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Abstract

Smoking is a risk factor for atherosclerosis with reported widespread effects on gene expression in circulating blood cells.
We hypothesized that a molecular signature mediating the relation between smoking and atherosclerosis may be found in
the transcriptome of circulating monocytes. Genome-wide expression profiles and counts of atherosclerotic plaques in
carotid arteries were collected in 248 smokers and 688 non-smokers from the general population. Patterns of co-expressed
genes were identified by Independent Component Analysis (ICA) and network structure of the pattern-specific gene
modules was inferred by the PC-algorithm. A likelihood-based causality test was implemented to select patterns that fit
models containing a path ‘‘smokingRgene expressionRplaques’’. Robustness of the causal inference was assessed by
bootstrapping. At a FDR #0.10, 3,368 genes were associated to smoking or plaques, of which 93% were associated to
smoking only. SASH1 showed the strongest association to smoking and PPARG the strongest association to plaques. Twenty-
nine gene patterns were identified by ICA. Modules containing SASH1 and PPARG did not show evidence for the
‘‘smokingRgene expressionRplaques’’ causality model. Conversely, three modules had good support for causal effects and
exhibited a network topology consistent with gene expression mediating the relation between smoking and plaques. The
network with the strongest support for causal effects was connected to plaques through SLC39A8, a gene with known
association to HDL-cholesterol and cellular uptake of cadmium from tobacco, while smoking was directly connected to
GAS6, a gene reported to have anti-inflammatory effects in atherosclerosis and to be up-regulated in the placenta of women
smoking during pregnancy. Our analysis of the transcriptome of monocytes recovered genes relevant for association to
smoking and atherosclerosis, and connected genes that before, were only studied in separate contexts. Inspection of
correlation structure revealed candidates that would be missed by expression-phenotype association analysis alone.
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Introduction

Smoking is a major risk factor for atherosclerosis and its

complications, particularly coronary artery disease (CAD) and

peripheral arterial disease [1–3]. Pathophysiological mechanisms

by which smoking promotes atherogenesis are relatively well

known, in particular through alterations of lipid metabolism [4,5]

and endothelial function [6]. However, the molecular mechanisms

by which smoking exerts its adverse effects at the cellular level are

less documented. The advent of transcriptomic studies allowing

investigation of all the genes expressed in a given type of cell has

opened a new window for exploring in a global way the biological

mechanisms underlying pathophysiological conditions. Using such

transcriptomic approach, widespread perturbation of gene expres-

sion by smoking has been recently shown in whole blood [7],

circulating lymphocytes [8], and monocytes [9] of humans.

Increasing evidence supports the hypothesis that oxidative stress

and activation of the immune system provide a pathophysiological

link between cigarette smoking and CAD [10,11]. Monocytes are
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key cells of the immune system involved in the inflammatory

response to external agents. We hypothesized that the effect of

smoking on atherosclerosis might be reflected by perturbation of

gene expression in circulating monocytes and that it might be

possible to identify gene networks causally involved in the

relationship linking smoking to atherosclerosis.

Questions about causal effects in observational studies can be

addressed by statistical methods that can translate statements

about correlations and conditional independencies into structural

equations [12] or Bayesian Networks [13]. Implementation of both

techniques, however, can be difficult when the number of variables

is large and inference of the ‘‘true’’ network that generated the

data may not be feasible, even with large sample sizes. In addition,

current implementations of Bayesian Network inference restrict to

systems of Gaussian only, binomial (or multinomial) only or

hybrids where binomials can only precede but not be caused by

Gaussian variables [14]. A third class of methods based on

information theory has been developed for the problem of

identification of large networks of direct gene interactions, which

does not rely on the correct specification of distribution functions,

but where such interactions do not have a causal interpretation

(e.g. ARACNE [15], SA-CLR [16], and Parmigene [17], among

others). For the problem under study here, an approach that is not

limited in the types of variables that can be modeled, i.e. binary,

continuous, and counts, or in how they may be associated, that

allows inferences about causal relations, and that can deal with

large number of variables was needed.

The objective of the present study was to identify groups of

genes that may help explain the causal effect of smoking on extent

of atherosclerosis. For this purpose, genomewide gene expression

in monocytes was modeled as a molecular phenotype potentially

linking smoking to carotid atherosclerosis. Data were obtained

from the Gutenberg Health Study (GHS), a community-based

project primarily aimed at improving cardiovascular risk predic-

tion [9]. We devised a stepwise approach to: 1. Identify patterns of

expression associated to smoking and/or atherosclerosis using

Independent Component Analysis (ICA); 2. Select expression

patterns showing relatively high support for a causal role in the

mediation between smoking and atherosclerosis using graphical

modeling and Bayesian Network (BN) inference; 3. For patterns

compatible with a potential causal role, infer the network skeleton

connecting smoking, genes and atherosclerosis.

Our approach identified three gene networks that were

compatible with a causal effect of gene expression mediating the

relation between smoking and atherosclerosis where a few genes

are candidates for mediating the perturbing effect of smoking in

these networks. By performing causal inference on independent

patterns of expression instead of the expression of a single gene, we

not only dramatically reduced the space of models to be tested, but

also applied BN inference in a space that is less prone to the effects

of hidden variables. We restricted to detecting classes of best fitting

models rather than a single causal model and present arguments

for why some causal models may be favored in this study. We also

provide cautionary statements to avoid misinterpretation of the

reported causal models.

Results

Smoking and extent of atherosclerosis in the GHS cohort
Association between smoking habits and atherosclerosis was

investigated in a cohort of subjects of both sexes aged 35 to 74

years who participated in the GHS [9]. Study participants were

classified into current ($1 cigarette/day) smokers (n = 248) and

nonsmokers (n = 688). Occasional smokers (n = 42) and ex-smokers

(n = 547) were excluded from the study (Methods). Characteristics

of the study population are given in Table 1.

Atherosclerosis extent was defined as the total number of

atherosclerotic plaques measured in the two carotid arteries by

ultrasound echography (Methods). Carotid intima-media thickness

and carotid plaque are well-recognized markers of subclinical

atherosclerosis [18] which are influenced by smoking [19]. The

number of plaques observed per person ranged from 0 to 11, with

a skewed distribution and an average of 0.72 plaques (variance

1.95). The prevalence of atherosclerosis, defined as the presence of

at least one plaque, was 31.2% in this middle-aged population.

The prevalence and the extent of atherosclerosis were higher in

men than in women and in smokers than in non-smokers (Table 2).

In the following, the phenotype considered was the number of

atherosclerotic plaques, referred to as ‘‘plaques’’. Because the

distribution showed overdispersion, a negative binomial distribu-

tion was used for modeling plaques as a function of covariables (see

Table 1. Characteristics of the Gutenberg Health Study population.

