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Targeting brain microvascular endothelial cells: a 
therapeutic approach to neuroprotection against 
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Introduction
The blood-brain barrier (BBB) is the interface between 
blood components and neural tissue within the brain and 
spinal cord, which regulates homeostasis of the brain mi-
croenvironment for correct neuronal activity. The BBB is 
composed of four main cellular elements, namely, brain 
microvascular endothelial cells (BMECs), astrocyte end-feet, 
microglial cells, and pericytes. Brain function is maintained 
by BMECs via the BBB (Bleau et al., 2015). In contrast to 
the peripheral microvasculature, the brain microvasculature 
(with a blood vessel diameter < 20 μm) not only maintains 
blood supply, but also facilitates information transfer be-
tween neurons and glial cells (Wang et al., 2015). After years 
of research, BMECs are now recognized not only as a simple 
anatomical and physiological barrier, but also as a highly 
active metabolic system that synthesizes various materials 
to nourish nerves and regulate vasomotor function (Wang 
et al., 2015). Moreover, BMEC dysfunction can trigger brain 
tissue damage, such as stroke, traumatic brain injury, and 
neurodegenerative diseases, and these injuries exacerbate 
BMEC dysfunction via a feedback loop (Krueger et al., 2015; 
Liu et al., 2015). This review will focus on the recent prog-
ress made in determining the role of BMECs in stroke, as 
well as understanding the changes in cellular structure and 
function of BMECs after stoke, and emerging opportunities 

for potential therapeutic strategies.

Morphological Characterization of BMECs
The brain microvascular endothelium, a thin layer of con-
nected and anchorage-dependent cells, which is influenced 
by chemical, physical, and mechanical stimuli, constitutes 
the interface between the bloodstream and the deformable 
solid vascular wall. At the microscopic level, endothelial cells 
(ECs) are flat with a central, elongated nucleus. ECs contain 
Weibel-Palade bodies, long rod-shaped storage and secretory 
organelles containing various factors such as von Willebrand 
factor and P-selectin. Electron microscopy studies of the 
BBB show that BMECs possess morphological and metabolic 
characteristics that are distinct from those found in periph-
eral tissue (Eliceiri et al., 2011). 

In contrast to peripheral ECs, BMECs contain signifi-
cantly fewer pinocytotic vesicles (which are sometimes 
completely absent), more mitochondria (indicative of im-
portant metabolic activity) (Villegas and Broadwell, 1993), 
and polarized expression of specific ion and peptide trans-
porters (Brown et al., 2007). These carriers, which are locat-
ed in the basement and apex membranes, tend to be highly 
stereospecific and participate in the selective transport of 
small molecules. Endothelial cytoplasm lacking fenestra-
tions is typically present in peripheral tissue capillaries, and 
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under normal circumstances, non-specifically blocks blood-
borne hydrophilic molecules and cells from entering neuro-
nal tissue through the vessel wall (Engelhardt and Wolburg, 
2004).

A thin layer called the glycocalyx, a hydrated mesh of neg-
atively charged glycosaminoglycans, proteoglycans, glycopro-
teins, and glycolipids secreted by ECs, is located between the 
circulating blood and endothelium. The interface between 
BMECs is approximately 10–20 nm thick. Normally, ECs are 
connected at a junctional complex comprised of gap junc-
tions, adherent junctions, and tight junctions, which mainly 
regulate information transfer (Lu et al., 2008) and mediate 
the so-called transcellular and paracellular pathways (Dejana 
et al., 2008). The BBB junction is well developed and con-
tains numerous tight junctions. The two different structures 
form adhesion complexes between cells, generating a highly 
selective barrier against molecules through the vessel wall 
(Bazzoni, 2004; Coisne and Engelhardt, 2011; Dejana and 
Giampietro, 2012; D’Agnillo et al., 2013), and consequent-
ly subjecting junction proteins to insult during acute or 
chronic brain injury. Cytoplasmic proteins link membrane 
proteins to actin, the primary cytoskeletal protein for main-
tenance of structural and functional integrity of the vascular 
endothelium (Ballabh et al., 2004).

Each gap junction consists of two connexons, which cor-
respond to contribution of each of two partner cells. Gap 
junction gating is regulated by connexin phosphorylation, 
and is much less frequent than tight junction gating in cere-
brovascular ECs (Nielsen et al., 2012).

