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Brain metastases (BMs) in non-small-cell lung cancer (NSCLC) patients are associated
with significant morbidity and poor prognosis. Immune checkpoint inhibitors (ICIs) have
resulted in a paradigm shift in the management of advanced NSCLC. However, the value
of ICIs in NSCLC patients with BMs remains unclear because patients with BMs are
routinely excluded in numerous prospective trials on ICIs. Here, starting from the
mechanisms of ICIs for BMs, we will reveal the value of ICIs by reviewing the efficacy
and adverse effects of ICIs monotherapy as well as promising combination strategies,
such as combinations with chemotherapy, radiotherapy, and anti-angiogenic drugs, etc.
In addition, the methods of patient selection and response assessment will be
summarized to assist clinical practice and further studies.

Keywords: brain metastases (BMs), non-small cell lung cancer (NSCLC), immune checkpoint inhibitors (ICI),
combination strategies, patient selection, response assessment
INTRODUCTION

Brain metastases (BMs) are frequent complications in patients with non-small cell lung cancer
(NSCLC), present in 10% ~ 20% of patients at diagnosis, and approximately 20% ~ 40% eventually
(1, 2). The incidence of NSCLC BMs is increasing, partly due to the improvements in testing
techniques and the popularity of screening, as well as the improvements in therapies that extend
patient survival (3).

NSCLC-BMs are associated with poor prognosis (4). In patients with driver-gene positive NSCLC-
BMs, such as those harboring epidermal growth factor receptor (EGFR) mutation or anaplastic
lymphoma kinase (ALK) rearrangement, new-generation targeting reagents have a favorable
intracranial response rate (66%–78%) (5, 6). However, treatments for those driver-gene negative
patients are extremely limited. Radiotherapy is the mainstream treatment for symptomatic BMs,
org March 2022 | Volume 13 | Article 8528111
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such as whole brain radiotherapy (WBRT) and stereotactic
radiation therapy (SRT). Surgical resection is only appropriate
for a limited number of carefully selected patients. Management
of multiple asymptomatic BMs often involves systemic therapy
only. However, conventional systemic therapies could not
achieve desired intracranial efficacy and survival improvements
(7). Overall, platinum-based chemotherapy has obtained 30%
~40% intracranial response, while the benefit is short-lasting and
the toxicity is enormous (8). Hence, optimization of the
treatment of NSCLC-BMs is urgently needed.

Blocking the programmed death protein-1 (PD-1)/its ligand
(PD-L1) axis with immune checkpoint inhibitors (ICIs) has
revolutionized the treatment landscape for advanced NSCLC,
covering from first-line treatment to post-line treatment (9). In
addition, ICIs in combination with chemotherapy or
radiotherapy were approved for metastatic NSCLC. Cytotoxic
T lymphocyte-associated antigen-4 (CTLA-4) inhibitors, such as
ipilimumab, have a good performance in combination treatment,
despite poor performance as monotherapy for NSCLC.
Unfortunately, the value of ICIs for NSCLC-BMs is
indeterminate because those patients have generally been
excluded or underrepresented in over half of the clinical trials
(10). There are several reasons for this issue: (1) The poor
survival of patients with BMs may increase the probability of
trial failure (11); (2) Drugs are difficult to penetrate through the
blood-brain barrier (BBB) to intracranial lesions (12); (3) The
tumor microenvironment of BMs is immunologically “cold”
(13); (4) Patients with symptomatic BMs often need steroids,
which may conflict with immunotherapy (14). Although some
clinical trials enrolled asymptomatic BMs, the outcomes of the
BMs subgroup were rarely reported (10). Until recently, several
clinical trials of ICI treatment for advanced NSCLC, especially
combination therapy, have published the results containing BMs
subgroup analysis. Although the evidence is still limited,
NSCLC-BMs are navigating towards the era of immunotherapy.

The main aim of this review is to reveal the value of ICIs for
NSCLC-BMs. Based on the possible mechanisms through which
BMs can benefit from ICIs, we summarize clinical evidence,
including pivotal prospective trials and representative studies.
Future challenges and perspectives will also be sketched out in
order to better understand and optimize ICI-containing
treatments in patients with BMs.
MECHANISMS

Historically, the physiological brain was regarded as an immune-
privileged organ, mainly due to the BBB and genetically special
immune spectrum (15). However, the mechanism of ICIs, unlike
targeted-tumor cell drugs, theoretically relates to modified
immune cell activity rather than a direct action of tumor cells
in the brain. Moreover, changes in the neuroimmunology
background have rekindled interests in immunotherapy for BMs.

It was generally believed that molecules with large molecular
weight and low liposolubility, as well as peripheral immune cells,
cannot penetrate the BBB (16). Actually, the existence of BMs
Frontiers in Immunology | www.frontiersin.org 2
and the management of anti-tumor treatments can lead BBB to
become “not too dense” (17, 18). The BBB is induced to
structural changes and dysfunction by BMs, and possible
mechanisms include the increase in vascular endothelial
growth factor (VEGF)-mediated angiogenesis and multiple
adhesion molecules (such as VCAM-1 and ICAM-1) and
chemokines (such as CXCL12-CSCR4 axis)-mediated trans-
endothelial migration (18). Indeed recently, nivolumab has
been measured in cerebrospinal fluid (CSF) of five patients
with suspected leptomeningeal metastases, with CSF/plasma
ratios ranging from 1/52 to 1/299 (19). Furthermore,
radiotherapy can loosen the BBB. After brain radiotherapy, the
CSF/plasma ratio of trastuzumab could increase by six times
(20). Unfortunately, pharmacokinetic studies of ICIs after
radiotherapy are absent. Collectively, during the development
and treatment of BMs, the tight fences of BBB may be opened.