Characteristics Variable name Females Males p-value{

Number of individuals N 522 (55.77%) 414 (44.23%)

Age (years) age 54.6 (0.49) 54.2 (0.53) 0.5825

Body mass index (kg/m2) bmi 26.2 (0.22) 27.3 (0.2) 0.0003

Triglycerides (mg/dl) (log) TRIGLY 4.63 (0.019) 4.78 (0.025) 4.6E-06

HDL cholesterol (mg/dl) HDL_CHOL 63.8 (0.69) 50.6 (0.6) 2.3E-40

LDL cholesterol (mg/dl) LDL_CHOL 144 (1.7) 142 (1.8) 0.6472

Systolic blood pressure (mmHg) sbp 129 (0.83) 134 (0.77) 2.2E-06

Diabetes (type I or II) diabetes 30 (5.7%) 30 (7.2%) 0.3538

Current smoker smoking 115 (22%) 133 (32.1%) 0.0005

C-reactive protein (mg/l) (log) CRP 0.932 (0.033) 0.832 (0.038) 0.0455

Homocysteine (mmol/l) (log) HCY 2.25 (0.013) 2.44 (0.015) 1.3E-21

Myeloperoxidase (pmol/l) (log) MPO 5.76 (0.015) 5.7 (0.02) 0.0157

{p-values calculated from a x2 test for smoking and diabetes (number of subjects), and from an F test for all others. Standard errors or percents of individuals are in
parenthesis.
doi:10.1371/journal.pone.0050888.t001
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Text S1). The major determinants of plaques were age, sex and

smoking, which all together explained 30% of the variability of

plaques. The effect of smoking on plaques was stronger in men

than in women although the significance of the interaction test was

borderline (p = 0.027). Additional cardiovascular factors tested for

association resulted in a modest increase of the explained variance

of plaques (from 30% to 34%) (Table S1).

Gene expression in monocytes is associated to smoking
and plaques

The analysis workflow of expression data is outlined in Figure 1.

Expression of 18,364 genes was detected in total RNA from

circulating monocytes by 23,214 probes in the Illumina Human

HT-12 BeadChip (Methods). Association of probe expression level

with smoking or plaques (log-transformed) was assessed by linear

model adjusted for age and sex, as well as for the 6 first singular

value decomposition (SVD) components of the expression matrix

taken as surrogate variables for technical sources of variability

(Methods and Text S1).

In a first step, we identified genes whose expression was

associated to either smoking or plaques by univariate analysis. At

FDR #0.1, we found 3,774 probes (3,062 distinct genes)

associated to smoking. The list of smoking-associated genes was

enriched in three ‘‘biological processes’’ in the Gene Ontology

(GO) database: platelet activation, interferon-gamma-mediated

signaling pathway, and Toll signaling pathway (Table 3). Associ-

ation between plaques and gene expression was much less

prevalent than with smoking, with only 258 probes (236 distinct

genes) associated to plaques at FDR #0.1. No GO terms were

significantly enriched for genes associated to plaques.

Table 4 shows the 10 genes with strongest association to

smoking or plaques, respectively. The whole list of associated

genes to either phenotype is given in Table S2. There were 2

members common to both top 10 gene lists, SASH1 and PTGDS.

In addition to SASH1 and PTGDS, 4 genes of the top 10 list for

smoking were ranked among the top 100 genes for plaques:

FUCA1, LOC157627, MMP25 and PID1 (Table S2). Smoking was

associated to a much larger variability of gene expression (from

35% to 15% for the top 10 smoking-related genes) than plaques

(from 5% to 2% for the top 10 plaques-related genes). The

correlation of r2
D values for smoking and plaques across all genes

was 0.4, indicating a strong association between smoking and

plaques effects on gene expression as a result of their confounding

effects.

Comparison of smoking-associated gene expressions in
monocytes and lymphocytes

We investigated the robustness of the association between gene

expression and smoking by comparing the list of smoking-

associated genes in monocytes to a list of 323 genes that have

been found associated to smoking in lymphocytes [8]. The two

studies used different microarray platforms and the 13,707 genes

common to both studies were taken as the reference set. Of the

323 genes associated to smoking in lymphocytes, 268 were

detected in monocytes of GHS of which 151 were associated to

smoking (56.4%). This represented a 2.5-fold enrichment versus

the reference (p = 4.6610234). Using a more stringent FDR

threshold of 0.05 rather than 0.10 as in [8] did not significantly

affect the results (2,477 unique genes associated to smoking in

GHS; 2.6-fold enrichment, p = 2.4610234). Results from both

studies did not only overlap in the list of genes associated to

smoking but also in the magnitude and the direction of the effects

(Pearson correlation coefficient of 0.72 between the r2
D estimated

in GHS and the corresponding correlation values reported in [8])

(Figure S1).

Table 2. Mean number of carotid atherosclerotic plaques by
sex and smoking status.

Sex Smoking N
Plaques
Average{ Plaques.0

n¥ %

Females Nonsmokers 407 0.51 107 26.3

Smokers 115 0.56 30 26.1

All 522 0.52 137 26.2

Males Nonsmokers 281 0.74 93 33.1

Smokers 133 1.42 62 46.6

All 414 0.96 155 37.4

Both Nonsmokers 688 0.61 200 29.1

Smokers 248 1.02 92 37.1

All 936 0.72 292 31.2

{average number of plaques per individual;
¥number of individuals with at least 1 plaque.
doi:10.1371/journal.pone.0050888.t002

Figure 1. Analysis workflow. Microarray expression data were analyzed at two levels, a probe level (top) and a gene cluster level (bottom). Of the
35,358 probes with a ‘‘good’’ or ‘‘perfect’’ score according to ReMOAT, 23,214 were detected in monocytes of 936 subjects. Of these, 3,960 probes
were associated to smoking or atherosclerotic plaques at an FDR #0.1, corresponding to 3,368 unique genes that were further clustered in 29
expression patterns by ICA. Causality testing revealed 4 patterns that were compatible with expression mediating the relationship between smoking
and plaques. The skeleton of the network connecting genes, smoking, risk factors and plaques was then inferred using the PC algorithm.
doi:10.1371/journal.pone.0050888.g001
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Association between plaques and smoking conditional
on a single gene expression

In a second step, we investigated whether single gene

expressions might mediate the effects of smoking on plaques. For

this purpose, we modeled plaques as a function of smoking and

each single gene expression. In this one-dimensional scan, no gene

could entirely explain the association between plaques and

smoking by conditioning on its expression. SASH1 was the gene

that, once accounted for, contributed to the largest reduction in

the covariation between plaques and smoking. PTGDS and PPARG

were the second and third genes contributing the most to this

reduction (Table S3). These results suggested that, not unexpect-

edly, the underlying link between smoking and plaques might

involve more complex networks, including several genes and/or

hidden variables. Next, we devised an approach to explore a more

comprehensive set of models on multiple genes and other variables

at a time.

Clusters of genes associated to plaques or smoking
Unsupervised gene clustering was used to reduce the dimen-

sionality of the data before testing causal models involving multiple

genes. Prior to this, we reduced the set of gene expressions by

considering only genes that were significantly associated to

smoking or to plaques when tested either separately or jointly

(see Methods). This constituted a set of 3,960 probes. The probe

with the highest variance in intensity across samples was chosen

for each gene, leaving a set of 3,368 distinct gene profiles

associated to plaques or smoking.