 Adherent junctions are mainly formed by members of the 
cadherin family of adhesion proteins, which regulate actin 
shrinkage to alter connections between cells, and thereby 
control barrier permeability by activating cytosolic and cell 
membrane proteins (Harrison et al., 2011). ECs express 
relatively high levels of two cadherins: vascular endothelial 
(VE)-cadherin, a cell-type-specific cadherin, and neuronal 
cadherin (N-cadherin). These cadherins are also present in 
other cell types such as neural cells and smooth muscle cells 
(Bazzoni, 2004).

Tight junctions regulate the paracellular flux of hydrophil-
ic molecules across the BBB, and play a crucial role in the 
BBB, the ultrastructure of which appears as sites of apparent 
fusion involving the outer leaflets of the plasma membrane 
of adjacent ECs (Ballabh et al., 2004). Tight junctions con-
sist of three integral membrane proteins, namely, claudins 
(e.g., claudin-5) (Pachter et al., 2003; D’Agnillo et al., 2013), 
occludin (Pachter et al., 2003), and junction adhesion mole-
cules (JAM) (Pachter et al., 2003), as well as several cytoplas-
mic accessory proteins including ZO-1, cingulin, VE-cad-
herin, and PECAM-1. Claudins form tight junction strands 
and are believed to be the major transmembrane proteins 
of tight junctions. In immune replica electron microscopy, 
claudins exclusively localize to tight junction strands. Among 
the 24 members of the claudin superfamily, claudin-1 and 
claudin-5 are primarily expressed in the ECs of mammalian 
capillaries, particularly brain capillaries (Brown et al., 2007). 
Occludin, which was the first membrane protein identified 
within tight junctions, forms a homophilic dimer with other 

cells. Moreover, upon transfection into cells without tight 
junctions, occludin forms a tight junction-like structure. 
Normal expression and localization of other junctional pro-
teins may compensate for occludin loss (Cummins, 2012). In 
a previous study, occludin-deficient mice exhibited complex 
gross and histological phenotypes including brain calcifi-
cation. These findings indicate that occludin exerts more 
complex functions than simply serving as a building block 
in ECs and other tissues (Liu et al., 2012). The JAM family 
is comprised of three members: JAM-1, JAM-2, and JAM-
3, which are expressed in rodent brain. Of these proteins, 
JAM-1 and JAM-3 are expressed in ECs (Yakubu et al., 
2007). Nevertheless, understanding of the function of JAM 
is incomplete, and further studies are needed to determine 
the function of this family in the BBB. BMECs and tight 
junctions, as morphological components of the BBB, are 
closely packed and contain fewer plasma membrane vesicles 
and fenestrations than the analogous intervals in peripheral 
capillary ECs (Table 1). 

Functions of BMECs
Forming the BBB and mediating transport
BMECs are a major cellular element of the BBB. Under 
physiological conditions, water-soluble substances and small 
molecules slowly pass through the BBB, whereas lipid-solu-
ble molecules pass through more quickly. Studies have found 
that several compounds, such as glucose, amino acids, and 
exogenous drugs, enter the brain tissue though special trans-
port proteins that are expressed in BMECs. These proteins 
include the transferrin receptor (Ohtsuki et al., 2013), insu-
lin receptor (Begg, 2015), insulin-like growth factor receptor 
(Wang et al., 2013), and angiotensin receptor (Asashima et 
al., 2003). ECs also provide a metabolic barrier, expressing 
a number of enzymes that can degrade harmful and ther-
apeutic molecules (Walter et al., 2015). Immune-mediated 
changes also specifically affect the structure and function of 
the BBB under normal physiological conditions and during 
cerebral pathological processes (Serres et al., 2009; Rochfort 
and Cummins, 2015).

BMECs in brain vascular contraction and diastole
The vascular endothelium is a highly active metabolic system 
that synthesizes various vascular regulatory factors to adjust 
the microcirculation of the cerebral tissue. Thus, integrity 
and function of EC structure is significant for vascular tone. 
Moreover, vasoconstrictors and vasodilators are balanced 
under physiological conditions (Gracia-Sancho et al., 2015).

