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Coalescent methods are proven and powerful tools for population genetics, phylogenetics, epidemiology, and other fields.
A promising avenue for the analysis of large genomic alignments, which are increasingly common, is coalescent hidden
Markov model (coalHMM) methods, but these methods have lacked general usability and flexibility. We introduce a novel
method for automatically learning a coalHMM and inferring the posterior distributions of evolutionary parameters using
black-box variational inference, with the transition rates between local genealogies derived empirically by simulation. This
derivation enables our method to work directly with three or four taxa and through a divide-and-conquer approach with
more taxa. Using a simulated data set resembling a human—chimp—gorilla scenario, we show that our method has compa-
rable or better accuracy to previous coalHMM methods. Both species divergence times and population sizes were accurately
inferred. The method also infers local genealogies, and we report on their accuracy. Furthermore, we discuss a potential
direction for scaling the method to larger data sets through a divide-and-conquer approach. This accuracy means our meth-
od is useful now, and by deriving transition rates by simulation, it is flexible enough to enable future implementations of

various population models.
[Supplemental material is available for this article.]

A powerful and widely accepted and used mathematical frame-
work for capturing the evolution of genomes and their individual
loci is the theory of coalescence (Kingman 1982). This framework,
applied to the increasingly available genomic data, has “turned
theoretical population genetics on its head” (Hartl and Clark
2007) and propelled population and phylogenomic inferences to
successful applications that span several fields of biology and bio-
medicine (Siepel 2009; Rogers and Gibbs 2014). Coalescent-based
models allow for estimating the values of parameters, including
population divergence times, mutation and recombination rates,
ancestral population sizes, population structure, etc., from pat-
terns of site frequencies and local genealogies (Hartl and Clark
2007; Nielsen and Slatkin 2013).

To account for varying levels of complexities in evolutionary
histories, the standard coalescent has been extended in various di-
rections to accommodate processes such as recombination, popu-
lation structure and migration, and selection (Hudson 1990;
Wakeley 2008). In this work, we focus on the coalescent with re-
combination, illustrated in Figure 1A.

As McVean and Cardin (2005) noted, the coalescent with re-
combination is very difficult to estimate likelihoods under owing
to, at least, three important issues: (1) the state space of recombining
genealogies (also known as ancestral recombination graphs (ARGsS), il-
lustrated in Fig. 1B) is huge; (2) the data are generally not very infor-
mative about the actual ARG; and (3) likelihood estimation is a
missing-data problem with highly redundant augmentation.

The consequence of these issues is seen in BACTER (Vaughan
et al. 2017), a Bayesian method that uses MCMC to infer the
ARG posterior distribution down to the coalescent and recombina-
tion times and genomic boundaries of recombinant segments.
Although this kind of joint inference yields the most detailed pos-
terior distribution, calculating the likelihood of an ARG scales
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poorly as the number of recombinations increases, and BACTER
is limited to analysis of an unstructured population (Vaughan
et al. 2017).

Coalescent inference can be scaled up using multilocus meth-
ods that assume each locus is spaced far enough apart so that there
is effectively no linkage between loci, and each locus is short
enough so that no recombination has occurred within it.
However, the assumption of no recombination within loci has
been called into question (Springer and Gatesy 2016), although
the issue is far from being settled, especially when it comes to ro-
bustness of species tree inference under the multispecies coales-
cent (MSC) model (Edwards et al. 2016).

To strike a balance between the scalability of multilocus
methods and the power of ARG inference, the coalescent with re-
combination can be approximated as a sequential Markovian pro-
cess operating across the genome, rather than operating in time
along the branches of the phylogeny (Hein et al. 2005). Using
this view, the coalescent hidden Markov model (coalHMM) was in-
troduced (Hobolth et al. 2007). In this model, a hidden Markov
model (HMM) is built such that every coalescent history (gene his-
tory) given the species tree is modeled by a state, the transition
probabilities are derived based on the recombination rate and
the given genealogies, and the emission probabilities are given
by the likelihood of the gene trees (Felsenstein 1981). Figure 1, C
and D, shows two gene histories that are embedded inside the
ARG shown in Figure 1B.

In the work of Hobolth et al. (2007), the investigators deter-
mined the transition probabilities by careful inspection of recom-
bination scenarios given the species tree. Later, Dutheil et al.
(2009) provided a detailed mathematical derivation under the co-
alescent with recombination of the model of Hobolth et al. (2007).

© 2021 Liu et al. This article is distributed exclusively by Cold Spring Harbor
Laboratory Press for the first six months after the full-issue publication date
(see https://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is
available under a Creative Commons License (Attribution-NonCommercial
4.0 International), as described at http://creativecommons.org/licenses/by-
nc/4.0/.

31:2107-2119 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/21; www.genome.org

Genome Research 2107
www.genome.org


mailto:nakhleh@rice.edu
https://www.genome.org/cgi/doi/10.1101/gr.273631.120
https://www.genome.org/cgi/doi/10.1101/gr.273631.120
http://genome.cshlp.org/site/misc/terms.xhtml
https://genome.cshlp.org/site/misc/terms.xhtml
https://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml

Liu et al.

o

Time
O
- -
56

o
00

it

e

C
o]

Population1 Population 2

Population1 Population 2

| \ | m
Population1 Population 2 Population1 Population 2

Figure 1. The multispecies coalescent with recombination. (A) The evolutionary history of a sample of four extant individuals in two divergent popula-
tions from their MRCA (solid magenta circle). The recombination node (solid orange circle) results in an ancestral recombination graph (ARG), shown in B.
(C) The genealogy of genomic regions that traces their evolution back from the recombination node to the gray ancestral node. (D) The genealogy of
genomic regions that traces their evolution back from the recombination node to the brown ancestral node.

Such a manual approach to deriving transition probabilities has
limited coalHMM-based inference of evolutionary parameters to
three genomes. Several later works have attempted to automatical-
ly create coalHMMs for various demographic scenarios. For exam-
ple, Mailund et al. (2012) used colored Petri nets to represent
genetic models and gave an algorithm for translating such models
into coalHMMs. However, there is no software associated with the
method. Cheng and Mailund (2020) developed the Jocx tool for
ancestral population genomics inference based on pairwise
coalHMMs, but Jocx currently only supports a limited number of
demographic models.