A deeper understanding of the tumor microenvironment
(TME) is necessary to develop immunotherapy (21). Tumor
infiltrating lymphocytes (TILs) are essential for the efficacy of
immunotherapy. Other immune cells in the brain TME, such as
tumor-associated macrophages (TAMs), microglia, and
astrocytes that surround brain tumors are involved in tumor
progression and immune evasion (22). Whether lymphocytes
can cross the BBB had remained controversial for decades.
Recent studies have refuted the notion of immune isolation in
the brain. In the 1980s, an antigen exit route from the brain to
the deep cervical lymph nodes was discovered (23). In 2015,
functional lymph-vessel found in the meninges provided a direct
drainage route for immune cells from the brain to cervical lymph
nodes (24). Despite the discovery of T cell infiltration in primary
brain tumors (25), outcomes from PD-1/PD-L1 ICB trials in
gliomas are disappointing to date (26). It is partially attributed to
insufficiency of TILs infiltration, low expression of PD-1/PD-L1,
and low tumor mutation burden (TMB) in gliomas (26), which
are not conducive to the ICIs to revive the anti-tumor immune
response. Compared with gliomas, however, BMs are more
abundant and diverse with TILs and neutrophils (27).
Relatively high infiltration of TILs has been found in BMs
from melanoma, renal cell carcinoma, and NSCLC (28).
Comparing PD-L1 expression and TILs densities between
primary tumor and matched BMs revealed a lower burden of
TILs but a higher PD-L1 expression in NSCLC BMs (29–31).
Given the discordance between BMs and primary tumors, these
differences may contribute to the differential activity of
immunotherapy for NSCLC-BMs. The intracranial efficacy of
pembrolizumab was confirmed despite the relative scarcity
of intracranial TILs (32). Hence, it is necessary to determine
whether the intracranial efficacy of ICIs depends on activation
of intracranial immune cells in situ, or migrating from the
peripheral environment, or both. Using a high-dimensional
single-cell approach, Friebel et al. revealed that BMs were
characterized by high infiltration of peripherally-derived
leukocytes, especially CD8+ T cells (33). Moreover, CD8+ T
cells in BMs appear to be more exhausted than those in
peripheral and normal intracranial environments, partially
because immune suppressive signals, such as PD-1 and CTLA-4,
March 2022 | Volume 13 | Article 852811
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are upregulated, a mechanism that ICIs can potentially improve.
Studies have shown that blocking PD-1 could induce the
migration of immune cells to the brain, in which IFN-g played
a key role (34). Up-regulation of IFN-g can modulate multiple
adhesion molecules (such as VCAM-1 and ICAM-1) and
chemokines (such as CXCL10)-mediated T cell migration and
can also induce the turning on of BBB (35, 36). Notably, activated
CD4+ T cells in the brain can loosen the BBB through local IFN-
g production (37), which may produce positive feedback.

In conclusion, these findings indicated that NSCLC patients
with BMs might benefit from ICIs treatment by activated
intracranial and extracranial immune (Figure 1).
ICI MONOTHERAPY FOR NSCLC-BMS

Response
For a long time, it has been controversial whether ICI
monotherapy induces an intracranial response in NSCLC-BMs.
Intracranial examinations were routinely not been performed in
the follow-up when observing the response of ICIs for advanced
NSCLC. Several large randomized trials on ICIs treatment for
Frontiers in Immunology | www.frontiersin.org 3
gliomas (Checkmate-143, Checkmate-498, Checkmate-548)
failed to prolong PFS and OS (26), casting a shadow over
research on metastatic brain tumors. This nebulous status
continued until Goldberg and his colleagues firstly reported the
outcome of pembrolizumab for patients with untreated BMs
(32). In their phase 2 trial, patients with at least one 5~20mm
untreated asymptomatic BMs were divided into two cohorts.
Cohort 1 was patients with PD-L1 positive (PD-L1≥1%) and
cohort 2 PD-L1 negative (PD-L1<1%) or unknown. The results
showed that 11 of 37 patients (29.7%) in cohort 1 had an
intracranial response. However, there was no response in
cohort 2 (5 patients). Furthermore, 29.7% of patients in cohort
1 had a systemic response, and 7 of the intracranial responders
had a systemic response simultaneously. Several retrospective
studies also provided valuable evaluations of intracranial
response (38–43). In short, intracranial objective response rate
(ORR) ranges from 16.4% to 36.6% regardless of PD-L1
expression. For patients with PD-L1≥50%, intracranial ORR
may exceed 50%.

Compared with chemotherapy, a higher systemic response
has been observed in ICI monotherapy for patients with BMs.
Recently, a pooled analysis based on KEYNOTE-001, 010, 024,
and 042 (44) showed that systemic ORR with pembrolizumab
was superior to chemotherapy in PD-L1≥1% NSCLC patients
with BMs (26.1% vs. 18.1%). The single-arm FIR trial (45)
enrolled 13 advanced NSCLC patients treated with
atezolizumab into its cohort 3 (second-line with treated BMs).
All eligible patients were PD-L1 positive. Investigator-assessed
systemic ORR was 23%. Of particular interest, the outcome of
FIR trial as well as other retrospective data suggested that there
was no significant difference between patients with
asymptomatic BMs and patients without BMs (45) (Table 1).

Survival
Benefits in survival are relatively clear-cut for NSCLC patients
with BMs. A pooled analysis of KEYNOTE-001, 010, 024, and
042 (44) showed that pembrolizumab improved overall survival
(OS) versus chemotherapy (13.4 months vs. 10.3 months,
HR=0.83). In the subgroup of NSCLC patients with high PD-
L1 expression (PD-L1≥50%), the magnitude of benefit with
pembrolizumab compared with chemotherapy increased to
19.7 months vs. 9.7 months (HR=0.67). Importantly, both the
magnitude of benefit and the toxicity profi le with
pembrolizumab were similar to those in patients without BMs
(38, 40). A pooled analysis of CheckMate-017 and 057 (46)
compared the long-term outcomes of nivolumab with docetaxel
in the BMs subgroup. Nivolumab improved OS (7.6 months vs.
6.2 months, HR=0.81) and 5-year OS rate (8% vs. 0%) versus
docetaxel. Clinical evidence that NSCLC patients with BMs can
benefit from nivolumab mainly came from several real-world
studies in European regions (41, 47–51). Several retrospective
studies that did not distinguish the types of anti-PD-1/PD-L1
monotherapy were also shown in Table 1. Cemiplimab is a newly
approved anti-PD-1 ICI for advanced NSCLC with high PD-L1
expression(≥50%) based on a phase 3 EMPOWER-Lung 1 study
(53). Results have demonstrated that cemiplimab monotherapy
present significantly superior progression-free survival (PFS)
FIGURE 1 | Potential mechanisms that NSCLC patients with brain metastases
could benefit from ICIs. (1) BBB will be loosened with the progression of BMs.
(2) Immune cells and tumor-associated antigen could be transported between
intracranial and peripheral environments by meningeal lymph-vessels. (3) Part
of ICI mAbs can enter the intracranial environment and be detected. (4) BBB
can get loose due to broken tight conjunction and enhanced trans-endothelial
migration through the up-regulation of adhesins and chemokines mediated by
INF-g inducing T-cell- secreted INF-g. (6)(7)(8) ICIs revive anti-tumor immune
in lymph nodes, primary disease and peripheral circulation. ICI, immune
checkpoint inhibitor; RT, radiotherapy; CT, chemotherapy; IFN, interferon;
BBB, blood-brain barrier; mAb, monoclonal antibody; IFN, interferon.
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(HR=0.45) and OS (HR=0.17) compared with platinum-double
chemotherapy in the BMs subgroup. A similar benefit could be
observed in OAK trials comparing atezolizumab with docetaxel
(52). Notably, the development of new BMs was delayed by
atezolizumab. In patients with baseline BMs, the median time to
the development of new BMs was not reached in the
atezolizumab arm, and was 9.3 months in the docetaxel arm
(HR=0.38). Interestingly, in PACIFIC study for inoperable stage
3 NSCLC patients (55), the maintenance treatment of
durvalumab after chemoradiotherapy was associated with a
halved incidence of developing new BMs. These findings
indicated PD-L1 inhibitors might prevent or at least delay the
occurrence of BMs.