Endothelin and nitric oxide
Research has now confirmed that vascular ECs synthesize and 
release endothelin-1 (ET-1) and nitric oxide (NO) (Yakubu 
and Leffler, 1999; Salani et al., 2000; Yakubu et al., 2007). 
Endothelin-1 is involved in blood vessel contraction and pro-
motes EC proliferation, whereas NO relaxes vascular smooth 
muscle and inhibits vascular smooth muscle cell proliferation 
(Yakubu and Leffler, 1999; Salani et al., 2000; Yakubu et al., 
2007). Under normal circumstances, ET-1 and NO are always 
in a dynamic balance to maintain function of vascular tone. 
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Disruption in this balance can trigger the occurrence of par-
ticular diseases, including stroke, which are the result of cere-
bral blood vessel dysfunction (Yakubu et al., 2007).

ET-1 was first identified, separated, and purified by Yanag-
isawa et al. (1988) and is an important vascular endothelial 
factor, with its synthesis controlled by intracellular Ca2+ sig-
nals, particularly after cerebral hemorrhage. The ET family 
contains three members, namely, ET-1 (expressed in ECs), 
ET-2 (expressed in kidneys and jejunum), and ET-3 (ex-
pressed in adrenal glands, jejunum, and kidneys) (Maguire 
and Davenport, 2015). The plasma concentration of ET is 
usually low, approximately 0.2–5 pg/mL, with a short half-
life of 4–7 minutes. Brain tissue contains abundant ETs, 
particularly in the hypothalamus and striatum (Maguire and 
Davenport, 2015). Endothelin is synthesized through various 
signaling pathways in different ECs, and is also generated but 
not stored in BMECs (Stanimirovic et al., 1993; Yakubu and 
Leffler, 2002). In ECs, a certain amount of ET precursor is 
stored and will be immediately converted into ET under spe-
cific physiological and pathological conditions e.g., cold, hy-
poxia, fluid shear stress, and production of vasoactive agents 
(such as adrenaline, angiotensin, vasopressin, thrombin, and 
endotoxin). Among these factors, hypoxia and shear forces 
are the main stimuli (Yakubu and Leffler, 1999; Maguire and 
Davenport, 2015). Endothelin decreases local brain blood 
flow via vasoconstriction, regulating thrombus formation 
though a platelet interaction, and thereby inducing cerebral 
infarction in several cases (Mamo et al., 2014). A previous 
study reported significantly increased ET-1 expression in 
animals with subarachnoid hemorrhage (SAH), hence ET-1 
influences cerebral microcirculation following SAH (Lei et 
al., 2015).

NO is a simple, small biological radical and a multifunc-
tional gaseous molecule, which is increasingly recognized 
to function as a signaling molecule (Fukumura et al., 2006; 
Forstermann and Sessa, 2012). Three nitric oxide synthase 
(NOS) genes with distinct tissue localization and proper-
ties have been identified. These genes are neuronal NOS 
(nNOS), inducible NOS (iNOS), and endothelial NOS 
(eNOS), with the latter regulating endothelial function 
(Kim et al., 2011). Many investigators have detected NO 
production and eNOS activity using BMECs as a model. 
NO released into the vascular lumen functions as a potent 
inhibitor of platelet aggregation and vascular wall adhesion. 
Stimuli such as bradykinin, histamine, substance P, adenos-
ine, and fluid shear stress upregulate NO expression and 
cause vasodilatation. Among these stimuli, fluid shear stress 
is the most established influencing factor. Furthermore, 
NO-mediated vasodilatation plays an important role in ar-
teries rather than veins (Vanhoutte and Gao, 2013; Troelsen 
et al., 2015). Studies in mice deficient in eNOS (eNOS−/−) 
show increased levels of amyloid-beta protein precursor 
(AβPP) and beta-site AβPP cleaving enzyme (BACE)-1 in 
the cerebral microvasculature and brain tissue (Austin et 
al., 2010, 2013).

Many physiological processes are promoted by NO and 
mostly synthesized though eNOS. These processes include 
smooth-muscle relaxation, neurotransmission (Mitsumori 

et al., 2011), inhibition of platelet aggregation, and adhesion 
to collagen and the vascular endothelium (Fukumura et al., 
2006). Studies have also shown that eNOS inhibition reduces 
BBB disruption (Han et al., 2006; Beauchesne et al., 2009), 
and excess NO directly alters the BBB (Heo et al., 2005). 