In this work, we present a new method, variational inference
under the coalescent with recombination (VICAR) for approxi-
mate inference under the MSC with recombination. VICAR con-
sists of two novel components. First, it implements a simulation-
based technique for automatically deriving a coalHMM on which
likelihood calculations are performed efficiently. More specifically,
the likelihood of a candidate model (species tree, divergence times,
and population sizes) is computed by simulating data under the
coalescent with recombination using the candidate model, using
these data to automatically construct an HMM, and then comput-
ing the likelihood by means of the forward algorithm (Chang and
Hancock 1966; Baum et al. 1970, 1972). This way the method is
able to automatically generate coalHMMs and learn their parame-
ters for arbitrarily complex demographic scenarios. Leveraging
those coalHMMs learned by simulation, VICAR also infers local ge-
nealogies for arbitrary demographic models using posterior decod-
ing. Second, the parameter estimation in VICAR consists of a novel
application of variational inference for Bayesian inference of de-
mographic parameters using this approximate likelihood (the spe-
cies tree topology is assumed to be known and fixed).

We show the utility and accuracy of VICAR on both simulated
and biological data and compare it to diCal2 (Steinriicken et al.
2019), which is the current state-of-the-art coalHMM algorithm
for inferring population histories. Furthermore, we discuss and
provide preliminary results for how to scale the method to larger
numbers of taxa using a divide-and-conquer approach in the
Supplemental Material. The automated nature of our method pro-
vides a step toward wider applicability of the coalescent with
recombination.

Results
Overview of VICAR

Given the topology of a species tree, we seek to estimate its contin-
uous parameters from the genomic data under the (multispecies)

coalescent with recombination. As we stated above, maximum
likelihood estimation of the topology’s parameters under the exact
complex model of the coalescent with recombination is intracta-
ble. We introduce a novel variational Bayesian method, VICAR,
for accomplishing this estimation by using a simulation-based
likelihood kernel. The kernel automatically derives an empirical,
simulation-based coalHMM and performs the likelihood computa-
tions on the HMM, which can be performed in polynomial time in
the number of states (Durbin et al. 1998). This automated proce-
dure of generating a coalHMM and computing the likelihood obvi-
ates the need for theoretical derivations based on the coalescent
theory for every evolutionary scenario, as in most previous
coalHMM methods, and thus can be applied to infer parameters
of any demographic model. We now give a high-level description
of how VICAR works and then give the full details in the Methods.

Let ¥ be a species tree on a set X of taxa, N be a vector of the
effective population sizes associated with ¥’s internal and root
branches, and T be a vector of the divergence times, in unit of gen-
erations, of the internal nodes of ¥. Let ©=[N; T|. We fix the
hyperparameters of the prior distributions on the parameters ©.
We also assume a fixed mutation rate g, in units of the expected
number of mutations per site per generation, and recombination
rate p, in units of the expected number of recombinations per
site per generation. Parameters x and p are assumed to be constant
across the species tree. VICAR assumes one sequence from each ex-
tant population so the posterior distribution of tip branch popula-
tion sizes will be identical to the prior and, hence, not estimated by
the method. VICAR seeks to estimate the posterior distribution
over the model parameters, given by

p(O]5) o< P(S|0)p(0),

where § is a genomic sequence alignment that is assumed to have
evolved under the coalescent with recombination and a model of
sequence evolution. VICAR estimates p(0|S) via a novel method of
approximating the likelihood P(S|®) and a novel application of
variational inference.

For approximating the likelihood, VICAR simulates a set of
genealogies along a sequence under the coalescent with recombi-
nation. Using the simulated data, VICAR constructs an empirical
HMM and applies an existing polynomial-time algorithm to com-
pute the likelihood of the HMM. For approximating the posterior
distribution, we introduce a novel application of black-box varia-
tional inference (BBVI) to this domain. VICAR produces estimates
of the parameter values © along with measures of confidence.
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Accuracy of parameter inference on data simulated under
a human-chimp-gorilla-like scenario

In this section, we show the performance of VICAR on simulated
data and compare it with that of diCal2 (Steinriicken et al.
2019). diCal2 is based on the sequentially Markov conditional
sampling distribution framework (Paul et al. 2011; Sheehan et al.
2013; Steinrticken et al. 2013) with a combination of expecta-
tion-maximization (EM) and genetic algorithm to infer a maxi-
mum likelihood point estimate, which differs from our Bayesian
approach.

We used the program msprime (Kelleher et al. 2016) as the
simulator for coalescent with recombination process and used
INDELible (Fletcher and Yang 2009) as the sequence evolution
simulator. We simulated 100 data sets with 500,000 sites each, in-
tended to resemble human—chimp-gorilla. We refer to the three
extant species as human (H), chimp (C), and gorilla (G), and the
ancestral species as the human—chimp ancestor (HC) and the hu-
man-chimp-gorilla ancestor (HCG). The simulation setup consists
of two steps. In the first step, we took the demographic parameters
of a species tree and simulated under the coalescent with recombi-
nation process. This step gave us a set of segments of the sequence,
in which each segment had a corresponding coalescent tree. The
second step used standard evolutionary simulators to generate se-
quence alignments at each segment at the given substitution rate
under the coalescent tree at that segment. The result of the simu-
lation was a sequence alignment for the set of taxa, in which differ-
ent sites in the alignment had potentially different genealogies.
The continuous parameters used in simulation are population
sizes Nyc=Npcg=40,000 and Nyg=Nc=Ng=30,000, speciation
time Tyc=160,000 generations (or 4 Myr assuming a generation
time of 25 yr), and speciation time Tycs=220,000 generations
(or 5.5 Myr assuming a generation time of 25 yr). The recombina-
tion rate is r= 1.5 x 10~ per site per generation, corresponding to a
genetic recombination frequency of 1.5 cM/Mb. The mutation rate
is 2.5 x 1078 per site per generation, corresponding to 0.1% change
per million years assuming a generation time of 25 yr. The param-
eters are the same as used in the other two human-chimp-gorilla
simulation studies of coalescent HMM (Hobolth et al. 2007;
Dutheil et al. 2009).

For each data set, VICAR was used to find the variational pos-
terior of each continuous parameter. The configuration for con-
structing simulation-based coalHMM as in Algorithm 1 is nb=2
and —r =1000. The meaning of nb and —r will be introduced be-
low. The simulation length # is determined automatically using
a scaling formula depending on the —r setting, as described below.
For a stochastic variational inference search, we used 50 samples
per iteration with 200 iterations. We used an improper uniform
prior U(0, inf) on node heights and used a gamma prior on popu-
lation sizes with a shape parameter of two and a scale parameter of
25,000. For diCal2, we used 70 samples for each generation of the
genetic algorithm, each optimized for four EM iterations, and six
parents for the next generation. To improve the accuracy of
diCal2, we used 12 intervals for HMM state generation, compared
with 10 intervals in the examples from the diCal2 manual. We ran
the genetic algorithm for five generations (the same setting as used
by Steinriicken et al. 2019) and reported the maximum likelihood
parameters for each data set.

