-Dbf2-
related) kinases belonging to the AGC family, which includes 
PKA, PKG, and PKC (18, 23). Human cells express four related 
NDR kinases: NDR1 (also known as serine/threonine kinase 38 
or STK38), NDR2 (or STK38L), LATS1 (large tumor suppressor-1), 
and LATS2 (11, 24-26). Originally, the biological roles of MOB 
proteins were investigated mainly using budding and fission 
yeast. In budding and fission yeast, MOB proteins are expressed 
from two independent genes. Mob1p regulates both the mitotic 
exit network in budding yeast and the septation initiation net-
work in fission yeast by binding to and activating Dbf2p and 
Sid2p kinases, respectively (11, 12, 25, 27). In addition, Mob1p 
also plays a major role in modulating cytokinesis, the last stage 
of the cell cycle (28). MOB2 regulates cell polarity and daughter-
specific gene expression programs during the yeast cell cycle by 
modulating Cbk1p and Orb6p kinases (29). The human MOB 
protein family consists of six distinct mem bers (hMOB1A, 1B, 2, 
3A, 3B, and 3C), with hMOB1A/B being the best studied due to 

their putative tumor suppressive functions, which are mediated 
through regulation of the NDR/LATS kinases (10, 11, 18, 24). The 
biological features of the other hMOBs are largely unknown. 
hMOB1A binds to and activates human NDR1/2 kinases by sti-
mulating autophosphorylation of the activation segment. Simi-
larly, hMOB1A binds to and activates LATS1 and 2 (11, 18, 24). 
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By contrast, hMOB2 binds to NDR1 and NDR2, but not to LATS1 
(16). hMOB3A/B/C do not associate with any NDR/LATS kina-
ses, and the binding partners of hMOB3A/B/C are currently 
unknown. Recently, a study by Haldrup et al. (16) reported that 
hypermethylation of six novel genes, AOX1, C1orf114, GAS6, 
HAPLN3, KLF8, and MOB3B, was highly cancer specific. Al-
though we did not measure the correlation between hMOB3B 
methylation and hMOB3B expression levels, our data support 
methylation-induced gene silencing of hMOB3B. 
 A possible limitation of our study is that we did not determine 
the levels of hMOB3B protein, for example, by Western blotting 
or immunohistochemical staining. Second, we could not evalu-
ate the prognostic value of hMOB3 due to relatively small sam-
ple size and inconsistent treatment modalities. Most importantly, 
the physiological binding partners and functions of the hMOB3 
proteins remain undefined. Thus, further research is needed to 
identify physiological binding partners and to confirm the prog-
nostic value of hMOB3 in PCa.
 In conclusion, low levels of hMOB3B are closely associated 
with aggressive clinicopathologic features of PCa. Our results 
suggest a functional role for hMOB3B as a tumor suppressor in 
human PCa.
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