Thromboxane A2 (TXA2) and prostaglandin I2 (PGI2) 
TXA2 and PGI2 are biologically active metabolites of ara-
chidonic acid. When stably balanced, these factors are widely 
implicated in a range of physiological and pathological pro-
cesses such as promoting platelet aggregation, vasoconstric-
tion, and cancer proliferation (Smyth, 2010; Ekambaram et 
al., 2011). Additionally, TXA2 and PGI2 are associated with 
pathological processes such as microcirculatory dysfunction. 
TXA2 was one of the first prostaglandins to be identified 
from washed platelets (Hamberg et al., 1975), while PGI2 (or 
prostacyclin) was first reported by Needleman and Vane in 
1976 (Needleman et al., 1976), and is the strongest known 
platelet aggregation inhibitor. PGI2 is expressed in many cell 
types, in particular ECs. A dynamic balance between TXA2 
and PGI2 is required for vasomotor function. Dysfunction 
of the microvascular endothelium, especially during hypoxic 
ischemic injury, disrupts the TXA2/PGI2 balance, result-
ing in platelet activation and subsequent thrombogenesis 
(Smyth, 2010).

Involvement of BMECs in platelet activation and adhesion
BMECs are also involved in platelet activation. It is well 
known that von Willebrand factor is a multimeric plasma 
glycoprotein mainly synthesized in ECs, and a marker of 
acute and chronic EC activation (Perutelli and Molinari, 
2007). With high shear stress, platelet adhesion at the site 
of vascular damage mainly functions as a bridge between 
the injured subendothelium and platelet receptors. Under 
physiological conditions, platelets circulate in every tissue in 
a resting state, and become activated by blood flow changes, 
vascular injury, or chemical stimuli. Although platelets do 
not normally physically interact with microvascular ECs, 
activated platelets bind to the wall of inflamed microvessels 
by directly attaching to BMECs or leucocytes, which are 
already adhered to the vessel wall (Waldner et al., 2012). 
Lack of platelet adhesion to healthy ECs has been partially 
attributed to inhibitory mechanisms involving NO, prosta-
cyclin, and adenosine, which are normally generated by the 
vascular endothelium (Stokes and Granger, 2012). Although 
free radicals and thrombin are overexpressed, downregulated 
expression of endothelial NO and PGI2 aggravates platelet 
adhesion to BMECs, which in turn exacerbates microcircula-
tory dysfunction.  

Protective effect of BMECs on brain tissue and neurons
Similar to many cells in other organs, BMECs exert a para-
crine function (Li et al., 2009). The neurovascular unit, 
which is composed of ECs, astrocytes, and neurons, enables 
critical and metabolic tissue viability thresholds with cellular 
interactions that constitute the BBB. This unit also main-
tains normal physiological function of neurons and revas-
cularization of injured vessels. For example, BMECs secrete 
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neurotrophins such as brain-derived neurotrophic factor 
(BDNF), insulin-like growth factor 1 (IGF-1), and vascular 
endothelial growth factor (VEGF) (Shimizu et al., 2012).

BDNF is involved in ensuring synaptic plasticity and neu-
ronal survival (Suliman et al., 2013), and is synthesized in 
the central nervous system at low levels during development 
and higher levels during the postnatal period. However, in 
addition, BDNF is also synthesized and secreted by BMECs 
(Leventhal et al., 1999; Bayas et al., 2002; Kim et al., 2004). 
A previous study showed that BDNF secretion in circulating 
blood increases during early acute ischemia (up to 3 hours). 
After 48 hours, another peak is produced by activation of the 
target of rapamycin complex 1 (TORC1)/cAMP response el-
ement-binding (CREB)/BDNF signaling pathway (Gallo and 
Iadecola, 2011). 

IGF-1 is a circulating hormone generated not only in the 
liver, but also locally in many cell types (such as neurons, 
glia, and cerebral microvascular ECs) (Wang et al., 2013), 
and is essential for nervous system development, hippocam-
pal neurogenesis, and neurotransmission. In animal models 
of stroke, IGF-1 exerts neuroprotective effects, and high 
serum IGF-1 levels immediately after the onset of ischemic 
stroke are associated with improved neurological recovery 
and functional outcome. Hence, the evolution of cerebral 
infarction is affected by endogenous IGF-1 levels (De Smedt 
et al., 2011).

VEGF is a neuronal and glial trophic factor (Fusco et al., 
2014) that is synthesized by several cell types including ECs, 
macrophages, activated platelets, T lymphocytes, smooth 
muscle cells, kidney cells, keratinocytes, osteoblasts, cancer 
cells, and brain cells (e.g., astrocytes and neuronal stem cells). 
Furthermore, VEGF promotes proliferation and survival 
of ECs and stimulates NO-dependent vasodilation. More-
over, VEGF influences vasculature formation and increases 
vascular permeability. In the brain, VEGF participates in 
angiogenesis during embryonic and postnatal development 
(Nowacka and Obuchowicz, 2012). 