Figure 2A shows the maximum a posteriori (MAP) estimates
obtained by VICAR and maximum likelihood estimates (MLEs) ob-
tained by diCal2 as a violin plot. All parameters are estimated by
VICAR with very high accuracy and little variance. Generally, pop-
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Figure 2. Accuracy results of VICAR (blue) and diCal2 (orange) on sim-
ulated human-chimp-gorilla data sets. The violin plot shows the base-2
logarithm of the relative error (estimate/truth) for the analysis of 100
data sets by VICAR and diCal2. A value of zero (the red dashed line) repre-
sents an exact estimate. The two panels show the results based on different
values of the number of iterations of variational inference in VICAR (the pa-
rameter T in Algorithm 2 in Methods). (A) T = 200. (B) T = 20.

ulation sizes are estimated with larger variance than node heights,
which is true for both methods. VICAR produces more accurate es-
timates than diCal2 for all four parameters. Furthermore, diCal2’s
estimations have a large variance on the ancestral population size
for human-chimp ancestor, whereas VICAR infers that parameter
with much higher accuracy and less variability.

All the experiments reported above were run on a Macbook
Pro with 2.4-GHz Intel Core i5 CPU. On average, the run-time of
VICAR is ~10.08 h for a data set. Building the coalHMM by simu-
lation takes 3.93 h, and computing the likelihood using the for-
ward algorithm takes 6.15 h. diCal2 takes less time, with only
0.7 h per data set. This can be partially explained by the fact that
diCal2 makes further approximations to make the HMM more ef-
ficient and incorporates optimizations for speeding up the forward
algorithm, whereas our current implementation of VICAR does
not optimize the HMM and applies a vanilla implementation of
the forward algorithm. To study how the two methods perform
given comparable computational cost, we assessed the perfor-
mance of VICAR based on the partial results obtained after the first
20 iterations of variational inference search, which take ~1 h to
run (comparable to the running time of diCal2). As the results in
Figure 2B show, VICAR still achieves similar or better estimates
for three of the four parameters and much more precise estimates
for N; HC-

For a more general view of VICAR's performance as a function
of the number of VI iterations in this scenario, Figure 3 shows the
convergence plot of VICAR on one of the data sets. As the figure
shows, the likelihood increases rapidly in the first few iterations
and converges after only about 50 iterations.

Another advantage of our method is that it is a Bayesian ap-
proach, with the ability to specify priors and provide posterior sup-
port for parameters. Once VICAR converges, the uncertainty
associated with the inference is quantified by the Bayesian
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Figure 3. Convergence of VICAR. The x-axis is the number of iterations,
and the y-axis is the log likelihood of the current estimation.

posterior, whereas for maximum likelihood approaches such as
diCal2, running the algorithm multiple times for bootstrapping
is required to infer confidence intervals, which increases the actual
running time. To assess the quality of uncertainty estimates ob-
tained by maximum likelihood, as implemented in diCal2, and
the quality of uncertainty estimates obtained by VICAR, we used
the diCal2 parameter estimates for one simulated data set from
above to perform parametric bootstrapping. We simulated 20
bootstrap alignments and reran diCal2 on each of them. We
then used the bootstrap samples to estimate a standard deviation
for each parameter and reported the confidence intervals based
on a normal approximation. The confidence intervals were com-
puted in the log space and transformed back to the natural space
to avoid falling outside the domain of each parameter. Table 1
shows the 95% credible intervals of VICAR and the 95% confi-
dence intervals of diCal2 for each parameter.

Although it is true that Bayesian credible intervals conceptu-
ally differ from frequentist confidence intervals, as the results
show, the diCal2 confidence intervals exclude the true value for
all parameters bar Tyc. In contrast, all VICAR credible intervals in-
clude the true parameter value. As we note in the Discussion sec-
tion, the confidence measure obtained by the simple factorized
Gaussian variational family used by VICAR could be further im-
proved. It is also worth noting that diCal2 with bootstrapping
took a total of 11.6 h (similar to VICAR).

Accuracy of local genealogy inference on data simulated under a
human-chimp-gorilla-like scenario

Other than inferring continuous parameters, an important capa-
bility of VICAR is the inference of the local genealogy of each
site along the genome. Because the hidden states of a coalHMM
are coalescent histories (genealogies), local genealogy inference
can be performed by posterior decoding of the HMM along the se-
quence data, which gives us the posterior probability of each gene-
alogy at each site. In this section, we study the performance of
VICAR in terms of local genealogy inference.

Table 1. Results of VICAR versus diCal2 with parametric bootstrapping

We used the same 100 simulated data sets as in the simulation
study above. Because we used msprime to simulate under the coa-
lescent with recombination process when generating data,
we have the true coalescent tree of each site. We used nb=2 and
—r=1000 to build our HMM by simulation. For the human-
chimp-gorilla species tree, there are four types of genealogies:
HC1, HC2, HG, and CG, as shown in Figure 9A, below. Because
we fine-grained each branch into two sub-branches, our HMM
has a higher granularity than four genealogies. The total number
of states in our HMM is actually 13. However, for the purpose of
local genealogy inference, we only consider the four basic types
as they are the most meaningful categorization for determining
the shared ancestry of molecular characters or traits. Therefore, af-
ter posterior decoding on the 13-state HMM, we merged hidden
states of the same type together and took the type with the highest
posterior probability as the inferred genealogy at each site. We also
discretized the true coalescent tree at each site into one of the four
genealogies. We then compared the inferred genealogy with the
true one. Table 2 shows the confusion matrix of the classification
task, as well as the precision and recall measures for each type of
genealogy. Figure 4 shows a graphical comparison of the posterior
probabilities of each genealogy at each site with the true genealogy
along the sequence from a segment of 100,000 sites from one of
the data sets.