Independent component analysis (ICA) was used to identify

patterns of co-expression in this set of 3,368 genes. ICA is an

efficient algorithm that factorizes a matrix of multivariate data into

a mixing matrix A of patterns for independent ‘‘hidden’’ compo-

nents causing correlation among variables and an S matrix of

signatures, which are vectors of coefficients associating variables

(genes) to components (see Methods and [20] for details and [21]

for a recent application to gene expression data). A pattern is a

linear combination of gene expressions whose level varies among

individuals. A signature is a vector of the contributions of a

component to each gene expression that can be characterized by

the genes that are most affected by that component (see module

Table 3. Gene Ontology categories enriched for smoking-associated gene expressions.

Term Genes in GO class Smoking-associated genes p-value Bonferroni corrected*

GO: Biological Process (BP)

platelet activation 224 74 5.50E-07 0.0055

interferon-c -mediated signaling pathway 65 29 4.50E-06 0.0451

Toll signaling pathway 71 30 4.60E-06 0.0461

GO: Cellular Component (CC)

cytosol 1889 469 4.30E-15 6.02E-12

soluble fraction 315 91 2.50E-06 0.0035

focal adhesion 100 38 2.80E-06 0.0039

melanosome 87 33 3.40E-06 0.0048

cytoplasm 7509 1634 3.70E-06 0.0052

MHC class II protein complex 12 9 3.00E-05 0.0420

GO: Molecular Function (MF)

protein binding 6620 1433 1.70E-12 4.38E-09

*Bonferroni correction on the number of GO terms represented in the reference set: 5010 (BP), 700 (CC), 1289 (MF).
doi:10.1371/journal.pone.0050888.t003

Table 4. Top 10 genes associated to smoking or plaques.

ProbeID Symbol beta r2
D p-value

Top 10 genes associated to smoking

ILMN_2185984 SASH1 0.58 0.35 1.4E-88

ILMN_1660031 P2RY6 0.20 0.26 2.0E-61

ILMN_1717207 MMP25 0.59 0.22 7.5E-53

ILMN_1752728 FUCA1 0.33 0.19 7.2E-45

ILMN_1671891 PID1 0.37 0.19 4.3E-44

ILMN_1664464 PTGDS 20.68 0.19 6.7E-44

ILMN_1656300 GFRA2 0.42 0.17 1.2E-38

ILMN_1708303 CYP4F22 20.42 0.16 1.3E-37

ILMN_1655987 STAB1 0.29 0.16 3.4E-37

ILMN_1818677 LOC157627 0.12 0.15 1.8E-34

Top 10 genes associated to plaques

ILMN_1800225 PPARG 0.09 0.05 2.26E-11

ILMN_2185984 SASH1 0.16 0.04 1.77E-09

ILMN_2103107 ADAMDEC1 0.07 0.03 1.70E-08

ILMN_1664464 PTGDS 20.24 0.03 4.61E-08

ILMN_1706304 EIF2C4 0.05 0.03 1.31E-07

ILMN_2352633 ARHGAP24 0.05 0.03 2.40E-07

ILMN_1794914 UBTD1 0.05 0.03 2.93E-07

ILMN_1802808 SLC25A37 0.12 0.03 3.17E-07

ILMN_1752478 DHRS3 20.12 0.03 5.35E-07

ILMN_1687592 WWC3 0.06 0.02 1.46E-06

Association of probe level was tested separately with smoking and
ln(plaques+1) by linear model adjusted for age, sex and the 6 first SVD
components. The beta regression coefficient is shown. Probes were ranked
according to decreasing r2

D for smoking (plaques, respectively). In case of
several probes by gene (e.g. SASH1 and PPARG), the probe with the highest r2

D

is shown.
doi:10.1371/journal.pone.0050888.t004
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below). In the following, the terms pattern, signature or module are

used for referring to a component according to the context where

it applies (i.e. individuals or genes).

The number of components to extract was determined by a

permutation test, which indicated that 59 components could be

detected in this dataset (see Methods). Components that did not

meet pre-specified quality control criteria were discarded, leaving

29 components for analysis (see Methods and Text S1 for details).

Each component was associated to a specific module of genes

characterizing its signature. A module was defined as the subset of

genes that were selected on either tail of the signature distribution

by controlling local FDR #0.001, as done previously [21]. This

resulted in 29 modules of 9 to 125 genes (Table S4). Two modules

were enriched in GO pathways: module 18 (interferon-gamma-

mediated signaling pathway) and module 39 (antigen processing

and presentation via MHC class II) (Table S5).

Association of ICA expression patterns with smoking and
plaques

As mentioned above, the patterns obtained by ICA factorization

are linear combinations of gene expressions whose level can be

interpreted as reflecting the ‘‘degree of activation’’ of subsets of co-

expressed genes among individuals. Association of expression

patterns with smoking or plaques was investigated in a similar

fashion to that employed for individual gene expressions, except

that we used a Bonferroni-corrected significance threshold (0.05/

29 = 0.0017) instead of a FDR. At this significance threshold, 14 of

the 29 patterns were associated to smoking and 7 to plaques, 5

being common to both (Table 5).

Worthy of note, ICA was able to recover a strong signature of

smoking effects on gene expression in monocytes (pattern 43), as

reflected by the high proportion of variance of that pattern (56%)

explained by smoking (Table 5). The module associated to pattern

43 comprised 34 genes listed in Table S4. At the core of module 43

was SASH1, which had the highest coefficient for signature 43 in

the S matrix and therefore was the most correlated to the overall

pattern of expression.

Significant overlap with genes associated to smoking in

lymphocytes [8] was tested for each ICA module in the same

manner as for the full set of genes associated to smoking (above).

Six of the 29 modules were significantly enriched for genes

associated to smoking in lymphocytes (Table S6). The most

enriched module was module 43, for which 12 of the 34 genes

were also observed in lymphocytes (OR = 27.35; p = 9.1610213).

As in the single-gene case, no single pattern was able to entirely

account for the association between smoking and plaques. The

top-ranking pattern by amount of covariation explained between P

and S was pattern 43 (Table 5). When this pattern was introduced

in the model relating plaques to smoking, the proportion of

variability of plaque counts explained by smoking (r2
D) decreased

from 8.8% to 2.3%.

Selection of expression patterns with potential causal
role in the relationship between smoking and plaques

Though no single pattern could entirely explain the relationship

between smoking and plaques, we sought to determine whether

some ICA patterns may show evidence for a causal effect partially

mediating the link of smoking to plaques. For this analysis, we used

graphical modeling (Methods). For each expression pattern, the

best-supported causal model involving smoking (S), plaques (P) and

gene expression pattern (G) was selected by a likelihood-based

model selection approach. All equivalence classes of graphical

models among these three variables were enumerated (Figure 2).