In addition, BMECs also secrete matrix metalloproteinases 
(MMPs), which are key components in proteolytic BBB dis-
ruption during ischemic stroke, and contribute to vascular 
edema, hemorrhagic transformation, and leukocyte infiltra-
tion (Del Zoppo, 2010; Reuter et al., 2013) (Figure 1).

Structural and functional changes in BMECs during stroke
Stroke is the second leading cause of death worldwide and 
the leading cause of acquired disability in adults in most 
regions. Stroke can be classified as ischemic or hemorrhag-
ic, with approximately 80% of stroke cases being ischemic 
(O’Donnell et al., 2010; Wang, 2011). In the 17th century, 
Johann Jacob Wepfer defined stroke as a vascular problem. 
The history of research on stroke pathophysiology reflects 
a shift in focus from a purely vascular conception to the in-
volvement of a complex interplay of biochemical and molec-
ular mechanisms involving all brain cell types, particularly 
BMECs, in salvage or demise of tissue affected by stroke. In 
addition, the neurovascular unit plays a crucial role in stroke 
development. Under physiological conditions, integrity of 
the structure and function of BMECs maintain the BBB, but 

change with stroke progression. Damaged microvascular 
ECs trigger a series of cerebrovascular injuries, which in turn 
exacerbate BMEC injury. However, the precise relationship 
between BMECs and brain injury remains unclear. Recent 
studies have shown that patients with BMEC dysfunction, 
tight junction degradation, and disrupted cytokine secretion 
and electrolyte balance are vulnerable to stroke (Lapi and 
Colantuoni, 2015; Rochfort et al., 2015) (Table 2). 

BMECs in ischemic stroke
During ischemic stroke, oxygen and nutrient deprivation 
activates proteases, resulting in degradation of tight junc-
tion proteins in BMECs and increased BBB permeability 
(Hamann et al., 2003). An in vitro study found that human 
BMECs participate in MMP-mediated BBB breakdown 
during ischemic stroke by creating a proinflammatory state 
with enhanced MMP-2 production and attenuated tissue in-
hibitor of metalloproteinases 1 (TIMP-1) release, an endoge-
nous MMP inhibitor (O’Donnell et al., 2010).

Ultrastructural observations show that capillary tight 
junctions can be classified into various stages of degradation, 
which indicates that a large volume of blood-brain fluid and 
components (MD > 360 kDa) enters the brain tissue via 
capillaries. However, under physiological conditions, this 
large volume of blood-brain fluid and blood fluid compo-
nents cannot pass through the BBB (Hamann et al., 2003). A 
previous microstructural examination revealed that BMECs 
show endoplasmic reticulum swelling and formation of nu-
merous large cytoplasmic vacuoles, while mitochondria in 
the cytoplasm of most cells have disrupted cristae (Garbu-
zova-Davis et al., 2013). Microvilli fragments were observed 
to freely float in the capillary lumen, in addition to evident 
cristae disruption in the mitochondria of ECs. Large auto-
phagosomes were detected in almost all ECs, with some au-
tophagosomes extending from the lumen to the basal lamina 
in attenuated cell portions (Garbuzova-Davis et al., 2013). 
Osmiophilic debris in areas of microvessel damage indicates 
ruptured autophagosomes. With increasing time, nuclear 
chromatin pyknosis and BMEC swelling also worsened. After 
1–2 weeks, some swollen BMECs burst into and narrowed 
the vessel lumen. In addition, ischemic stroke induced other 
EC changes, such as loss of matrix ligands, EC and astrocyte 
integrin receptors, and expression of members of several 
matrix-degrading protease families. This further leads to in-
creased BBB permeability (Del Zoppo and Mabuchi, 2003). 
However, several ultrastructural studies have shown that 
tight junction changes are rarely observed 5–25 hours after 
ischemic stroke (Krueger et al., 2013). Along with ultrastruc-
tural changes, microvascular endothelium functional chang-
es are also found. 