The results show that the accuracy of local genealogy infer-
ence is very good: 90% of true HC1 sites are inferred to have
HC1 genealogy (Table 2). This number is 46% for HG and CG,
with an overall classification accuracy of 63%. This number is sig-
nificantly higher than random expectation (Dutheil et al. 2009).
We observe the same good performance in Figure 4, where there
is a good correspondence between true genealogy and posterior
distribution. However, note that the recall measure of HC2 is
only 4.44%, meaning only 4.44% of all true HC2 genealogies are
actually estimated to be HC2. Dutheil et al. (2009) reported the
same poor performance on HC2. Many sites with HC2 as true ge-
nealogy are assigned to another type, mostly HC1 (Dutheil et al.
2009). This is likely a model artifact of the HMM approximation
to the coalescent with recombination process. We already know
that the HMM approximation would underestimate the recombi-
nation rate (Dutheil et al. 2009; Mailund et al. 2011), which means
it would underestimate state transitions, leading to a global under-
estimation of incomplete lineage sorting. For most of the true HC2
sites, it is unsurprising that these sites are misclassified as HC1,
because the stationary frequency of HC1 is so much higher and
because the site patterns of true HC1 sites and true HC2 sites
should be similar.

Relationship between inference accuracy, number
of sub-branches, simulation length, and branch lengths

The accuracy of inferences depends on the quality of the approxi-
mate likelihood, which in turn depends on two aspects: the

Parameter VICAR diCal2 with bootstrap True value
Thc 155,950 (132,761, 179,138] 163451 [153,791, 173,718] 160,000
Thee 208,557 [186,355, 230,758] 172630 [166,120, 179,396] 220,000
Nic 44,512 (29,899, 59,126] 11467 [5115, 25,707] 40,000
Nhce 41,174 [35,278, 47,070] 49068 [42,487, 56,667] 40,000

Ninety-five percent credible intervals of VICAR and 95% confidence intervals of diCal2 are shown in square brackets.
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Table 2. Classification accuracy of local genealogies on 100 simulated data sets

Inferred Posterior decoding®

genealogy
True genealogy HC1 HC2 HG CG Precision® Recall®
HC1 47.56% 0.52% 2.23% 2.32% 66.73% 90.38%
HC2 11.32% 0.70% 1.89% 1.93% 38.44% 4.44%
HG 6.17% 0.30% 7.12% 2.02% 53.27% 45.60%
CG 6.21% 0.31% 2.12% 7.26% 53.67% 45.64%

A confusion matrix of the genealogy classification task based on posterior decoding. Sums over rows give the frequencies of true genealogies, and
sums over columns give the frequencies of inferred genealogies. The diagonal corresponds to correctly inferred cases.

PThe precision measure for each genealogy, as defined by the number of true positives over the number of positives.

“The recall measure for each genealogy, as defined by the number of true positives over the true number of sites with that genealogy.

accuracy of the simulation-based coalHMM approximation of the
coalescent with recombination process, and the quality of the
trained coalHMM itself. The accuracy of the coalHMM approxima-
tion of the coalescent with recombination process is determined by
the refinement of coalHMM state space, that is, the number of sub-
branches on each branch of the species tree when building the
HMM. If the number of sub-branches is small, the resulting
coalHMM has a state space of coarse coalescent histories that is
not enough to capture the detailed coalescent distribution, leading
to biased likelihood (Dutheil et al. 2009; Mailund et al. 2011). The
quality of the coalHMM itself (i.e., the quality of the transition ma-
trix) is determined by the length of simulation used to derive the
HMM because our coalHMM is trained directly from labeled se-
quence data. The more sub-branches we use to refine a branch,
the more accurate approximation we obtain, but more sub-branches
incur a larger state space, necessitating a longer simulation length in
order to train a high-quality transition matrix. If we use a large num-
ber of sub-branches but a small simulation length, the resultant
HMM will be unreliable because of limited training data.
Moreover, depending on the branch length, we may not need a
large number of sub-branches to approximate the coalescent pro-
cess on that branch, but a too-small number of sub-branches may
introduce bias. In this section, we study the relationship between ac-
curacy of inference result, number of sub-branches used to refine
HMM state space, length of simulation used to build HMM, and
branch length of the species tree we do inference on. We derive
some empirical suggestions on what number of sub-branches and
simulation length to use for any specific inference problem.

There are two hyperparameters controlling the HMM building
process in Algorithm 1: nb, the number of sub-branches on each
branch of the species tree, and /, the length of simulated HMM
training data. In our implementation, they are user-defined inputs
NUM_BIN and CROSS_OVER_RATE. NUM_BIN is the number of
sub-branches used to approximate each branch of the species
tree. CROSS_OVER_RATE is the —r switch of ms (Hudson 2002),
which is defined as 4N, r, where N is a customized population
size, and r is the probability of recombination per generation be-
tween the ends of the locus being simulated, which is the probabil-
ity of recombination per site per generation times the number of
sites to simulate. Our implementation assumes a value of 10,000
for Ny, and it can be changed according to the scale of population
sizes. For example, if the recombination rate is 1.5 x 1077 /site/ gen-
eration and we seek to simulate 500,000 sites, we use 4 x 10,000 x
1.5 x 1077 x 500,000 = 3000 as the value for the —r option.

We simulated sequence alignments under three different evo-
lutionary scenarios, the difference between which is the internal

branch length. All three scenarios have the same three-taxon
tree topology ((4, B), C);. Internal node height T,p is fixed at
100,000 generations. The root node height varies across scenarios.
Scenario 1 has a root node height of 150,000 generations. Scenario
2 has a root node height of 200,000 generations. Scenario 3 has a
root node height of 400,000 generations. Population sizes of all
branches are fixed at 40,000. Hence, the branch length of the
internal branch for scenarios 1, 2, and 3 in coalescent units
are 0.625, 1.25, and 3.75, respectively. The recombination rate is
r=1.5x1077/site/generation. The mutation rate is 1.25x 107/
site/generation. The length of the sequence is 100,000 bp.

We inferred the continuous parameters of each scenario un-
der various configurations of the hyperparameters. The number
of sub-branches explored were one, two, three, four, and five.
The values for the —r parameter explored were 500, 1000, 3000,
and 5000, which correspond to simulation lengths of 83,333,
166,666, 500,000, and 833,333, respectively. For each combina-
tion of number of sub-branches and —r parameter value (simula-
tion length), we conducted inference on each scenario using
the combination for coalHMM construction to find the MAP solu-
tion and inspected the accuracy. In total, we conducted 3 x4 x 5=
60 inferences.