Safety
According to the published data, it was generally accepted that
ICI monotherapy had a better tolerance than standard
chemotherapy. The prospective trial focusing on BMs from
Goldberg et al. (32) reported that no intracranial Grade≥3
adverse events (AEs) occurred, and the incidence of systemic
Grade≥3 AEs was 14%. In the pooled analysis of KEYNOTE-001,
010, 024, and 042 (44), comparing pembrolizumab and
Frontiers in Immunology | www.frontiersin.org 4
chemotherapy, the incidence of intracranial Grade≥3 AEs was
9.7% vs. 26.7%, while the incidence of systemic Grade≥3 AEs was
14.8% vs. 45.6%. The Expanded Access Program from Italy
included 466 NSCLC patients with BMs who were
asymptomatic after radiotherapy. 7% nonsquamous NSCLC
patients and 8% squamous NSCLC patients suffered Grade≥3
systemic AEs (50, 51). Another real-world study reported similar
incidence, regardless of neither histological type nor condition of
BMs (56). The BMs subgroup analysis from OAK trial (52)
indicated the better systemic safety of atezolizumab compared
with docetaxel. Notably, Grade≥3 neurologic treatment-related
AEs (trAEs) were higher in the atezolizumab arm, although
the rate of neurocognitive AEs was quite low in both
arms (5.0% vs. 1.8%), and no Grade 4~5 neurologic trAEs
occurred. Collectively, the incidence of Grade≥3 trAEs ranges
from 14%~25%, as well as a low incidence of intracranial AEs.

To sum up, anti-PD-1/PD-L1 ICI monotherapy is beneficial
for NSCLC patients with BMs, which can diminish intracranial
disease, reduce adverse events and improve survival, particularly
for those with high PD-L1 expression (Table 1). However, we
still need more large-scale clinical data to support this view and
precisely pre-stratify patients who may benefit.
TABLE 1 | Clinical investigations of ICI monotherapy in the treatment of NSCLC patients with BMs.

Data source Arm (patients with BMs/all patients) BMs Condition PD-
L1

Response (ORR) Survival Safety (≥3 Grade AEs)

Experimental Control CNS Systemic PFS OS CNS Systemic

Prospective
(32)

Pembro (42). N/A Asymptomatic;
Untreated; 4~20 mm

≥1% 29.7% 29.7% 1.9m 9.9m 0% 14%

<1% 0.0% NR NR NR
Prospective
(44)

Pembro. (199/
1753)

CT (94/1217) Asymptomatic ≥50% NR 33.9% vs.
4.6%

4.1m vs.
4.6m

19.7m vs. 9.7m 9.7% vs.
26.7%;

14.8% vs.
45.6%

≥1% NR 26.1% vs.
18.1%

2.3m vs.
5.2

13.4m vs. 10.3m

Retrospective
(38)

Pembro. in BMs
(126/547)

Pembro. in non-
BMs (444/570)

NR NR 36.4% 27.8% vs.
29.7%

9.2m vs.
7.7m

18.0m vs. 18.7m NR NR

Retrospective
(40)

Pembro. in BMs
(23/87)

Pembro. in non-
BMs (64/87)

NR ≥50% 70% NR 6.5m vs.
7.0m

21.6m vs. 24.6m NR 23% vs.
30%

Prospective
(46)

Nivo. (45/427) CT (42/427) Asymptomatic; Treated NR NR NR NR 7.6m vs. 6.2m NR NR

RWS (47) Nivo. in BMs
(1800/10452)

Nivo. in non-BMs
(8652/10452)

NR NR NR NR NR 9.9m vs. 12.1m NR NR

RWS (48) Nivo. (477/2585) N/A Treated NR NR NR NR 9.7m 0% NR
RWS (49–51) Nivo. (446/1959) N/A Asymptomatic;

Nonsquamous
NR NR 17% 3.0m 8.6m NR 7%

Asymptomatic;
Squamous;

NR NR 19% 4.9m 5.8m NR 8%

Retrospective
(41)

Nivo. in BMs
(32/73)

Nivo. in non-BMs
(41/73)

NR NR 28.1% 25.0% vs.
19.5%

2.8 m vs.
4.9m

14.8m vs.
20.29m

NR NR

Prospective
(45)

Atezo. (13/137) N/A Asymptomatic; Treated All NR 23% 2.5m 6.8m NR 15%
≥50% NR 25% 2.3 m 7.0m NR NR

Prospective
(52)

Atezo. (61/425) CT (62/425) Asymptomatic; Treated NR NR NR NR 16.0m vs.
11.9m, HR=0.74

5.0% vs.
1.8%

23.3% vs.
50.9%

Prospective
(53)

Cemip. (34/283) CT (34/280) Asymptomatic; Treated ≥50% NR NR HR=0.45 HR=0.17 NR NR