ET-1 is a potent vasoconstrictor that induces direct angio-
genic effects on ECs (Spinella et al., 2010). Piamsomboon 
showed that enhanced ET-1 expression in the serum and 
cerebrospinal fluid of patients with cerebral infarction is 
ameliorated using prostaglandin E1 (PGE1), which protects 
against brain ischemia-reperfusion injury (Piamsomboon 
et al., 2007). Expression of ET-1 is upregulated during the 
acute period of ischemic stroke. Moreover, no detectable 
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Table 1 Connected junctional complex of brain microvascular endothelial cells

Name Family Formation Formation members

Junctional 
complex

Gap junctions (GJs) Each gap junction is made up of two 
connexons 

None

Adherent junctions (AJs) Cadherin family of adhesion proteins Vascular endothelial (VE)-cadherin

Neuronal (N)-cadherin

Tight junctions (TJs) Integral membrane proteins Claudin family: claudin-1 and claudin-5

Occludin family

Junction adhesion molecules (JAM) family: 
JAM-1 and JAM-3 

Cytoplasmic accessory proteins –

Transcellular and paracelluar pathways – –

Table 2 Changes in structure and function of brain microvascular endothelial cells during stroke

Changes Components

Stroke

Ischemic stroke Subarachnoid hemorrhage 

Structure Tight junctions Tight junction degradation –

Ultrastructure 
observation

Endoplasmic reticulum swelling Edema

Numerous large vacuoles formation Cell nucleus pycnosis of brain microvascular endothelial 
cells

Fragments of microvilli floating free in the 
capillary lumen

Degranulation of rough endoplasmic reticulum

Disruption of the cristae in the mitochondria Disruption of the cristae in the mitochondria

Autophagosomes Leukocyte receptors and adhesion molecule increased

Functions Endothelin-1 ↑ (No relationship) ↑ (Destructive)

Nitric oxide ↑ (Protective and destructive ) ↓ (Destructive)

Thromboxane A2 ↑ (Destructive) ↑ (Destructive)

Prostaglandin I2 ↑ (Protective) ↓ (Destructive)

Platelet activation ↑ (Destructive) ↑ (Destructive)

Brain derived 
neurotrophic factor 

↑ (Protective) ↑ (Protective)

↑ : Increased; ↓ : decreased.

difference is observed between stroke patients and normal 
subjects after 7 days. This phenomenon can be explained by 
locally increased ET-1 production from damaged ECs with-
in infarcted tissue (Sapira et al., 2010). Other studies have 
shown that plasma ET-1 levels are not related to cerebral in-
farction size, location, degree of clinical neurological defects, 
or prognosis (Sapira et al., 2010; Hung et al., 2015).

 NO is synthesized by three distinct forms of NOS, each of 
which behaves differently under ischemic situations. In the 
early ischemic period (up to 2 hours), NO synthesized by 
microvascular ECs triggers vasodilation, exerts a protective 
effect, inhibits platelet aggregation, and increases blood flow 
to affected brain regions. Studies have shown that eNOS 
inhibition ameliorates BBB disruption (Han et al., 2006; 

Beauchesne et al., 2009) and excess NO directly alters the 
BBB (Heo et al., 2005). 