Figure 5, A through C, shows inference results for scenarios 1,
2, and 3, respectively. The message is clearest in Figure SC. Looking
at each individual plot, for a fixed simulation length, increasing
the number of sub-branches increases the accuracy of inference
until it flattens out. But Figure SA suggests that the accuracy
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0.0

200000 220000 240000 260000

Alignment column

280000 300000

Figure 4. True genealogy and posterior distribution along the se-
quence. The upper panel shows posterior probability of each genealogy
at each site. The lower panel shows the true genealogy of each site.
Coloring corresponds to different genealogies: Genealogy HC1 is in red,
HC2 is in dark red, HG is in blue, and CG is in green.
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Figure 5. Results on the three scenarios, shown for internal branch lengths 0.625 (A), 1.25 (B), and 3.75 (C). Dashed red lines are true values. Blue lines

are inferred MAP values. Rows correspond to different simulation lengths. Columns correspond to different continuous parameters. The x-axes are number
of sub-branches ranging from one to five. (Figure continued on following page.)

does not stay on a plateau after reaching a certain number of sub-
branches. Rather, if the simulation length is not long enough, in-
creasing the number of sub-branches might decrease inference ac-
curacy. The reason is that the transition rate matrix of a large state
space cannot be sufficiently trained from a short length of simula-
tion. Each column of the plots shows that generally, for a fixed
number of sub-branches, increasing the simulation length increas-
es the accuracy, but the gain is smaller than increasing the number
of sub-branches. Simulation length only determines how close the
transition matrix of a coalHMM trained from simulated data is to
the true transition rate matrix calculated from a strict mathemati-
cal model. However, the bias in approximate likelihood comes

from a restricted state space, not a poor transition matrix. If the
state space is restricted, increasing simulation length does not
solve the bias problem because the bias still exists when the tran-
sition rate matrix is analytically derived (Dutheil et al. 2009;
Mailund et al. 2011). Put simply, increasing the simulation length
is not going to address any biases resulting from discretization the
state space of coalescent histories, or from using a Markov chain to
approximate the ARG.

The appropriate number of sub-branches and simulation
length to use depends on the internal branch length of the species
tree. For example, using two sub-branches and —r =1000 infers a
very good result on scenario 1 but does not work well on scenario
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3. Based on the plot, for a short internal branch (about one coales-
cent unit), two or three sub-branches with a —r of around 1000 are
sufficient. For alarger branch length (one to three coalescent units),
three or four sub-branches with a —r of about 3000 would suffice.
For branches longer than three coalescent units, more than four
sub-branches and a —r value higher than 3000 would be needed.

Running time is also a consideration when choosing hyper-
parameters. We studied the relationship between time taken by
the forward algorithm and the number of sub-branches for refin-
ing the species tree (Supplemental Fig. S2), the relationship be-
tween the running time and the length of simulation
(Supplemental Fig. S3), the time taken by simulating a long region
versus several short regions (Supplemental Fig. S4), and the rela-
tionship between the running time and the branch length of the
species tree (Supplemental Fig. S5).

Analysis of an empirical human-chimp—gorilla genomic
alignment

We reanalyzed the empirical human-chimp-gorilla sequences
from Hobolth et al. (2007) for comparison with previous models.
We reanalyzed target 106 (Chromosome 20) of Hobolth et al.
(2007) using VICAR and diCal2 and compared the results with
those reported by Hobolth et al. (2007) and Dutheil et al. (2009)
on the same data. The VICAR settings were the same as in the sim-
ulation study above. We used a recombination rate r=2 x 10~° per
site per generation and a mutation rate u =2.35 x 10~ per site per
generation, as they were estimated from pedigree data and report-
ed by Dutheil et al. (2009) for this target. The result is shown in
Figure 6. Generally, VICAR infers comparable results to those re-
ported by Hobolth et al. (2007) and Dutheil et al. (2009), whereas
diCal2 yields farther estimates for some parameters. For Ty and
Npce, all four methods infer about the same value. For Tycg,
VICAR’s estimate is closer to that of Dutheil et al. (2009) than
the other two.

Number of sub-branches
(Continued.)

1 2 3 4 5 1 2 3 4 5
Number of sub-branches Number of sub-branches

Analysis of an empirical Heliconius genomic alignment

Additionally, we used VICAR to analyze the demographic history
of three Heliconius butterfly species. Previous methods to construct
the evolutionary history of the Heliconius butterflies include a ge-
nome-wide maximum likelihood tree constructed on the whole-
genome alignment (Zhang et al. 2016) or reticulate phylogenetic
networks constructed using random samples of 10-kb windows
across the alignment (Edelman et al. 2019), but no previous
work attempted to infer the phylogenetic relationships, including
divergence times and population sizes, while accounting for
recombination. Van Belleghem et al. (2018) used pairwise

300000
AI v 2007
250000 r 2009
v = diCal2
VICAR
200000
1500001 v+
EI
100000
-
A
v L
50000 3 T3
A
0
THc THee Nhc Nhce
Figure 6. Inference results on target 106. The factorized normal varia-

tional posterior distribution of each parameter inferred by VICAR is shown
in blue. The red triangle shows the maximum likelihood solution obtained
by Hobolth et al. (2007). The green triangle shows the maximum likeli-
hood solution obtained by Dutheil et al. (2009). For the 2009 model,
we took the result after bias correction. The purple square shows the solu-
tion obtained by diCal2, and the blue circle is the VICAR solution. Given
that VICAR uses Bayesian inference, it provides confidence measures;
shown are standard deviations of the Gaussian posteriors.
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Node Heights

Population sizes

higher than that inferred by a whole-ge-

nome maximum likelihood tree but the
same as the Bayesian inference of
Kronforst (2008). For the population siz-
es, we infer a larger root ancestral popula-
tion size than the population size of the
cydno-timareta ancestor. There was no
previous estimate of this value, but the ef-
fective population size of H. melpomene
was inferred to be about 2 million
(Keightley et al. 2015).

We inferred local genealogies on a
region of 10,000 sites in one of the
alignments analyzed above. We also di-
vided the region into 1000-site nonover-
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Figure 7. Inference results on 17 windows extracted from the Heliconius alignment for H. cydno, H.

timareta, and H. numata. The MAP estimates for all windows are plotted in a box-and-whisker plot.

sequentially Markovian coalescent (PSMC) (Li and Durbin 2011;
Schitfels and Durbin 2014) to infer the stepwise changes of the his-
torical population sizes of the Heliconius erato and the Heliconius
melpomene clades, but the results only reflect the population size
changes that have occurred after the split of those populations.
In this study, we analyze three taxa, Heliconius cydno, Heliconius
timareta, and H. numata, from the melpomene clade and infer their
ancestral divergence times and ancestral population sizes. We
choose these three taxa because they do not show strong introgres-
sion and fit the three-taxon model. In future developments of our
method, introgression can be simultaneously analyzed, and we
can have a clearer picture of the demographic history of other
taxa in the Heliconius butterflies.