Two classes, f and k, were of primary interest because both

comprise models with a path SRGRP, which is the causal relation

of interest. Under model class f, all the association between

smoking and plaques can be explained by the effect of one single

pattern. In model k, the pattern does not explain all the covariation

between smoking and plaques, but it is associated to both (Text

S1). Maximum likelihood was used to identify the equivalence

class that was best supported by the data for each pattern. The

process was repeated for 1000 bootstraps of the data to account for

uncertainty in model selection.

The results of causal model inferences are summarized in

Figure 3 and Table S4 (spreadsheet ‘‘Causality’’). The probabilities

of the different models across the 1000 bootstraps for each pattern

are shown in bottom half of plot in Figure 3. The probability of

selecting a model from a causal class was defined as the sum of

probabilities for the model classes f and k (top half of plot in

Figure 3). According to this criterion, 4 patterns (21, 29, 31 and 51)

had a relatively high support for causality (probability $0.6).

Worthy of note, pattern 43, the one the most influenced by

smoking, was associated with the model G–S–P with a probability

of 0.7, which is incompatible with SRGRP causality.

Inference of the gene network underlying ICA expression
patterns

To further characterize the ICA patterns showing some support

for causality, we inferred the topology of the networks underlying

patterns. For each pattern, the network was constructed from the

subset of genes composing the module specific to that pattern. We

applied the PC algorithm 1 to discover the skeleton of conditional

independencies (algorithm 1 in [22]; see Methods). The network

was represented as an undirected graph. To decrease the

possibility of hidden variables for the network, we considered in

these analyses all cardiovascular risk factors that were associated to

each pattern by stepwise regression (Table S7). This is important

to avoid spurious edges resulting from untested confounding

variables. To assess uncertainty in the inference, the process was

repeated 1000 times by bootstrapping individuals and the

proportion of data samples that recovered an edge was recorded.

We considered only edges with a recovery probability $0.6 (see

Methods). Graphic representations for all networks are found in

Text S2.

Networks selected by causality test
For the 4 modules with suggestive support for causal effects (21,

29, 31 and 51), we estimated the minimum path(s) between

smoking and plaques, starting from each gene directly connected

to smoking. Pattern 31 did not reveal any path because no gene

was connected to plaques in more than 60% of bootstraps.

For pattern 21 (Figure 4), the different paths connecting

smoking to plaques involved four genes directly connected to

smoking (MAP3K6, GAS6, HTRA1 and DSC2) and only one gene

directly connected to plaques (SLC39A8) (Table 6). Therefore, the

SLC39A8 gene funneled all information paths between smoking

and plaques in this network. SLC39A8 expression level was

positively correlated to plaques and smoking was positively

correlated to all the genes in the cluster, suggesting that an up-

regulation of genes of the cluster was associated to increased

atherosclerosis extent. Additionally, SLC39A8 was negatively

correlated to HDL-cholesterol levels (,1 probability), which is

consistent with the protective role of HDL-cholesterol in

atherosclerosis.

In pattern 29, there were 7 genes directly connected to smoking

(CXCL16, DHRS9, FAM20C, FPR3, PDE4B, PTGFRN, and

TBC1D8) and only one gene connected to plaques (RASD1)

Smoking, Gene Expression and Atherosclerosis
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(Table 6). RASD1 was positively correlated to plaques, although

this association was recovered with probability of only 0.64. This

was a large network with 98 genes (Table S4). However, smoking

and plaques were separated by a relatively low number of genes

where the 7 paths had between 3 to 5 connecting genes (Table 6).

Pattern 51 was the smallest (15 nodes) and among the most

interconnected networks, with an average number of connections

per node of 4.3. Among the different paths connecting smoking to

plaques, 2 genes were directly connected to smoking (CYP1B1 and

HOXA10) and only one gene was directly, negatively, connected to

plaques (TMEM136) (Table 6).

PPARG network
PPARG was the gene showing the strongest association to

plaques and the third in the reduction of the r2D of smoking to

plaques. In addition, this gene is known to be involved in

atherosclerosis [23]. This prompted us to examine in more details

the network(s) comprising PPARG. Actually, PPARG was only

present in module 42, which included 71 genes (Table S4). Pattern

42 was not significantly associated to smoking or plaques (Table 5).

However, causality testing gave inconclusive results, with two

model classes, h (SRPrG) and k (S—G—P—S), alternatively

selected by bootstrapping with probabilities 0.5 and 0.31,

respectively (Table S4). In model h which had the best support,

smoking and pattern expression were associated only when

conditioned on plaques, meaning that both have causal effects

on plaques but independently from one another. Conversely, the

topology of the network suggested that the shortest path from

smoking to plaques was through PPARG only (Text S2). This path,

which was recovered in 96% of bootstraps, supported a causal

effect of PPARG. This discrepancy between PPARG and pattern 42

might be explained by the fact that the contribution of pattern 42

to PPARG was weak (ranking 67 out of 71 genes of the module)

and therefore, the behavior of PPARG did not exactly match that

of the entire pattern.

Table 5. Association between ICA gene expression patterns (G), smoking (S) and plaques (P).

Pattern n b G,S G,P P,S|G

S P p-value r2
D p-value r2

D p-value r2
D

Pattern43 34 + + 4E-166 0.56 4E-07 0.03 4E-06 0.02

Pattern21 36 2 2 2E-23 0.10 7E-06 0.02 4E-14 0.06

Pattern51 9 2 2 5E-11 0.05 4E-06 0.02 2E-16 0.07

Pattern39 47 + + 8E-10 0.04 1E-04 0.02 8E-17 0.07

Pattern29 98 + + 3E-15 0.07 0.000 0.02 5E-17 0.07

Pattern18 98 + 7E-20 0.09 3E-02 0.01 1E-17 0.08

Pattern11 141 2 3E-23 0.10 0.005 0.01 4E-18 0.08

Pattern54 17 2 2E-02 0.01 0.000 0.02 1E-18 0.08

Pattern34 58 + 0.000 0.03 1E-02 0.01 3E-19 0.08

Pattern28 70 0.007 0.01 0.032 0.00 2E-19 0.08

Pattern15 14 + 6E-04 0.01 0.200 0.00 9E-20 0.09

Pattern45 51 7E-02 0.00 0.413 0.00 8E-20 0.09

Pattern36 64 2 0.000 0.03 0.477 0.00 7E-20 0.09

Pattern19 115 2E-02 0.01 0.425 0.00 5E-20 0.09

Pattern52 49 + 0.001 0.01 0.127 0.00 4E-20 0.09

Pattern41 45 1E-01 0.00 0.849 0.00 4E-20 0.09

Pattern14 67 2 0.000 0.01 0.815 0.00 4E-20 0.09

Pattern12 103 0.902 0.00 0.179 0.00 4E-20 0.09

Pattern49 35 0.941 0.00 0.585 0.00 3E-20 0.09

Pattern58 23 0.027 0.01 0.934 0.00 3E-20 0.09

Pattern33 43 0.971 0.00 0.073 0.00 2E-20 0.09

Pattern17 31 0.791 0.00 0.651 0.00 2E-20 0.09

Pattern27 13 0.121 0.00 0.283 0.00 2E-20 0.09

Pattern23 40 9E-01 0.00 0.360 0.00 2E-20 0.09

Pattern30 97 + 0.000 0.01 0.936 0.00 2E-20 0.09

Pattern42 71 0.138 0.00 0.038 0.00 2E-20 0.09

Pattern4 125 0.106 0.00 0.203 0.00 2E-20 0.09

Pattern31 85 + 0.072 0.00 0.006 0.01 3E-21 0.09

Pattern48 22 2 6E-06 0.02 0.071 0.00 1E-21 0.09

n: number of genes in the pattern-specific module, b: sign of the regression coefficient of G on S and G on P, respectively. All models included age, sex and the first 6
SVD components. Only the 29 patterns that passed quality control are shown. P-values #0.05/29 = 0.0017 are in bold. Genes are ranked by increasing r2