Retrospective
(54)

ICI (840/1680) Non-ICI (840/1680) NR NR NR NR NR 12.8m vs.
10.1m, HR=0.80

NR NR

RWS (43) ICI (41) N/A NR NR 36.6% 24.4% 6.2m 13.7m NR NR
March 2022 | Volu
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COMBINATION STRATEGY FOR
NSCLC-BMS

Although ICI monotherapy could yield benefits to NSCLC
patients with BMs, the response of ICI monotherapy is
generally less than 30%. Moreover, due to the slow onset of the
anti-tumor immune response, there is often a cross point on the
Kaplan-Meier survival curves between ICI monotherapy group
and the control group when curves are priming, suggesting that
the early efficacy of ICI treatment was inferior to chemotherapy
or radiotherapy for some patients. The outcomes of the Keynote-
001 study showed that about 75% of patients who produced early
response on immunotherapy achieved long-term survival (57).
Hence, improving ICI efficacy and expanding the pool of
beneficiaries are urgently needed. Actually, immunotherapy
can be reciprocally beneficial to other treatments (Figure 2),
such as radiotherapy and chemotherapy.
ICI Combined With Radiotherapy
Given almost all patients with metastatic NSCLC require
radiotherapy, especially those with BMs, radiotherapy and
immunotherapy possibly form the best alliance in clinical
practice. On the one hand, a growing body of evidence
supports synergistic mechanisms between radiotherapy and
immunotherapy (58–60), which are present in Figure 2. On
the other hand, from a clinical point of view, the response of
immunotherapy is slow but persistent, whereas radiotherapy can
quickly relieve nervous symptoms in BMs patients, although the
response is not long-lasting (60). Therefore, combination
treatment can bring effective and long-term benefits to BMs
patients from NSCLC.

Some clinical studies have provided support for the value of
this alliance. ICIs combined with radiotherapy can convey benefits
to NSCLC patients with BMs by elevation in intracranial disease
control, prolongation survival as well as improvement in
neurocognitive function. A multicenter phase II trial (61)
examined the effect of combining nivolumab with SRT.
Frontiers in Immunology | www.frontiersin.org 5
It included 26 patients (22 NSCLC), having ≤10 cc of BMs with
no prior irradiation or immunotherapy. Of the 21 NSCLC patients
with assessable PD-L1 status, 12 patients had PD-L1≥50%. High
intracranial control was present: median intracranial PFS was 5.0
months, the 1-year cumulative incidence of intracranial relapse
was 20% accounting for death as a competing risk. Median OS was
14 months. In the sixth month, neurocognitive function showed
potential improvements. Compared with radiotherapy alone,
radiotherapy plus ICI significantly improved local disease
control and survival. A representative example is an
investigation with a large sample size from National Cancer
Databank (NCDB), showing that the median OS of NSCLC-
BMs patients treated with ICI+RT increased 1.5 times (13.1
months vs. 9.7 months) than those treated with RT alone (62).
Moreover, combination therapy can decrease neurological death
(63). More data are listed in Table 2.

While the advantages of radiotherapy combined with
immunotherapy are promising, three concerns remain for
clinicians. The primary concern is safety. In recent years,
an increased incidence of radionecrosis was reported when
applying ICIs in patients undergoing SRT for BMs.
Radionecrosis significantly impacts the quality of life, leading
to focal neurologic deficits, headaches, nausea, and seizures. A
retrospective research has shown that receipt of immunotherapy
was associated with symptomatic radionecrosis after adjustment
for tumor histology (HR=2.56); this association was stronger in
BMs patients from melanoma(n=145) (HR=4.02) (67). The
outcome of NSCLC with BMs was not published. There were
also more recent studies suggesting that ICIs were not associated
with the increasing incidence of radionecrosis in NSCLC-BMs
(64). This discordance may be attributed to histology
heterogeneity and difficulty to distinguish radionecrosis from
tumor progression in radiology. Hence, more studies are needed
to clarify the association between immunotherapy and
radionecrosis. Another major concern is the optimal timing of
combining radiation and immunotherapy. Based on the
aforementioned reciprocal mechanisms, some investigators
have proposed that immunotherapy should be administered
FIGURE 2 | Rationality of ICI therapy and other therapies combination in the treatment of NSCLC patients with BMs.
March 2022 | Volume 13 | Article 852811
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after radiotherapy so that the reciprocal effect could be
maximized while activated immune cells avoid being damaged
by radiation (68). Many retrospective investigations observed
better outcomes in RT+ICI. However, they did not limit the
order of between RT and ICI management, and the intervals
between these two managements varied widely, ranging from
two weeks to three months (64, 65, 69). A meta-analysis showed
that concurrent SRT with ICI performed better OS than
sequential therapy in the treatment of NSCLC patients with
BMs (HR=0.39), but there were only two studies involved (70).
In addition, the radiation dose is also attracting attention. Some
investigations considered that hypofraction radiotherapy
(HFRT) or SRT might better activate anti-tumor immune
responses and preserve lymphocytes than traditional
radiotherapy (71–73). However, there were also retrospective
data showing that WBRT plus ICI performed better than SRT
plus ICI in the treatment of NSCLC patients with BMs (66).
Therefore, prospective trials are needed to determine the optimal
dose-fraction scheme.

ICI Combined With Chemotherapy
Like radiotherapy, there are also synergy effects between
immunotherapy and chemotherapy, which is the theoretical
basis of combination (74, 75). Recently, numerous prospective
clinical evidence has confirmed the advantages of this
combination (Table 3).

Synergies between chemotherapy and ICIs yield to NSCLC
patients with BMs in prolonged survival, including PFS and OS.
This benefit has been observed in the KEYNOTE-189 study of
pembrolizumab and chemotherapy vs. chemotherapy alone (76).
The HR for PFS was 0.48 in the overall population, 0.48 in
patients without metastases, and 0.42 in patients with BMs, and
the HR for OS was 0.56, 0.59, 0.41 in the three groups above,
respectively. Particularly, compared with chemotherapy alone,
Frontiers in Immunology | www.frontiersin.org 6
OS was observed a remarkable prolongation in pembrolizumab
combined with chemotherapy (19.2 months vs. 7.5 months).
Similar conclusions were supported in a pooled analysis of
KEYNOTE-021, 189, 407 (77), including 171 NSCLC patients
with asymptomatic BMs in 1298 advanced NSCLC. Systematic
ORR in the combination arm was also significantly enhanced as
compared with the chemotherapy alone arm (39.0% vs. 19.7%).
Notably, for NSCLC patients with BMs, the magnitude of benefit
from ICIs combined with chemotherapy seems to be realized
regardless of PD-L1 expression. In addition, for those advanced
NSCLC patients with EGFRmutation who failed from prior first-
line targeting therapy, ICIs and chemotherapy combination may
work well, though observed only in the trial with a small sample
(81). Collectively, adding ICIs into chemotherapy can
significantly improve survival for NSCLC patients with BMs.
Relevant prospective clinical studies are listed in Table 3.