We took the whole-genome alignment from Edelman et al.
(2019) and randomly extracted 17 1-Mb windows across the ge-
nome following the pipeline described in that paper. We used a re-
combination rate r=5 x 107® per site per generation (Wilfert 2007)
and a mutation rate of y=2x10" per site per generation
(Van Belleghem et al. 2018). The settings for VICAR are nb=4
and —r =1000, and we used an N, popu-
lation size of 2 million. For BBVI search,
we used 50 samples per iteration to eval-
uate the gradient and 100 iterations of
gradient update. We used an improper
uniform prior U(0, inf) on node heights,
gamma prior on population sizes with a
shape parameter of two, and a scale pa-
rameter of 1 million. The results are
shown in Figure 7.

We observe a wide range of cydno-
timareta divergence times across different
chromosomes, with the median value
at about 4.8 million generations ago.
Assuming a generation time of 0.25 yr,
the median value is 1.2 Myr, which corre-
sponds well with the estimate of 1.1544
Myr from Zhang et al. (2016), as well as
the previous estimate of 0.9-1.4 Myr for
cydno—melpomene divergence (Kronforst
et al. 2013; Lohse et al. 2016). We infer a
median cydno-timareta—numata  diver-
gence time of 2.5 Myr. This number is

270000

272000

lapping windows and inferred the
topology of the maximum likelihood
tree using RAXML (Stamatakis 2014)
for each sliding window. The point of
this analysis is to understand the fre-
quency of alternating topologies along the alignment and to
test the no-recombinaton assumption of common multilocus
MSC methods. The results are shown in Figure 8.

We observe that window-based RAXxML analyses give rise to
much incongruence between the gene trees of individual loci
and the species tree. This is reflected in the fact that for 70% of
that genomic region, the local phylogeny differs from the species
tree. VICAR, on the other hand, finds that most of the region sup-
ports the species tree with a few sites supporting the two alterna-
tive topologies. These sites could have a strong signal that
potentially impacted the RAXML inferences.

This analysis further highlights the utility of our method,
even in the context of multilocus MSC methods.

Discussion

Coalescent methods are a fundamental tool of population genetics
and are increasingly standard in phylogenetics. In particular, the
MSC has emerged as a central model underlying a wide array of

274000 276000
Alignment column

278000

280000

Figure 8. Comparison of VICAR local genealogy inference with RAXML trees. RAXML was run on non-
overlapping sliding windows each of 1000 sites. The upper panel shows the topology of the local gene-
alogy at each site inferred by VICAR. The lower panel shows the topology inferred by RAXML at each
window. Coloring corresponds to different topologies: red corresponds to ((H. cydno, H. timareta), H.
numata), which is also the topology of the species tree; blue, ((H. cydno, H. numata), H. timareta); and
green, ((H. numata, H. timareta), H. cydno).
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methods for inferring species trees that account for the phenome-
non of incomplete lineage sorting. However, inference under this
model assumes that the data come from multiple loci such that
there is free recombination between loci and no recombination
within any locus. This assumption necessitates preprocessing the
data carefully before using them as inputs to the methods.
Although genomic regions are sampled far enough from each oth-
er so as to increase the likelihood of independence among loci, the
assumption of no recombination within individual loci is much
harder to satisfy when each locus is given by a sequence alignment,
as those sequence alignments need to be long enough for phyloge-
netic signal.

As whole genomes become more affordable and widely avail-
able, an alternative approach to inference of evolutionary param-
eters is to use methods that account for recombination. The
(multispecies) coalescent with recombination extends the MSC
and allows for modeling the evolution of genomic regions in the
presence of coalescent effects as well as recombination. However,
inference under this model has thus far proven much more chal-
lenging computationally than inference under the MSC. The
coalHMM framework was introduced for inferences under the
MSC with recombination and has offered a promising approach
for the analysis of large genomic alignments. In this framework, re-
combination is viewed as a spatial process operating along the ge-
nomic sequence, and an HMM whose states correspond to local
genealogies captures the evolutionary dynamics.

However, coalHMM methods have been difficult to general-
ize beyond a simple three-taxon ultrametric tree. In the work of
Dutheil et al. (2009), the investigators conducted detailed mathe-
matical analysis in order to parameterize the transition probabili-
ties of a four-state coalHMM. Such a manual approach of
parameterizing coalHMMs for different species trees is not tenable,
and more general inference methods were needed. Most recently,
diCal2 (Steinrticken et al. 2019) was introduced for obtaining
MLEs of evolutionary parameters under the coalescent (and MSC)
with recombination given an arbitrary tree structure of the species
or subpopulations. In this work, we presented the method VICAR,
which uses a different approach from that of diCal2, for general in-
ference under the MSC with recombination. VICAR uses variation-
al inference for sampling the posterior distribution of the
evolutionary parameters and uses simulations to derive an empiri-
cal coalHMM that is amenable to efficient likelihood computa-
tions. Furthermore, as VICAR explicitly builds a coalHMM, it
can be used in a straightforward manner for obtaining local
genealogies for the individual sites (or blocks of sites) in a genomic
data set. We showed that VICAR obtains either comparable or more
accurate inferences than diCal2 on a simulated three-taxon data
set. We discussed the potential direction for scaling up the method
to larger data sets (in terms of the number of genomes) in a divide-
and-conquer fashion in the Supplemental Material (for the divide-
and-conquer process, see Supplemental Fig. S1; for the results of a
simulation study on a four-taxon data set, see Supplemental
Tables S1-S3).

However, it is important to note that in their current imple-
mentations, diCal2 is much more optimized computationally
than VICAR (e.g., implementing an algorithm for grouping neigh-
boring sites into single large blocks). One limitation of the factor-
ized Gaussian variational posterior used by VICAR is that the
inferred variance of each individual factor will converge to the
smallest variance of the true posterior (Bishop 2006). As a result,
the standard deviations of the Gaussian posteriors inferred by VIC-
AR may not be reliable. Another limitation of VICAR at this stage is

the possibility of sampling illegal configurations during Monte
Carlo gradient estimation. Because each node height and each pop-
ulation size have an independent Gaussian posterior, a configura-
tion of child node having higher node height than parent node,
or of a branch with negative population size, could be sampled dur-
ing Monte Carlo samplings of the posterior for gradient estimation.
To avoid this problem, VICAR currently needs to have an initializa-
tion that sets each node far enough from each other and sets each
population size far from zero. Future methods that build on VICAR
can explore whether different parameterizations and/or variational
families can address these quirks.