 BDNF is closely related to cerebral ischemic or anoxic 
injury (Cui et al., 2010; Yang et al., 2015). The BDNF cascade 
activates Raf-1 MEK1/2/ERK1/2 protein kinases, inhibiting 
cell apoptosis and exerting a neuroprotective effect (Sung et 
al., 2012). Furthermore, BDNF confers protection against 
neuronal loss caused by cerebral ischemia (Mattson et al., 
2004) and reduces infarct volume in different stroke models 
(Shi et al., 2009). Expression of BDNF is upregulated after 
SAH (Mattson et al., 2004; Shi et al., 2009) and ameliorated 
after ischemic brain injury in a mouse model of focal ce-
rebral ischemia. This process may be a protective response 
following ischemic injury.
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BMECs in hemorrhagic stroke
Intracerebral hemorrhage, a fatal stroke subtype, currently 
has no effective treatment option. Even if patients survive 
the initial attack, the growing hematoma triggers a series of 
life threatening events leading to accumulation of cerebral 
edema, progression of neurobehavioral deficits, and possible 
death (Strbian et al., 2008; Fiorella et al., 2015). The toxic 
effect of extravasated blood leads to secondary damage after 
the initial injury, and causes death of neighboring cells due 
to free radical generation and oxidative damage (Nakamura 
et al., 2005). Furthermore, BMEC dysfunction may lead to 
BBB disruption, which is a hallmark of intracerebral hem-
orrhage-induced brain injury. Such disruption contributes 
to edema formation, leukocyte influx, and entry of poten-
tially neuroactive agents into the perihematomal brain, all of 
which contribute to brain injury (Leclerc et al., 2015).
   In cerebral vasospasm, apoptosis of ECs and neurons is a 
secondary consequence of SAH. Cerebral vasospasm can be 
divided into two phases (Weir et al., 1978): acute (3–4 hours 
after SAH) and chronic (3–4 days after SAH). Continuous 
artery stenosis is a characteristic of the chronic phase and 
significantly decreases the survival rate of SAH patients 
(Chaichana et al., 2010). Cerebrospinal fluid levels of ET-1 
increase during severe neuronal damage, regardless of wheth-
er the damage is due to vasospasm or a primary hemorrhagic 
event. In addition, cerebrospinal fluid levels of ET-1 correlate 
with neurological deterioration but are not predictive of 
vasospasm (Mascia et al., 2001). Animal studies show that 
NO-generating agents such as nitrite, reduce cerebral vaso-
spasm (CVS) and improve prognosis in animal models of ce-
rebral hemorrhage. Nevertheless, no relevant human studies 
are currently available (Fathi et al., 2011; Jung et al., 2011).
   Microvessel injury is a serious secondary event of SAH, and 
potential main mechanisms include inflammation, oxidative 
stress injury, platelet activation, long-term vasoconstriction, 
and EC apoptosis (Tso and Macdonald, 2014). Intravascular 
activation of blood cells leads to scattered microvessel plug-
ging, increased vascular permeability, edema formation, and 
cytotoxic action of blood cell-released agents on the underly-
ing tissue, all of which may be involved in SAH (Akopov et al., 
1996; Ding et al., 2014). Microvasculature injury is more seri-
ous and occurs faster than cerebral damage (Cao et al., 2015). 
In addition, EC apoptosis occurs 24 hours after SAH (Fried-
rich et al., 2012), with enhanced expression of p53-upregu-
lated modulator of apoptosis (PUMA), BAX, BAK, GRP78, 
and DRP1 in microvascular hippocampal ECs. This indicates 
that PUMA-evoked EC apoptosis significantly affects BBB 
disruption following SAH, and may be mediated through the 
endoplasmic reticulum (Yan et al., 2011). However, one study 
suggested that changes in the gaps between BMECs are not 
obvious (Scharbrodt et al., 2009). Furthermore, leukocyte 
receptor expression on microvascular ECs, and cytokine and 
adhesion molecules increase in the blood and cerebrospinal 
fluid (Bavbek et al., 1998; Polin et al., 1998).
   Plasma thrombin expression increases after cerebral hem-
orrhage (Yan et al., 2013). Although the pathogenesis of 
chronic CVS remains uncertain, the underlying mechanism 

may be inflammation (after the initial hemorrhage), specifi-
cally from the interaction between leukocytes and cell adhe-
sion molecules in the vascular endothelium (Li et al., 2015; 
Shao et al., 2015). After SAH, leukocyte migration causes 
damage to BMECs that is exacerbated by platelet-activating 
factor (Akopov et al., 1995).

Expression of BDNF after SAH also increases. Genetically 
influenced variation in BDNF function is associated with 
recovery from SAH, thus targeting BDNF signaling may fa-
cilitate recovery from brain injury (Siironen et al., 2007).

BMECs in neuroprotective stoke therapies 
Therapeutic strategies have been developed to modulate 
vasomotion, thrombosis, and protection of microvascular 
ECs against cerebral stroke. Treatment with PUMA siRNA 
significantly reduces mortality, cerebral edema, neurobehav-
ioral deficits, and BBB disruption following SAH injury (Yan 
et al., 2011). In addition, pifithrin-alpha, a p53 inhibitor, 
protects cerebral vessels from vasospasm development and 
improves neurological outcome by decreasing EC apoptosis 
and alleviating CVS, as well as reducing mortality rate by 
suppressing p53-induced apoptosis in cerebral vessel ECs 
(Yan et al., 2008). Some researchers have found that the pro-
tease-activated receptor 1 (PAR-1) antagonist, SCH79797, 
preserves microvascular integrity and provides neurobehav-
ioral protection, which is partly mediated by suppression of 
VE-cadherin endocytosis induced by c-Src-dependent PAK1 
activation (Lee and Hamilton, 2013; Manaenko et al., 2013; 
Yan et al., 2013).