Like radiation therapy, the sequence and dose of
chemotherapy combined with ICI also make a difference in the
efficacy of treatment (87). Zhu et al. found docetaxel delivery
before anti-PD-1 ICI with an interval of two days could initiate a
more powerful anti-tumor response than simultaneous delivery
and post delivery in multiple tumor models (88). However,
patients in large randomized clinical trials are almost
administered with chemotherapy drugs and ICI on the same
day, followed by ICI maintenance (with or without
chemotherapy), probably due to patient compliance. To date,
no consensus has been reached regarding the dose and sequence
strategies used in combinational cancer immunotherapies. How
to optimize the scheme of administration relative to each kind of
drug remains to be studied.

ICI Combined With Anti-Angiogenic Agents
It is commonly believed that anti-angiogenic agents limit tumors
growth by inhibiting the tumor vasculature. Nevertheless, a low
TABLE 2 | Clinical investigations of ICI and radiotherapy combination in the treatment of NSCLC patients with BMs.

Data source Arm (patients with BMs/all patients) BMs
Condition

Response (LNR) Survival Safety (≥ 3
Grade AEs)

Experimental Control CNS Systematic CNS Systematic

Prospective
(61)

Concurrent (within 2 weeks)
SRT after the first dose of
Nivo (26).

N/A Untreated; ≤
10 cc;

80% 51.7% iPFS: 5.0m; OS: 14m NR NR

Retrospective
(62)

RT before or after ICI (545/
14090)

RT alone
(13545/14090)

NR NR NR OS: 13.1m vs. 9.7m NR NR

Retrospective
(63)

SRT before or after ICI
(within 3 months) (33/77)

SRT alone (44/
77)

NR 97% vs. 86% NR OS: HR = 0.46 NR NR

Retrospective
(64)

Concurrent (within 4 weeks)
ICI after SRT (100/150)

SRT alone (50/
150)

≤4 cm; NR NR iPFS: HR = 0.32 NR NR

Retrospective
(65)

SRT before or after ICI
(within 3 months) (17/51)

SRT alone (34/
51)

NR 84.9% vs.
76.3%

NR NR 5.9%
vs.

2.9%

NR

Retrospective
(66)

WBRT before
Pembro. (8/30)

SRT
before
Pembro.
(13/30)

Pembro. (9/30) Asymptomatic 87.5% vs.
46.2% vs.
66.7%

87.5% vs.
38.5% vs.
66.7%

iPFS: 7.1m vs. 4.8m vs. nr
PFS: 7.1m vs. 3.5m vs.
10.2m

NR 37.5% vs.
23% vs.
11.1%
March 2022 | Volu
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dose of anti-angiogenic agent may instead induce the
normalization of abnormal tumor vessels, decreasing tumor-
promoting hypoxia and increasing accessibility for immune cells
and other therapeutic agents to reach the TME, which facilitate
the efficacy of immunotherapy (89).

In IMpower150 trial (83), patients were randomized 1:1:1 to
receive atezolizumab + bevacizumab + carboplatin/paclitaxel
(ABCP), atezolizumab + carboplatin/paclitaxel(ACP), or
bevacizumab + carboplatin/paclitaxel (BCP). With a good
tolerance, significantly improved PFS and OS were observed
in the ABCP group compared with the BCP group for
metastatic nonsquamous NSCLC, regardless of PD-L1
expression and EGFR or ALK genetic alteration status.
Outcomes from the latest IMpower150 exploratory analyses
in the subgroup with BMs indicated that the ABCP regimen
could delay the time to development of new BMs (HR=0.68) for
ABCP versus BCP and 1.55 for ACP versus BCP). A phase 1b
trial assessed sintilimab (a PD-1 inhibitor) combined with
anlotinib (a multi-target tyrosine kinase inhibitor with anti-
angiogenic action) in the frontline setting for advanced NSCLC
(84). This chemotherapy-free regimen presented encouraging
efficacy, durability, and safety profile regardless of PD-L1
expression. Notably, all four involved patients with
asymptomatic BMs at baseline achieved intracranial complete
Frontiers in Immunology | www.frontiersin.org 7
response (CR), and three of them achieved overall partial
response (PR), indicating that sintilimab plus anlotinib had
synergistic effects in the brain. The outcomes of a further trial
are worth expecting.

The primary concern for this combination is still safety. In the
BMs subgroup of Impower150 trial (83), the ABCP group had
the highest incidence of Grade 3~4 trAEs among the three
groups. Besides, treatment withdrawal due to AEs occurred in
42.9% of patients in the ABCP arm. On the plus side, there were
no Grade 5 AEs with ABCP. Additionally, an understandable
concern for AEs is intracranial hemorrhage, which should be
highly regarded, although the management of anti-VEGF regents
may make no contribution to an increased risk of intracerebral
hemorrhage in NSCLC patients (90). Due to the lack of higher-
level evidence, it is necessary to closely monitor the risk of
intracerebral hemorrhage in patients with BMs when using ICIs
plus anti-angiogenic agent regimens. Another imperative
concern in clinical practice is the cost. After all, the promising
regimen in Impower150 trial involves four drugs. A cost-
effectiveness analysis from the United States showed that the
incremental cost-effectiveness ratio for ABCP was $568,967 per
quality-adjusted life-year (QALY) compared with BCP and
$516,114 per QALY compared with CP (91). The issue of cost
should be taken seriously by all parties.
TABLE 3 | Clinical investigations of ICI and other systematic therapies combination in the treatment of NSCLC patients with BMs.