D associated to S
in the model P,S|G, which corresponds to decreasing reduction of the amount of covariation between smoking and plaques explained by pattern expression.
doi:10.1371/journal.pone.0050888.t005
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Discussion

We present results from a genome-wide survey of gene

expression in monocytes that revealed widespread effects from

smoking, with .3000 genes either over- or under- expressed in

smokers. Because no information was collected about number of

cigarettes smoked per day, we could not test dose-dependence of

the effects on gene expression. Due to the non-stringent FDR

adopted, the list was rather large because our primary objective

was not to miss any gene of potential interest. The list of smoking-

associated genes showed significant overlap with those observed in

lymphocytes from a large cohort of Mexican Americans [8]

indicating high robustness of smoking effects across different

circulating cell types and genetic background. By contrast, the

number of gene expressions associated to atherosclerosis was much

lower (236 genes), which is probably explained by the fact that

atherosclerosis is a complex and distal phenotype with multiple

genetic and non genetic determinants.

As expected, a one-dimensional scan across the transcriptome

revealed that no single gene could explain the association between

smoking and plaques, leading us to search for networks of genes

that might be more relevant. Using ICA, we identified 29 patterns

Figure 2. Graphical models for equivalence classes tested among smoking, gene expression and atherosclerotic plaques. Variables
are represented by squares and causal associations are indicated by directed edges among nodes. Undirected edges indicate bidirected edges. The
two classes colored in brown represent the causal models of interest where gene expression (G) mediates the association between smoking (S) and
plaques (P). In class (f), the covariation between S and P is entirely explained by G, whereas in class (k), there is residual covariation between S and P
after conditioning on G.
doi:10.1371/journal.pone.0050888.g002

Figure 3. Probability of selection of the different causality models for each ICA expression pattern. Probability was estimated from 1000
bootstraps of the data. The bottom of the graph shows the probabilities of the 11 models described in Figure 2. The top of the graph shows the sum
of the probabilities for models (f) and (k) representing the causal classes.
doi:10.1371/journal.pone.0050888.g003
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of co-expressed genes, 14 of which were strongly associated to

smoking. Two patterns were enriched in functional GO categories

(interferon-gamma-mediated signaling pathway and MHC class II

antigen processing) but none of these two patterns was related to

atherosclerosis after conditioning on smoking. Worthy of note, one

of the patterns (pattern 43 driven by SASH1) could be interpreted

as a robust signature of the impact of smoking on the

transcriptome of circulating blood cells, as demonstrated by the

substantial overlap of smoking-associated genes between mono-

cytes and lymphocytes [8]. Actually, all the genes directly

connected to smoking in network 43 (i.e. SASH1, MMP25,

P2RY6, FUCA1, PID1, DTNA, GFRA2, CLEC10A and PTGDS)

had been previously identified as the strongest correlates of

smoking in GHS [9]. Surprisingly, none of these genes was found

differentially expressed in a recent experimental study performed

in a human monocytic cell line (THP-1 cells) exposed to cigarette

smoke extract [24]. This discrepancy suggests that in vivo chronic

exposure to cigarette smoke may have a different impact from in

vitro acute exposure, in particular because of the important role

played in vivo by the lung, kidney and liver in metabolizing

xenobiotics.

We then tested causality by graphical modeling. Actually, two

model classes, S–G–P and S–G–P–S contained the causal path of

interest SRGRP. Although both of these graphs describe multiple

Bayesian networks, a priori information can be used to favor only a

few of them. Indeed, genes expressed in monocytes are unlikely to

affect smoking behavior, eliminating SrG edges. Supporting this

assumption, only three genes across all networks have been

reported by GWAS to be associated to smoking behavior and none

of them were in modules selected for causal effects (Table S8). On

the other hand, by excluding ex-smokers, we reduced the

possibility that smoking behavior might be modified by the

presence of atherosclerosis, making SrP edges less likely (see Text

S1 for details). Therefore, the networks most likely underlying the

two graphical models of interest were SRGRP for the two-edge

case and SRGRPrS or SRGrPrS for the three-edge case.

We identified four patterns of expression (21, 29, 31, and 51)

that were compatible with an effect of expression partially

mediating the relation between smoking and atherosclerosis.

Pattern 31 did not have a gene network topology consistent with

any gene mediating smoking to plaques effects. Pattern 29 was

associated to a large module (94 genes) with some support for

causal effects (0.59 probability). All the paths in this network were

connected to plaques through a single gene, RASD1. This gene,

whose exact function is unknown, encodes a Ras-related protein

stimulated by dexamethasone, a drug with anti-inflammatory and

immunosuppressive actions. Because of the relatively low proba-

bility of causality of pattern 29 and the modest recovery of the

RASD1–plaques edge (0.64 frequency), caution is needed in the

interpretation of this result.

Pattern 51 had a relatively high support for causality (0.85

probability). In this network, smoking was directly connected to 2

genes, CYP1B1 and HOXA10, which both have relevance to

atherosclerosis and smoking. CYP1B1 encodes a member of the

cytochrome P450 protein superfamily that localize to the

endoplasmic reticulum and metabolize procarcinogens including

polycyclic aromatic hydrocarbons in tobacco-smoke [25]. CYP1B1

expression showed the strongest difference in placenta from

smoking and nonsmoking women [26] and was increased in THP-

Figure 4. Subnetwork of PC skeleton for Module 21. This graph
represents a consensus network from 1000 bootstraps. Edges among
variables are drawn if detected in at least 60% of bootstrapped samples.
The recovery percentages are indicated to the right of the medial
section of each edge. Line thickness is proportional to the edge’s partial
correlation. Black edges denote positive and pink edges negative partial
correlations. Plaques and risk factors are in blue. Genes directly
connected to smoking are in green and those directly connected to
plaques are in orange. Other genes are in gray. Only genes that are
involved in the shortest paths connecting smoking to plaques are
shown. The full network for this and other patterns are found in Text S2.
doi:10.1371/journal.pone.0050888.g004

Table 6. Shortest gene paths connecting smoking to
plaques.