Oleandrin is the principal cardiac glycoside component 
of PBI-05204 (a supercritical CO2 extract of Nerium olean-
der), which increases BDNF expression at the protein and 
transcriptional levels, indicating that PBI-05204 can provide 
neuroprotection against ischemic stroke (Van Kanegan et al., 
2014). Increasing BDNF expression improves prognosis after 
stroke (Zhang et al., 2013; El-Tamawy et al., 2014), whereas 
several strategies for decreasing BDNF expression lead to a 
poorer prognosis (O’Keefe et al., 2014).

Aside from BMEC dysfunction, disruption at junctions 
between BMECs can induce stroke. Regulation of tight and 
adherent junctions of the BBB have been a popular thera-
peutic target. EC injury and cerebrovascular accident exhibit 
a cause and effect relationship, with the resulting mortality 
decreased through detection of EC apoptosis, and vice ver-
sa (Blanchette and Daneman, 2015). A recent study found 
that BMEC transplantation improves locomotor function, 
enhances remyelination of the injured internal capsule, and 
suppresses inflammatory responses in infarcted white matter 
(Puentes et al., 2012). In addition, the inflammatory response 
2 weeks after BMEC transplantation is repressed compared 
with vehicle ischemia without BMECs, as evidenced by the 
smaller number of microglial cells positively activated by the 
microglia/macrophage antigen (ED-1) than that of bovine se-
rum albumin-injected brains or meningeal cell-transplanted 
brains (Puentes et al., 2012). A relationship between BMECs 
and protection of white matter ischemia injury is rarely re-
ported. Elucidation of the molecular mechanisms of BMECs 



1888

Yu QJ, et al. / Neural Regeneration Research. 2015;10(11):1882-1891.

in stroke may provide important insight into the develop-
ment of effective therapies for white matter ischemia.

Under the stimulus of physiological or pathological fac-
tors, bone marrow-derived endothelial progenitor cells 
(EPCs) migrate to peripheral blood, where they participate 
in repair of damaged blood vessels and angiogenesis in 
ischemic tissue (Palladino et al., 2012). Recent studies on 
EPCs provide novel and promising potential therapies for 
the treatment of ischemic stroke and improvement of prog-
nosis (Zengin et al., 2006; Li et al., 2015). After ischemia, 
EPCs migrate from the bone marrow to repair damaged 
sites either by direct incorporation of EPCs or repopulation 
of mature ECs. Following acute ischemic stroke, circulat-
ing EPCs are strikingly increased in order to execute their 
repair function on cerebrovascular trauma. As shown in an 
acute ischemic stroke study, circulating EPC counts peak 
at day 7, while statin pretreatment increased EPC levels. In 
patients with large-artery atherosclerosis and small-vessel 
disease subtypes, high EPC counts are related to improved 
outcome at 3 months (Martí-Fàbregas et al., 2013; Tsai et 
al., 2014).

Conclusions 
Over the past decades, many clinical trials of neuroprotective 
agents have been performed with various single drugs or 
combinations of agents (Pandya et al., 2011). Nevertheless, 
therapeutic choices for stroke patients remain limited, with 
varied final outcomes of chronic disability, depending on 
the size and location of the infarct area. Although several 
functional recovery techniques have been achieved using 
various treatments, further studies are required to identify 
more effective treatments. Traditional methods are aimed 
at improving oxygen and nutrition supply to the ischemic 
area through interventions such as vasomotor adjustment, 
thrombosis prevention, and dynamic adjustment of brain 

blood flow after stroke (Lansberg et al., 2012).
Many studies have provided evidence to indicate that 

structural damage and BMEC dysfunction are involved in 
stroke. As discussed, BMECs act differently in different kinds 
of stroke and in different phases. Development of stroke 
involves changes in microvascular endothelial and related 
cytokine levels. Some of these changes, such as disturbed 
TXA2/PGI2 balance, platelet activation, and decreased 
BDNF, are subsequent events of cerebral infarction or cere-
bral hemorrhage, and under pathological conditions they 
may exacerbate cerebral infarction and reduce survival. 
Considering that the processes during stroke are extremely 
complex, therapeutic targets should focus on preventive 
protection of the integrity of BMEC structure and function. 
Although more research is required to highlight the role of 
BMECs in stroke pathogenesis, additional strategies that 
target newly identified signaling pathways or molecules may 
offer a promising therapeutic approach to stroke.
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