Type of
combination

Data
sources

Arm (patients with BMs/all
patients)

BMs Conditions Response (ORR) Survival Safety
(≥3 Grade AEs)

Experimental Control CNS Systematic CNS Systematic

ICI + CT Prospective
(76)

Pembro. + CT
(73/410)

Placebo+ CT
(35/206)

Nonsquamous;
Asymptomatic; Untreated;

NR NR PFS=6.9m vs. 4.7m,
HR=0.42; OS=19.2m vs.
7.5m, HR=0.41;

NR 80% vs.
63.6%

Prospective
(77)

Pembro. + CT
(105/748)

CT (66/550) Asymptomatic; NR 39.0% vs.
19.7%

PFS: 6.9m vs. 4.1m,
HR=0.44; OS: 18.8m vs.
7.6m, HR=0.48

32.4%
vs.

17.2%*

59.8% vs.
45.3%

Prospective
(78)

Camre. + CT
(11/205)

CT (6/207) Nonsquamous;
Asymptomatic; CT-naive;

NR NR PFS: HR=0.14 NR NR

Prospective
(79, 80)

Sinti. + CT
(36/112)

Placebo + CT
(22/86)

Nonsquamous;
Asymptomatic; Untreated;

NR NR PFS: HR=0.491; OS:
HR=0.565

NR NR

Prospective
(81)

Toripa. + CT
(6/40)

N/A Asymptomatic; With EGFR
mutations but T790M; Failed
from prior TKI;

NR 66.7%; NR NR NR

Prospective
(82)

Atezo. + CT
(40)

N/A Nonsquamous; Untreated; 40% 47.5% iPFS: 6.9m; PFS: 8.9m;
OS: 13.6m

NR 55%

ICI + AAT Prospective
(83)

ABCP (28/
400)/ ACP
(48/402)

BCP (24/400) Nonsquamous;
Asymptomatic; Treated;

NR NR iTTD: HR=0.68 for ABCP
vs. BCP; HR=1.55 for
ACP vs. BCP

NR 64.3% vs.
35.4% vs.
41.7%

Prospective
(84)

Sinti. +
Anlotinib (4/
22)

N/A Asymptomatic; Systemic
therapy-naive

100%; 75%; 1y-PFS: 50.0%; 1y-OS:
100%

NR NR

ICI + ICI Prospective
(85)

Nivo. + Ipili.
(69/583)

CT (66/583) Asymptomatic; Treated; NR 33% vs.
26%;

PFS: 5.4m vs. 5.8m,
HR=0.79 OS: 18.8m vs.
13.7m, HR=0.57;

46%
vs.

42%*

NR

Prospective
(86)

Nivo. + Ipili. +
CT (65/361)

CT (58/358) Asymptomatic; Treated; NR NR OS: 19.9m vs. 7.9m,
HR=0.47

NR NR
March 2022 | Volum
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NSCLC, Non-Small Cell Lung Cancer; BMs, Brain Metastases; AEs, Adverse Events; N/A, Not Applicable; NR, Not Reported; nr, Not Reach; HR, Hazard Ratio; CT, chemotherapy; AAT,
anti-angiogenic therapy; Pembro., Pembrolizumab; Nivo., Nivolumab; Atezo., Atezolizumab; Camre., Camrelizumab; Sinti., Sintilimab; Toripa., Toripalimab; ABCP, Atezolizumab +
Bevacizumab + Carboplatin+ Paclitaxel; ACP, Atezolizumab + Carboplatin+ Paclitaxel; BCP, Bevacizumab + Carboplatin+ Paclitaxel; OS, Overall Survival; PFS, Progression-free Survival;
ORR, Objective Response Rate; iPFS, Intracranial Progression-free Survival; iTTD, Intracranial Time to Development (of New Brain Metastases).
*Any grade AEs.
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Multiple ICIs Combination
Blocking multiple immune checkpoints seems natural to activate
anti-tumor immunity to a greater extent. Nivolumab plus
ipilimumab have been approved for metastatic melanoma and
NSCLC by FDA (92), but the failure of durvalumab plus
ipilimumab gave us a warning that not all double-ICIs
regimens worked well. Despite the fact that all ICIs play roles
in releasing brakes that limit the immune system, the specific
mechanisms for reviving anti-tumor immunity are peculiar. For
instance, circulatory and resident T cells are subject to blocking
the PD-1/PD-L1 axis, whereas lymphocytes in lymph nodes are
subject to be activating by CTLA-4 inhibitors (93). Furthermore,
different ICIs may function on their preferred subsets of T cells
(94). Therefore, it is rational that the combination of dual ICIs
may produce spatio-temporal synergies.

Checkmate-227 part 1 evaluated nivolumab plus ipilimumab
versus chemotherapy in the treatment of advanced NSCLC. A
post-hoc analysis (85) demonstrated that the double-ICIs arm
presented higher ORR (33% vs. 26%), with a longer duration of
response (24.9 months vs. 8.4 months). Longer OS was observed
in the double-ICIs arm (18.8 months vs. 13.7 months). The rate
of any-grade CNS AEs was 46% in BMs patients treated with
double-ICIs, most of which were Grade 1~2, while it was 42% for
those treated with chemotherapy. Chemotherapy or
radiotherapy can be added into a double-ICIs regimen.
Nivolumab + ipilimumab + two-cycle chemotherapy has been
proved to have an advantage over four-cycle chemotherapy in
the BMs subgroup of Checkmate-9L trial (86). Of note, double-
ICIs combined with short-course chemotherapy eliminated the
cross point of OS curve in Checkmate-027, which demonstrated
the advantage of the combination strategy. Concurrent/
sequential SBRT combined with nivolumab and ipilimumab
was well tolerated (95). Multimodality therapy is valued to
achieve durable metastases control and survival (Table 3).
CHALLENGES AND PERSPECTIVES