Pattern Paths

Pattern21 smoking - GAS6 - MUC1 - SLC39A8 -
plaques

smoking - HTRA1 - ILMN_1901616 -
SLC39A8 - plaques

smoking - MAP3K6 - PLIN3 - SLC39A8 -
plaques

smoking - DSC2 - GK - FCGR1A - MUC1 -
SLC39A8 - plaques

Pattern29 smoking - DHRS9 - ACOX2 - COQ2 -
RASD1 - plaques

smoking - FAM20C - NEK6 - ACOX2 -
COQ2 - RASD1 - plaques

smoking - FPR3 - AVPI1 - RASD1 - plaques

smoking - CXCL16 - UTP6 - FAR2 - RASD1 -
plaques

smoking - TBC1D8 - CMTM4 - FFAR2 -
RASD1 - plaques

smoking - PDE4B - PFKFB3 - COQ2 -
RASD1 - plaques

smoking - PTGFRN - CDC42EP2 - COQ2 -
RASD1 - plaques

Pattern51 smoking - CYP1B1 - TMEM136 - plaques

smoking - HOXA10 - MYB - CYP1B1 -
TMEM136 - plaques

Only networks passing the causality tests are shown.
doi:10.1371/journal.pone.0050888.t006
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1 cells after in vitro exposure to cigarette smoke [24]. In endothelial

cells, CYP1B1 expression is regulated by shear stress and is

associated to anti-atherogenic effects [27] and decreased oxidative

stress [28]. HOXA10 encodes a transcription factor associated to

cell proliferation in the monocytes cell lineage [29] and repression

of PHOX genes involved in oxidative stress [30]. It is expressed in

the endothelium in a location-dependent manner, with lower

expression in atheroprone than in atheroresistant arteries [31,32].

HOXA10 expression in endometrium has been shown to be

directly affected by cigarette-smoke extract both in humans and

mice [33]. Therefore, there is support in the literature linking at

least two genes of the network to smoking and plaques. However,

TMEM136, which was the only gene of the network directly

connected to plaques, was expressed at low levels in monocytes,

only exceeding detection threshold in 5% of male non-smokers

and a few individuals outside this group. TMEM136 encodes a

transmembrane protein of unknown function. Therefore, it is

possible that association between plaques and this gene is instead

reflecting association to a different unobserved network member.

Pattern 21 which had the highest support for causality (0.87

probability) also appeared to have the highest relevance in the

context of smoking-induced atherosclerosis. In this network,

connection to plaques was mediated by SLC39A8 (aka ZIP8), a

transmembrane zinc transporter. Genetic variants in SLC39A8

have previously been associated to several cardiovascular risk

factors such as HDL-cholesterol [34,35], blood pressure [36,37],

obesity [38], and activation of plasminogen [39]. In addition to

being connected to plaques, SLC39A8 was directly connected to

HDL-cholesterol in the network (Figure 4), a result consistent with

the association found with SLC39A8 genetic variants [34,35] and

supporting a causal role of SLC39A8 in atherosclerosis. However,

here we provide evidence for an effect on plaques not completely

mediated by HDL-cholesterol, since a direct plaques–SLC39A8

edge was recovered with 0.69 probability. SLC39A8 is known to

have a cytotoxic role by intracellular transport of cadmium, a toxic

heavy metal and carcinogen that is abundant in cigarette smoke

[40,41]. In lung epithelia, SLC39A8 expression is increased by

TNFa, a pro-inflammatory cytokine that is abundant in smoker’s

lung [42]. In addition, the cadmium-mediated toxicity induced by

cigarette smoke has been shown to be enhanced through NF-kB-

mediated activation of SLC39A8 expression [42].

The shortest path from smoking to plaques in network 21 was

smoking–GAS6–MUC1–SLC39A8–plaques. MUC1 (mucin 1) en-

codes a membrane protein involved in cell adhesion and signal

transduction, not previously associated to smoking effects or

atherosclerosis. By contrast, GAS6 (growth arrest-specific gene 6)

has a strong relevance to atherosclerosis. It belongs to a family of

vitamin K-dependent coagulation proteins and has a pleiotropic

role in atherosclerosis, with pro- and anti-atherogenic effects [43].

In human atherosclerotic plaques, which are the focus of the

present study, GAS6 has been shown to be expressed mainly by

vascular smooth muscle cells and to have an anti-inflammatory

action by stimulating the anti-inflammatory cytokine TGFß and

inhibiting expression of TNFa [44]. Therefore, TNFa may be a

molecular signal underlying the correlation between SLC39A8 and

GAS6, but this hypothesis needs to be confirmed. GAS6 was also

among the genes reported to be up-regulated in the placenta of

women smoking during pregnancy [26]. To the best of our

knowledge, GAS6 and SLC39A8 have not been connected before in

the context of atherosclerosis and their functional link needs to be

experimentally confirmed.

Because ICA was performed on a subset of genes pre-selected

by their association with smoking or atherosclerosis, we cannot

exclude the possibility that we missed some genes that could be

important nodes in the networks subsequently identified. Howev-

er, not doing this pre-selection would have led to a larger number

of ICA components (91 components were actually detected in our

previous ICA application in the complete GHS expression dataset

[21]), most of them being irrelevant for the problem under study.

Also, we cannot exclude the possibility of spurious edges in

networks resulting from untested confounding variables.

Networks discovered in this study may represent diverse

mechanisms of gene-by-gene co-expression. For instance, expres-

sion of genes may be co-regulated by a signaling pathway in a

single cell type or they may represent coordinated variation in the

proportion of cell population subclasses of monocytes. Both

possibilities are equally interesting since causal effects may be

mediated by either mechanism. For instance, HDL levels

modulate monocytes proliferation and activation, changing the

composition of the myeloid cell lineage, which is thought to

explain in part its anti-inflammatory and athero-protective effects

[45,46]. Further studies are needed to determine what specific

molecular mechanisms underlie the correlation patterns reported

here. Additionally, replication of candidate gene networks in

independent datasets should be performed before laborious

functional studies are undertaken.

A word of caution is in place about inferring causal associations

from observational data. Direct associations in causal graphs are

appropriate only in the context of the variables that are included in

the system, i.e. the variables that were measured. Causal graphs

are considered complete only in the sense of common causes

between variables but they do not include all causes of variables

[47]. Therefore, a direct causal association may represent the net

effect of a large number of direct causal associations among

variables that were not measured and that mediate the effects

among the variables that were observed [48]. A causal graph may

change if variables are removed or new ones are included.

Furthermore, the real causal associations that can be inferred from

graphical models are not in the edges but in the lack of edges

between variables, that is, two variables are not causally associated

given that we account for the other variables in the system. Instead

the presence of an arrow only indicates the possibility of a causal

association, which has to be determined from data [49]. The

method used here can only identify networks, which in the context

of the variables measured, present a correlation structure that is

not incompatible with the causal effects of interest SRGRP. An

effort was made to include all other variables that may be relevant

in the system, but of course there is no guarantee that all relevant

variables were included. In addition, although the method does

not always allow identifying the best model, providing the best

fitting class of models is an honest and useful summary of the

information encoded in these data.