The runtime scalability of our method depends primarily on
the number of unique discretized coalescent histories simulated
during variational inference. This is a consequence of the forward
algorithm, which has a running time of O(k?n), where k is the
number of states, n is the number of sites, and each state corre-
sponds to an observed discretized coalescent history. Each rooted
tree topology corresponds to at least one valid coalescent history,
and because the number of topologies grows superexponentially
with the number of taxa (Foulds and Robinson 1981), so must
the number of possible coalescent histories. For each combination
of species and gene topology, the number of coalescent histories is
variable but can be very large (Rosenberg and Degnan 2010;
Disanto and Rosenberg 2019). Having more than one bin per
branch will further increase the possible number of coalescent his-
tories for each topology.

However, the number of states may be far less than the num-
ber of valid coalescent histories for several reasons. First, it is bound
by the number of loci (segmented by recombination breakpoints)
in each simulated genome, which may be smaller than the size of
the set of valid coalescent histories. Second, if branch lengths are
long and/or population sizes are small, the frequency of coalescent
histories more congruent with the species phylogeny will increase
(and the frequency of less congruent histories will decrease).
Therefore, to fully understand the scaling properties of our method
in relation to parameters such as the number of taxa, branch
lengths, population sizes, and species topology will require fol-
low-up studies that make advances through theoretical or empiri-
cal analysis regarding the distribution of observed unique
discretized coalescent histories.

Both diCal2 and VICAR assume that the demographic, or evo-
lutionary, structure is known (the tree topology) and focus on esti-
mating the (continuous) evolutionary parameters. Both methods
can be coupled with a tree search procedure for a straightforward
implementation of evolutionary history inference, including the
topology, under the coalescent and MSC with recombination.
However, such an implementation could face many of the chal-
lenges associated with phylogenetic inference in general owing
to the discrete nature of the search space as well as the complexity
of the likelihood surface and posterior distribution. Furthermore,
although in this work we focused on tree-structured models, the ap-
proach underlying VICAR is extendible to network structures, thus
allowing for modeling gene flow as well, which we identify as a di-
rection for future research. In principle, all kinds of generalizations
are possible as long as they can be simulated. Examples would in-
clude nonconstant demographic functions such as linear, stepwise,
or exponential changes in population sizes, as well as ancient hy-
bridization. Our new approach will be immediately useful to re-
searchers working at the intersection of population genetics and
phylogenetics but also represents an additional step forward in
terms of applying coalHMMs to biological systems beyond the rel-
atively simple human-chimp-gorilla tree.
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Methods

Simulation-based likelihood approximation

For a fixed species tree topology ¥, given a specific ® and a se-
quence alignment S, we seek to compute the likelihood of © given
by P(S10). Note that this likelihood marginalizes over the local ge-
nealogy at each site. Algorithm 1 gives the procedure for approxi-
mate likelihood computation.

Algorithm 1: Approximate likelihood

Input: Species tree topology ¥. Sequence alignment S. Continuous
parameters ©. Number of sub-branches nb. Simulation length 7.
Output: Approximate likelihood P(S|0©).

1.G=01,92, .., 9 < CR(¥, 0, p, );
2. M < BuildcoalHMM(G, nb, u);
3. L < Forward(S, M);

4. return L;

Coalescent with recombination (CR) runs a coalescent-with-
recombination simulator to generate a sequence G of k local gene-
alogies corresponding to ¢ sites under the model specified by ¥
and ©. Here, each of the k genealogies correspond to a contiguous
genomic region of one or more sites, the genomic regions of the ge-
nealogies are pairwise disjoint, and the concatenation of the k ge-
nomic regions yields a region of £ sites. Each of the k genomic
regions is recombination-free, and every two consecutive regions
are separated by at least one recombination event. In the imple-
mentation, we use msprime (Kelleher et al. 2016), a reimplementa-
tion of Hudson’s classical ms simulator (Hudson 2002) for efficient
coalescent simulations. There is clearly a trade-off between compu-
tational requirements and accuracy when setting the value of 7,
which we discuss in the Results section.

After the sequence G of gene trees is produced,
BuildcoalHMM empirically builds a coalHMM as follows. In its ba-
sic version, BuildcoalHMM builds a coalHMM with one state per
coalescent history (Degnan and Salter 2005) given the species tree.
The branch lengths of all the local gene trees simulated by msprime
having the same coalescent history are averaged out to obtain the
branch lengths of a representative tree for that hidden state. For ex-
ample, for the species tree ¥ in Figure 94, the basic coalHMM would
have four states corresponding to the four coalescent histories HC1,

HC2, HG, and CG. This is precisely the model used by Hobolth et al.
(2007). However, as discussed elsewhere (Dutheil et al. 2009), having
one state per coalescent history could result in unidentifiability
of some of the parameters. To ameliorate this problem,
BuildcoalHMM in our method can refine the states further by seg-
menting branches in the species tree into contiguous nonoverlap-
ping sub-branches and refining individual coalescent histories
based on this segmentation. This concept is illustrated in Figure
9B, where the internal branch separating (H,C) from the root of
the tree is segmented into three sub-branches. Now, coalescent his-
tory HC1 of Figure 9A is refined into three coalescent histories,
HC1.1, HC1.2, and HC1.3, each corresponding to a unique mapping
of the coalescent history of h and c to a sub-branch. The number of
sub-branches is controlled by the parameter nb in Algorithm 1. We
explore the impact of nb on the accuracy and computational require-
ments in the Results section. By refining the hidden state space this
way, we avoid the time-consuming debiasing procedure used by
Dutheil et al. (2009), which involves conducting a large set of simu-
lations to train linear models to predict the bias of each parameter.
Finally, the transition probabilities are derived empirically from
the simulated coalescent histories, estimating the rate of transition
from one history to another by simple counting of the number of
transitions in the simulation. By empirically constructing the
coalHMM from simulated sequence, we also potentially reduce the
state space explosion problem of dealing with many populations
(Mailund et al. 2012; Cheng and Mailund 2020). Only coalescent
histories that appear in the simulation are taken into account, and
states that are not simulated are omitted without affecting the accu-
racy of the likelihood. The emission probabilities for each state at
each alignment column of S are computed by Felsenstein’s pruning
algorithm (Felsenstein 1981) using the representative tree of each
state. In the implementation, we use the BEAGLE library (Ayres
et al. 2012) for efficient implementation of Felsenstein’s algorithm.