Based on the basic researches and clinical data presented in this
review, sufficient evidence exists to support the continued
exploration of the novel value of immunotherapy for NSCLC
BMs. An ICI-containing algorithm in the management of
NSCLC-BMs is presented in Figure 3. However, it must be
noted that until more robust clinical trials are conducted,
NSCLC-BMs patients should be individually evaluated by
multidisciplinary tumor boards in highly experienced centers.
Also, several considerations need to be adequately addressed
before the development of a clinical trial designed to widely test
the setting.
Patient Selection
In the era of immunotherapy, the appropriate patient selection
remains of paramount importance. In NSCLC BMs, prognosis
significantly depends on several factors, including age, Karnofsky
performance status, extracranial metastases, number of BMs, and
Frontiers in Immunology | www.frontiersin.org 8
the presence of driver-gene mutations. Together, these clinical
parameters constitute lung-graded prognostic assessment (lung-
GPA), the most established tool to estimate survival in lung
cancer. GPA of 4.0 and 0.0 correlate with the best and worst
prognosis, respectively, with OS varying widely from 7 months to
47 months (96). Some studies have shown that some clinical
parameters, including but not limited to those involved in GPA,
are associated with intracranial outcomes and survival in ICIs
treatment of NSCLC BMs (11, 97). As noted previously, the
benefit acquired from ICIs in NSCLC patients with
asymptomatic BMs is likely to have no different from that in
patients without BMs. Hence, we recommend that NSCLC
patients with asymptomatic BMs are not supposed to be
excluded routinely from clinical trials on ICIs. Symptomatic
BMs often have poor efficacy and outcome. Besides active BMs
per se, the decline in the efficacy of immunotherapy is attributed
to steroids, which are considered immune suppressors and
routinely used to control intracranial symptoms and modify
side effects of other therapies in patients with BMs (14, 98).
Moreover, harboring driver-gene mutation, indicating a
favorable prognosis, is associated with low benefits from ICIs
(99). Hence, GPA in the setting of immunotherapy may need to
be updated.

Developing reliable biomarkers is an important approach to
accurately select patients. Currently, for anti-PD-1/PD-L1
treatment, PD-L1 remains the most commonly used stratified
biomarker in both clinical practice and trials. A study
demonstrated that PD-L1 expression might predict OS in
NSCLC BMs patients receiving immunotherapy. Importantly,
it was independent of lung-GPA (100). It also noted that
intracranial PFS did not show an association with PD-L1
expression (100). However, the specimens for testing PD-L1
expression in almost all studies are from primary lesions. As
mentioned earlier, PD-L1 expression is at variance between BMs
and primary lesions (30, 31). Therefore, whether PD-L1 can be a
robust marker for ICIs intracranial response remains to require
further investigations. Besides PD-L1, tumor mutational burden
(TMB) is also approved as a biomarker of ICIs therapy, such as
pembrolizumab-based therapy and nivolumab + ipilimumab
combination therapy, in pan-cancer (101–103). Remarkably,
TMB is site-specific in NSCLC and is highest in lung
adenocarcinoma BMs (104). Beyond PD-L1 and TMB,
emerging genomic biomarkers for immunotherapy are under
development (105, 106).

A major restriction of studying the tumor immune
microenvironment of BMs is that it is extremely challenging to
obtain intracranial specimens. Therefore, simple substitutions
are required. Liquid biopsy technique based on cerebrospinal
fluid provides the opportunity to precisely acquire and monitor
BMs in real-time and guide immunotherapy. Cell-free DNA (ct-
DNA) and immune cell RNA profiling of CFS enable to
characterize genomic information and immune cells infiltration
of BMs and predict prognosis eventually (107–110). The
presence of circulating tumor cells (CTCs) has been reported
to be associated not only with NSCLC recurrence and metastasis
but also with worse tumor response to ICI (111). Methods have
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been developed to characterize CTCs of NSCLC-BMs in CSF
(112). Further work is needed to confirm the potential value of
CTCs in predicting the efficacy of ICI for NSCLC-BMs. Besides
liquid biopsy, advanced imaging techniques and artificial
intelligence in radiomics will bring about a revolutionary shift
in predicting cancer outcomes (113). For instance, the deep
learning models from CT (114) or PET-CT (115) provide a
noninvasive method to predict high PD-L1 expression of NSCLC
and infer clinical outcomes in response to immunotherapy.

With the digitalization of radiology, histopathology, genomics
and clinical information, it is necessary to integrate and analyze
these data, because none of them can fully characterize tumors
alone. In other words, they are complementary. For example,
radiological scans and pathology specimens describe tumors
spatially at different dimensions. However, at present, even
when these data are available, they are rarely integrated.
Artificial intelligence and deep learning provide an opportunity
for multimodal data integration (116). One example is that, by
integrating PET-CT imaging, RNA-sequencing, and histology,
differential immuno-metabolic crosstalk in lung squamous cell
carcinoma and adenocarcinoma was observed (117). Another
study found that the combination of features from histological
imaging and MRI outperformed unimodal classifiers for the
stratification of brain tumor subtypes (118). BMs possess the
intricate characteristics of both primary solid tumors and
neurological tumors. Thus, the integration of information may
be a promising direction for developing reliable biomarkers
for BMs.

Response Assessment
The response assessment of BMs depends not only on changes in
the size of the targeted lesions but also on changes in neurological
status and steroid dosage. Previous measures, such as tumor
Frontiers in Immunology | www.frontiersin.org 9
shrinkage rate and survival time, to evaluate the efficacy of
immunotherapy are not comprehensive and are not able to imply
early efficacy because some lesions have a temporary
pseudoprogression and then respond well. Published studies have
reported a wide range of incidences of pseudoprogression (from less
than 1% to more than 20%) (119–121). Regardless, consequences
with failure to identify pseudoprogression are substantive and
undesired, including premature discontinuation of an effective
therapy and overestimating the efficacy of a subsequent therapy.
Therefore, with the shift of the management of BMs in the era of
immunotherapy, understanding of the response assessment of BMs
needs renovation.