In conclusion, we have used a graphical modeling approach to

investigate the potential role of gene expression in monocytes in

mediating smoking effects on atherosclerosis. The analytic

approach implemented here allowed discriminating among

competing causal models affecting multiple genes and revealed

gene networks that included multiple members with known causal

roles in atherosclerosis or mediation of smoke-tobacco effects. To

the best of our knowledge, this is the first application of causal

inference on gene modules rather than individual genes. Our

results put together previously unconnected genes that led to the

formulation of new hypotheses about potential molecular mech-

anisms linking smoking effects to atherosclerosis phenotypes.

Therefore, inspection of the correlation structure of risk factors,

gene expression and atherosclerosis, revealed candidate genes that

would have been missed by looking at strength of gene-phenotype

associations alone.
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Materials and Methods

More details are provided in Text S1.

Subjects
Study participants of both sexes aged 35–74 yr, were succes-

sively enrolled into the GHS, a community-based cohort study in

the Rhein-Main region in western mid-Germany. Participants

were of European origin. More details about the GHS study are

provided in [9]. There were 1,536 individuals with microarray

expression data that passed quality control tests. Nine individuals

with missing number of plaques were removed. Smoking status

was recorded by interview at recruitment. Current smokers

(individuals smoking $1 cigarette per day since at least 6 months

before recruitment, n = 248) and nonsmokers (individuals who had

never been smoking over a period of at least 6 months, n = 688)

were used for analyses. Occasional smokers (n = 42), ex-smokers

(n = 547) and individuals with missing information on smoking

status (n = 2) were excluded.

Ethics statement
All subjects gave written informed consent. Ethical approval was

given by the local ethics committee and by the local and federal

data safety commissioners (Ethik-Kommission der Landesärzte-

kammer Rheinland-Pfalz 22/03/2007 Number 837.020.07

(5555)).

Evaluation of the number of atherosclerotic plaques
Intima-media thickness (IMT) in the common carotid arteries

was assessed with an ie33 ultrasound system (Philips, NL) using an

11 to 3 MHz linear array transducer. Measurements were

performed by an experienced technologist and evaluated in the

QLab software (Philips, NL). The presence of an atherosclerotic

plaque was determined by an increment of 1.5 mm or more in

IMT when compared to a region without plaque 1 cm before the

carotid bulb, averaging from left and right carotids. Plaques were

counted in the common, external, and internal carotid arteries on

both left and right sides [9]. The phenotype considered was the

count of plaques summed over both carotid arteries.

RNA samples processing
Total RNA from circulating monocytes was extracted as

previously described [9]. Briefly, monocytes were isolated from

blood samples with the RosetteSep Monocyte Enrichment

Cocktail (StemCell Technologies, Vancouver, Canada), cells were

resuspended in Trizol (Invitrogen, Karlsruhe, Germany), RNA

was extracted with the RNeasy Mini kit (Qiagen, Hilden,

Germany) and controlled for quality in an Agilent Bioanalyzer

2100 (Agilent Technologies, Boeblingen, Germany).

Microarray data processing
RNA samples were hybridized to the Illumina HT-12 BeadChip

v3 (Illumina, San Diego CA) containing 48,803 50-mer DNA

probes. Probe-mapping to the genome was obtained from

ReMOAT annotations [50] in the illuminaHumanv3.db package

from Bioconductor v2.8 (http://www.bioconductor.org). There

were 13,445 probes with ‘‘Bad’’ scores for genome alignment,

which were discarded. Probes were annotated with RefSeq and

EntrezGene ids using the org.Hs.eg.db package from Bioconduc-

tor. Of the remaining 35,358 probes, 28,515 were annotated to

Ensembl transcripts and 28,137 to EntrezGene ids. For the

purpose of counting number of genes throughout, unannotated

(but of good quality) probes were considered as targeting distinct

genes. Note that probe annotations from Illumina were not used to

discard probes, which is different from our previous analyses on

this dataset [9,21]. However, 98% of probes that were removed in

our previous analyses were also removed by at least one of the

filtering steps applied here.

Bead-level data were processed with BeadStudio (Illumina, San

Diego CA) to perform quality control and summarization of

intensity values at probe level. Data were further processed by

quantile normalization. An arcsinh transformation was applied to

stabilize the variance [51]. A transcript was considered detected

when the normalized intensity reported by its targeting probe was

significantly above that of negative control probes on the same

array (detection p-value,0.04). Probes with ‘‘detected’’ calls in

$5% of samples within any smoking/sex group were considered

for analysis, representing 23,214 probes. All analyses were

performed with R v2.13 [52].

Correction for technical sources of variability in gene
expression

Major components of variance in the gene expression dataset

were identified by singular value decomposition (SVD) using the

La.svd function in R. The six largest components were not

associated to any individual characteristic, and therefore were

thought to reflect systematic effects from sample-processing

protocols. The first 6 SVD components were then used as

surrogate variables of technical effects and were adjusted for in

expression analyses [53]. In addition, potential sample contami-

nation with B and T cells, and megakaryocytes was corrected as

previously described [21] (Text S1).

Modeling the number of plaques
In analyses modeling the number of plaques as dependent

variable, we used a negative binomial (NB-2) distribution [54].

Other distribution functions were considered but not used (see

Text S1 for details). The negative binomial model was fitted by the

glm.nb function with a log link using the R MASS package. A

pseudo-R2 coefficient was defined as R2
D~1{

D(y,m̂m)

D(y,�yy)
, where

D(y,.̂.)~2½log L(y){log L(.̂.)� is the deviance around means

predicted by model .̂., y is the saturated model (one coefficient per

observation), D(y,m̂m) is the deviance in the full model and D(y,�yy) is

the deviance in the model with an intercept only [55]. In GLM

models of Gaussian response variables, this reduces to the R2

coefficient of multiple determination. Similarly, a pseudo-coeffi-

cient of partial determination was computed to measure the

marginal contribution of one independent variable in predicting a

response when contribution from all other variables in the model is

accounted for [56]. This coefficient for an independent variable x

was defined as r2
D~

D(y,m̂m{x){D(y,m̂m)

D(y,m̂m{x)
, where D(y,m̂m{x) is the

deviance of a reduced model with x dropped. Model selection was

performed by the Bayesian Information Criterion

BIC~{2(log L(yDĥh)zk log(n), where L(yDĥh) is the maximum

likelihood of the data given parameters ĥh, k is the number of

parameters in ĥh and n is the number of observations. When

comparing different negative binomial models, the dispersion

parameter a was held constant and fixed at the estimated value

from the model with age, sex and smoking effects (a= 1.34).

Individuals with missing values for any variables being considered

were removed before model fitting.

Single gene expression association analysis
Analysis of expression data was performed at the probe level.