Finally, once the coalHMM is built, Forward runs the for-
ward algorithm (Durbin et al. 1998) to compute p(S) as an approx-
imation of the likelihood P(S|0).

Bayesian formulation and variational inference

As noted above, the data in our case is a sequence alignment S on
the set of taxa of the species tree. We are interested in the posterior

A )/ HC1 HC2 HG CG
H C G h c g h c g h g ¢ c g h

HC1.1 HC1.2

HC1.3

AAMAA

cgh g cc

Figure9. The coalHMM model. (A) The four states of a standard coalHMM that corresponds to the species tree \P'. (B) The six states of a refined coalHMM
that corresponds to the species tree ¥ when its internal branch is broken into three sub-branches.
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P(O|S) o< P(S|0)p(0®), where we assume a prior distribution on ©.
Exact computation of the posterior is intractable, so we use varia-
tional inference to find an approximate distribution to p(0|S). In
variational inference, we posit a simple family of distributions
over O and try to find the member of the family closest in terms
of the Kullback-Leibler (KL) divergence to the true posterior
p(0|S) (Bishop 2006). Denote the variational distribution we posit
on O as Q(O|1r), governed by a set of free parameters A; our goal is to
approximate p(0|S) by optimizing A to make Q(6|1) as close in KL
divergence to p(®|S) as possible. In variational inference, we opti-
mize the evidence lower bound (ELBO), given by

L) := Eqen[logp(S, 0) —1og Q(OIN)]= Eqen [ log P(S10)

§)
+1ogp(®) — log QON)].

Maximizing £(\) amounts to minimizing the KL divergence from
Qto p. To maintain the general nature of VICAR and minimize the
burden on users, we use BBVI (Ranganath et al. 2014). BBVI s a sto-
chastic optimization algorithm using noisy estimates of the gradi-
ent to maximize the ELBO, without the need for model-specific
derivations (hence the “black box”). The gradient of the ELBO
(EqQ. 1) with respect to A can be written (Ranganath et al. 2014) as

VAL = Eqn [V log Q@) - (1og P(S|8) + log p(©)
~logQ®N)], @

and its noisy unbiased Monte Carlo estimate is
1
VLA [ValogQO™IN) - (Iog P(S|O™) + log p(©™)
n=1

—logQ(@®"™N)], @)

where @™ ~ Q(®)) is the nth of N samples from the current var-
iational distribution. All parts of the equations are known:
V) 1og Q(®™)) is the score function (Cox and Hinkley 1979) of
the current variational distribution, an approximation of
log P(S|©0™) is computed by Algorithm 1 above; log p(®™) is the
prior, and log Q(© “|A) is computation about the variational distri-
bution itself. Using Equation 3, we can compute noisy gradients of
L(\) from samples of the variational posterior, and therefore, we
are able to do stochastic gradient ascent in the space of £L(\) to op-
timize A.

Factorized approximation

As the variational family of Q(©), we assume the variational distri-
bution to be a factorized Gaussian. Each parameter in © has a uni-
variate Gaussian with a mean and a standard deviation. That is,
each population size and node height of the species tree that we
are interested in is independent and has a Gaussian variational
posterior with its own mean and standard deviation. We have

M M
QON) =[] QOiN) =[N ®ilw;, o), )
i=1 i=1

where M =|0| is the number of continuous parameters (divergence
times and population sizes) associated with .

The per-component gradient of the ELBO with respect to each
component of A then becomes

Vi £ = Eqen [V, 10g Qi(0;\;) - (1og P(S|0) + log p(O)
—1og Qi(®iI\))], )

where A, belongs to the ith factor of the factorized variational dis-
tribution. For factorized Gaussian, each factor has two A compo-

nents, mean and standard deviation. Taking all together,
Algorithm 2 gives the general framework of VICAR. We note that
under the BBVI framework, other variational families can serve
as a drop-in replacement of the factorized Gaussian. Our method
is easily generalizable to many other forms of variational distribu-
tions. In future implementations, we plan to support additional
variational distributions so that users can choose a more flexible
variational family and, hence, better approximation posteriors.

Algorithm 2: VICAR

Input: Species tree topology ¥. Sequence alignment S. Number of sub-
branches nb. Simulation length . Number of iterations T.
Number of samples per iteration N. Learning rate a.

Output: 1,.p of the optimized variational posterior Q(0|4).

1. Initialize 2 randomly;
2.fort«<1toTdo

3.| forn<1toNdo
4.0 | ™~ qon;

5.| ford«1toDdo
~ 1 &
6. VL= N Z [V\, log Q,v((H)E")M,v) - (ApproximateLikelihood
n=1
(¥, 5,0, nb, £) + Prior(®™) — log QO \))];
7. Ng < Ng+aV\, L

8. return %;

Variance reduction and adaptive learning rate

Although Algorithm 2 gives the basic framework of the method, a
few more challenges remain to be addressed to make it useful. In
particular, the variance of the Monte Carlo estimator of the gradi-
ent given in Equation 3 can be too large to be useful. To reduce the
variance of the sampled estimator, we use control variates (Ross
1997; Ranganath et al. 2014). Control variate estimators are a fam-
ily of functions with equivalent expectation but smaller variance
than the function being approximated by Monte Carlo. Details
of the application of control variates to BBVI can be found in the
work by Ranganath et al. (2014).

Another crucial challenge is setting the learning rate sched-
ule. A large learning rate might overshoot the optimum, but a
small learning rate might never converge. Moreover, the variation-
al distribution in our problem has different scales (the scale of the
population sizes and the node heights are different), so we would
like our learning rate to be able to handle the smallest scale while
not being too small for the largest scale. As a result, we implement
the AdaGrad (Duchi et al. 2011) optimizer to adaptively set the
learning rate. AdaGrad adapts each learning rate by scaling it in-
versely proportional to the square root of the sum of all the squared
past values of the gradient, resulting in greater progress in the more
smoothly sloped direction of the parameter space and smaller pro-
gress otherwise. AdaGrad is a per-parameter updater, meaning it
has a different adaptive learning rate for each parameter, address-
ing the multiscale problem of our distribution. Other off-the-shelf
optimizers like RMSProp (Tieleman and Hinton 2012) and Adam
(Kingma and Ba 2015) can also be easily implemented within
our framework.

Software availability

VICAR has been implemented in Java and is freely available as part
of the software package PhyloNet (Than et al. 2008; Wen et al.
2018), available for download at https://github.com/
NakhlehLab/PhyloNet and as Supplemental Code.
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