Firstly, the criteria of response assessment to BMs are
constantly evolving (Figure 4). Most solid tumors were
evaluated by Response Evaluation Criteria in Solid Tumors
(RECIST) 1.1. Given the use of steroids and changes in
patients’ neurological status, MacDonald Criteria was
established, primarily applied to gliomas (122). Subsequently,
to cope with the challenges posed by the pseudoprogression after
radiotherapy as well as the pseudoremission after anti-
angiogenic therapy, the Response Assessment in Neuro-
Oncology (RANO) working group published the Response
Assessment in Neuro-Oncology for High-grade Gliomas
(RANO-HGG) (123). Although MacDonald Criteria and
RANO-HGG could be extended to BMs, BMs possess the
characteristics of both primary solid tumors and neurological
tumors. Hence, for high-quality assessment of BMs, the RANO
working group established RANO for BMs (RANO-BM) (124).
The RANO-BM uses a one-dimensional method to measure
tumor size, requiring measurable lesions to be at least 10 mm in
diameter, allowing up to 5 lesions to be targeted, and
incorporates the patient’s performance status and steroid use
as a basis for evaluation when determining disease remission or
FIGURE 3 | A propositional management algorithm for NSCLC patients with BMs who are candidates for ICI-containing comprehensive treatment. This algorithm
considers patients who are candidates for an ICI-containing comprehensive therapy after the standard patient examination and tumor specimen evaluation (driver-
gene status and PD-L1 expression evaluation). Targeted reagent-centered therapy should be recommended first for driver-positive patients owing to a favorable
intracranial response rate. Considering the poor prognosis of BMs, ICI monotherapy is recommended with more caution, and ICI-containing combination therapy is
encouraged. ICI Patients with symptomatic or multiple BMs could be treated with RT strategies. The final therapeutic decision should be made by a multidisciplinary
tumor board. * only appropriate for nonsquamous NSCLC; # optimal when PD-L1 ≥ 50%; ICI, Immune Checkpoint Inhibitor; CT, Chemotherapy; RT, Radiotherapy;
TT, Targeted therapy; AAT, Anti-angiogenic therapy.
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progression. Qian et al. proposed modified RECIST (mRECIST)
1.1 criteria to adapt to the application of immunotherapy in the
treatment of BMs (125). The standard eased the restriction of
measurable lesion length to ≥5 mm, allowing more patients to be
included in clinical studies. Immune-related Response Criteria
(irRC) pointed out that if there was no significant decrease in the
patient’s clinical performance status, progression could not be
determined by an increase in the volume of an early lesion or the
appearance of a new lesion unless subsequent imaging tests could
confirm (126). Based on irRC, the RANO working group
developed Immunotherapy RANO (iRANO) for patients with
neurologic tumors who received immunotherapy, including BMs
(127). It recommended that immunotherapy for six months was
required in patients without clinical response. Patients with
radiological progression should undertake a radiological
follow-up after three months and clinicians should compare
the two images to review post-treatment outcomes. iRANO is
proposed to address the potential pseudoprogression after
immunotherapy, with a 6-month window to assess true
response, avoiding premature discontinuation of treatment in
patients who are likely to benefit from immunotherapy
potentially. However, iRANO has not yet been widely
manipulated in clinical trials and practice because of its
complicated implementation, which limits the popularity of
iRANO to a certain extent.

Similarly, advanced tools are emerging to facilitate response
assessment. An example is that magnetic resonance (MR)
spectroscopy and perfusion might increase the accuracy of
differentiating recurrent tumors from radionecrosis in patients
with gliomas or BMs (128). Of particular interest are
radiolabeled amino acids for brain tumor imaging using
positron emission tomography (PET) because of their
increased uptake in neoplastic tissue but low uptake in the
normal brain parenchyma (129), which allows the accurate
depiction of BMs to delineate BMs extent, assess treatment
response, and differentiate treatment-related changes from
tumor progression (130). Recently, this imaging technique was
strongly recommended by the RANO working group (131, 132).
Other tracers, such as radiolabeled analog to the nucleoside
Frontiers in Immunology | www.frontiersin.org 10
thymidine, were developed to assess cellular proliferation and
may be of great value in the differentiation of BMs pseudoprogression
after immunotherapy (133).

Importantly, on the basis of more investigations, more
consensus needs to be reached in the context of the existence
of various criteria and assessment tools.
CONCLUSION

Advances in ICIs have resulted in the management of BMs
patients from NSCLC navigating toward the immunotherapy
era. ICI monotherapy and combination have embodied novel
value in enhancing intracranial response, prolonging survival,
delaying BMs, and improving quality of life. In summary, the
activity of ICIs for the treatment of NSCLC BMs should not be
drastically underestimated, especially for selected patients.
Considering the poor prognosis of BMs as well as the
reciprocity between immunotherapy and other therapies, the
synergistic combination treatment is promising. Critically,
before the extensive application of this combination protocol
in clinical practice, more preclinical and clinical trials are
urgently needed to provide definite evidence and resolve the
challenges discussed above.
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GLOSSARY

NSCLC Non-small cell lung cancer
BMs Brain metastases
EGFR Epidermal growth factor receptor
ALK Anaplastic lymphoma kinase
PD-1 Programmed cell death-1
PD-L1 Programmed cell death ligand-1
CTLA-4 Cytotoxic T-lymphocyte antigen-4
ICI Immune checkpoint inhibitor
mAb Monoclonal antibody
RT Radiotherapy
SRT Stereotactic radiotherapy
WBRT Whole-brain radiotherapy
HFRT Hypofraction radiotherapy
CT Chemotherapy, Computed tomography
AAT Anti-angiogenic therapy
BBB Blood-brain barrier
CSF Cerebrospinal fluid
TME Tumor microenvironment
TILs Tumor-infiltrating lymphocytes
TAMs Tumor-associated macrophages
Tregs Regulatory T cells
MDSCs Myeloid-derived suppressor cells
VEGF Vascular endothelial growth factor
VEGFR Vascular endothelial growth factor receptor
VCAM-1 Vascular cell adhesion molecule-1
ICAM-1 Intercellular adhesion molecule 1
INF Interferon
CNS Central never system
HR Hazard ratio
CI Confidence interval
CR Complete response
PR Partial response
ORR Objective response rate
OS Overall survival
PFS Progression free survival
iPFS Intracranial progression-free survival
iTTD Intracranial time to development
AEs Adverse events
trAEs Treatment-related adverse events
QALY Quality-adjusted life-year
FDA Food and Drug Administration
lung-GPA Lung-graded prognostic assessment
Ct-DNA Circulating tumor DNA
CTCs Circulating tumor cells
RECIST Response Evaluation Criteria in Solid Tumors
RANO Response Assessment in Neuro-oncology
RANO-HGG RANO for High Grade Gliomas
RANO-BM RANO for Brain Metastases
iRANO immunotherapy RANO
mRECIST modified RECIST
PET Positron emission tomography
MR Magnetic resonance
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