Association of a single probe expression with plaques counts and
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smoking was performed by linear regression analysis where the

dependent variable was the probe expression level and the

independent variables were plaques and smoking, tested either

individually or simultaneously. In these models, the variable

considered for plaques was ln(plaques+1). All models were

systematically adjusted for age, sex and the 6 first SVD

components. Linear models were tested by the glm function in R.

An FDR #0.1 was used for selecting the probes associated to

plaques or to smoking [57]. See Text S1 for details.

The list of 3,368 distinct gene expressions associated to smoking

was compared to the list of 323 gene expressions previously

reported to be associated to smoking in lymphocytes [8]. This

study used the Illumina Human WG-6 v1 microarray platform,

which is an earlier version of the HT-12 used in GHS. Updated

gene annotations were obtained from Bioconductor. There were

19,614 unique genes in WG-6 of which 17,243 were also queried

in HT-12. Of these, 13,707 were detected in monocytes of GHS,

which were used as the reference set. Gene set enrichment analysis

was performed by the Fisher’s exact test implemented in the

fisher.test function in R.

GO enrichment analysis
Gene set enrichment analysis of gene ontology (GO) terms was

performed with the topGO (v 2.4.0) package in R. GO data were

obtained from the GO.db Bioconductor metadata package v 2.5.0

(March 2011). Enrichment was tested by a Fisher’s exact test using

the set of 18,364 unique known detected genes as a reference. In

order to account for the redundancy and hierarchy of GO terms,

the weight01 algorithm was used, which is a hybrid between the elim

and weight algorithms described in [58]. Control for multiple

testing was done by a Bonferroni correction on the number of GO

terms represented in the reference set.

Covariation between plaques and smoking explained by
single genes

To test whether a single gene expression could explain part of

the covariation between plaques and smoking, we modeled

plaques as a function of smoking and gene expression using the

glm.nb function. The dispersion parameter h was held constant

across genes to a value of 0.75, which was estimated with the glm.nb

function on the reduced model without gene effect. The strength

of the association of smoking before and after including gene

expression was tested by the r2
D coefficient as described above. The

difference between these values was regarded as covariation

explained by a single gene.

Clustering gene expressions by Independent Component
Analysis (ICA)

The fastICA algorithm was used to factorize the matrix of 3,368

gene expressions associated to smoking or plaques [20]. A single

probe per gene was selected, that was the probe showing the

largest variance across samples. This approach avoids the bias that

would be introduced by, for instance using the probe with the

strongest association to smoking or plaques and favors probes with

more information content. Using the mean expression across

probes for a gene was not considered because of the added noise

that that may result from errors in probe annotation and because

the largely uneven number of probes per gene would dramatically

affect the distribution of technical error across genes. All

unannotated probes were kept.

Normalized data from each probe were centered and

standardized. SVD was initially performed to determine the a

priori number of components for the ICA algorithm as explained in

[21]. This number was found to be 59.

The fastICA algorithm identifies major variance components by

iteratively estimating the ‘‘mixing’’ matrix A that satisfies the

equation X = SA, where X is an m6n data matrix, S is a m6p

matrix of signatures across genes, A is p6n matrix of patterns

across samples, n is the number of samples (n = 936), m is the

number of genes (m = 3,368), and p is the number of ICA

components set a priori (p = 59). The iterative algorithm minimizes

dependency among signatures (columns of S), while maximizing

non-Gaussianity, i.e. negentropy, of signature distributions [20].

The fastICA function in the R-package of same name was used

[59]. The algorithm was run multiple times to avoid trapping in a

local maximum. The results were processed as previously

described in [21] to remove components that were not consistently

detected across random start points. Briefly, fastICA was repeated

500 times and the best run (with the maximal negentropy) was

selected. The stability of components over the 500 runs was

calculated. Components that did not meet quality control criteria

were discarded (see Text S1 and Tables S9, S10, S11).

For each component, a signature-specific module was defined as

the subset of genes on either tail of the signature distribution

selected by controlling local FDR #0.001 [21]. The association

between ICA expression patterns and smoking or plaques was

tested in the same way as single gene expression, except that

adjustment was made on all risk factors associated to pattern by

stepwise regression analysis and not only on age and sex.

Investigation of causality models
All triplets including smoking (S), plaques (P), and a gene

expression pattern (or a single gene expression) (G) were

constructed. Potential causal relationships among triplet members

were represented as Bayesian Networks, i.e. graphical models,

where variables are vertices and causal associations are indicated

by directed edges, i.e. arrows, between nodes. The probability

function used depended on the distribution of each variable.

Smoking was modeled by a binomial, plaques by a negative

binomial, and gene expression by a Gaussian distribution function.

The inference of network structure and parameters was performed

as follows. Each node in the graph was fitted a linear model with

its parents as independent variables. Given a graph M with

variables X = {X1, …, XN} represented as nodes, a BIC score [60]

for M was computed as BIC(M) = 22 log(L(X|M))+k log(n), where n

is the sample size, N is the number of nodes, k is the number of

parameters of the model, and L(X|M) is the maximum likelihood

of the data given graph M, which by the directed Markov property of

the graph, is given by L(X DM)~ PN
i~1 Pr(Xi DPaM (Xi)). The term

Pr(Xi DPaM (Xi)) denotes the conditional probability of observation

Xi given its set of parents PaM (Xi) in graph M. The graph with the

lowest BIC is selected as the most likely model, which produces

identical values for equivalent networks [61]. Here, however,

because different density functions were used for different

variables, equivalent networks may results in slightly different

scores. Therefore, we computed BIC scores for all models in a

class, which was selected if any network in the class had the

minimum score. The probability of selecting a model class,

estimated by 1000 bootstraps of the data was used as a measure of

confidence in the Bayesian network inference [62].

Inference of network skeleton
The skeleton of the network connecting genes, smoking, risk

factors and plaques was learned by conditional associations using

the PC algorithm 1 implemented in the pcalg R package v 1.1–4

[22]. Briefly, the algorithm starts with a matrix of marginally
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associated variables (nodes connected by edges) and for each pair

of connected, i.e. adjacent, nodes it successively tests whether the

pair becomes independent after conditioning on any group of

adjacent nodes. If for any set of conditioning nodes the pair is

independent, the edge is removed. The Pearson correlation with

significance level of 0.05 was used to test independence. The

process was repeated for 1000 data bootstraps and the proportion

of samples where the edge is recovered was recorded. Shortest

paths between smoking and plaques were inferred with the

Dijkstra’s algorithm on a reduced graph after removing nodes

corresponding to covariates. Whenever more than one shortest

path existed, the algorithm chooses one according to a greedy

search. The Dijkstra’s algorithm implemented in the sp.between

function of the RBGL package for R was used [63].

Note that although in its full version the PC algorithm

(Algorithm 2 in [22]) can asymptotically infer causal associations

in a network by directing some of the edges of the skeleton, when

applied to samples of finite size the algorithm may lead to

inconsistencies that make such inference impossible [64]. This was

the case with the present data. Therefore, we decided to limit to

inferring the skeleton of significant partial correlations among

variables using a first part of the PC algorithm.
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