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Abstract

Paenibacillus larvae, the causal agent of American Foulbrood disease (AFB), affects honey bee health worldwide. The present
study investigates the effect of bodily fluids from honey bee larvae on growth velocity and transcription for this Gram-
positive, endospore-forming bacterium. It was observed that larval fluids accelerate the growth and lead to higher bacterial
densities during stationary phase. The genome-wide transcriptional response of in vitro cultures of P. larvae to larval fluids
was studied by microarray technology. Early responses of P. larvae to larval fluids are characterized by a general down-
regulation of oligopeptide and sugar transporter genes, as well as by amino acid and carbohydrate metabolic genes, among
others. Late responses are dominated by general down-regulation of sporulation genes and up-regulation of phage-related
genes. A theoretical mechanism of carbon catabolite repression is discussed.
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Introduction

American Foulbrood (AFB) is a devastating brood disease

affecting honey bee health worldwide [1]. The causal agent of AFB

is the endospore-forming, Gram-positive bacterium Paenibacillus

larvae. One-day-old bee larvae are most susceptible to infection [2],

requiring less than ten orally ingested spores to establish a lethal

infection [3]. After germination of ingested spores, vegetative P.

larvae bacteria multiply within the gut lumen and subsequently

breach the gut epithelium to reach the hemocoel [4]. Honey bee

larvae are then degraded to brownish glue-like remains (ropy

stage), which thereafter dries down to hard foulbrood scales

containing approximately 2.5 billion spores [5].

In most countries AFB is a notifiable disease and major

differences exist in imposed containment strategies. Until the late

nineties, many countries followed an eradication procedure with

destruction by burning. This drastic act seemed necessary for

annihilation of the persistent and resistant spores [6,7], until it was

proven that large discrepancies exist between the number of

outbreaks and the spread of spores [8]. Some countries allow

administration of antibiotics. This practice, however, does not

affect the infectious spore stage and leads to antibiotic resistance

[9] and contamination in the honey [10]. More recently there is a

tendency to control the disease by regular monitoring and

elimination of symptomatic colonies. A fair amount of research

focuses on alternative strategies [11], such as antagonistic bacteria

[12], plant extracts [13], propolis [14], fatty acids [15], gamma

radiation [16] and shook-swarm [17] treatments. The develop-

ment of innovative treatment regimens will benefit from molecular

knowledge on host-pathogen interactions during infection [18].

Such research is facilitated by the availability of the P. larvae

genome sequence [19,20] and it is within this conceptual

framework that the present study was undertaken.

More specifically, this study investigates the growth velocity and

genome-wide gene expression for P. larvae, by microarray

technology, associated with in vitro exposure to bodily fluids from

honey bee larvae. This approach was inspired by previous

microarray studies reporting transcriptional changes for (patho-

genic) bacteria in response to host material [21–23]. More

precisely, microarray analysis was used to identify genes that were

differentially expressed when potato extracts were added to the

growth medium from Pectobacterium atrosepticum the causing agent of
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black leg disease in potato. Interestingly, some of the identified

genes encoded virulence determinants.

Here we have examined (1) if honey bee larval bodily fluids

could change P. larvae gene expression - e.g. overexpressing of

genes encoding virulence factors - and (2) if these transcriptional

changes correlated with altered P. larvae growth phenotypes.

Materials and Methods

Preparation of Honey Bee Larval Bodily Fluids
Larval bodily fluids were prepared by pooling third, fourth and

fifth instars of the honey bee, Apis mellifera carnica, collected from

the experimental beekeeping facility (Department of Physiology,

Laboratory of Zoophysiology, University of Ghent, Belgium).

Phenylthiourea (Hopkins & Williams Ltd) [100 mg per ml

phosphate buffered saline (PBS, 20 mM KH2PO4, 60 mM

Na2HPO4 and 145 mM NaCl, pH 7.2)], an inhibitor of

phenoloxidase, was added immediately after squeezing the larvae

to a final concentration of 10 mg/ml to prevent melanization. The

homogenate was centrifuged twice for 30 min at 75,6006g and

4uC with an Avanti J30-I centrifuge (Beckman Coulter, Inc.). The

clarified supernatant was filter sterilized with a 0.2 mm filter

(Whatman) to render the bodily fluid for P. larvae culture spiking.

P. Larvae Strain and Genotyping
P. larvae strain BRL-230010 was kindly provided by Dr.

Queenie Chan (University of British Columbia, Canada). This

was isolated from scales collected from a single severely diseased

colony in Berkely, CA, USA. The strain was genotyped as

described in [24].

Effect of Larval Bodily Fluids on P. Larvae in vitro Growth
Throughout the experiments P. larvae strain BRL-230010 was

routinely grown on brain heart infusion with thiamine (BHIT)

broth at 37uC with agitation on an orbital shaker operating at

200 rpm [25]. Liquid bacterial cultures were started by inoculat-

ing BHIT broth with one P. larvae colony, grown for three days on

BHIT agar at 37uC.

Figure 1. Effect of honey bee larval bodily fluid on Paenibacillus larvae growth. Effect of different concentrations of honey bee larval bodily
fluid on the in vitro growth of P. larvae bacterial cells, expressed as the optical density measured at a wavelength of 590 nm (OD590) in function of
time (hours). Growth alterations were determined for six bodily fluid concentrations, expressed as the fold dilution in BHIT broth cultures: 106
dilution (¤), 256 dilution (&), 506 dilution (m), 1006 dilution (e), 2506 dilution (%), 5006 dilution (n), control (#). Each point in the graph
displays the mean of three independent replicates, with the error bars being the standard deviations. Time 0 represents the time of spiking. Trend
lines are calculated with DMfit. No OD measurements were performed during lag phase.
doi:10.1371/journal.pone.0089175.g001
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Examination of the potential (phenotypical) effect of host

material on P. larvae growth (as a function of time) was first

carried out by spiking bacterial cultures (in test tubes) at an OD590

of 0.2 with different concentrations of larval fluids. The same

volume (1 ml) of different dilutions of larval bodily fluids was

added to 1 ml culture to obtain respectively an 1/10, 1/25, 1/50,

1/100, 1/250 and 1/500 dilution. Each dilution was tested in

triplicate. Addition of BHIT (with PTU in PBS) to liquid P. larvae

cultures, instead of larval liquids, always served as a negative

control. Addition of bodily fluids didn’t influence the absorbance

at 590 nm.

Theoretical growth curves were modeled with DMFit [26].

Values for ‘rate’ and ‘yEnd’ were used as estimators for bacterial

growth during exponential and stationary phase, respectively, and

statistically analyzed with Kruskal-Wallis and Dunn’s test by

GraphPad Prism (GraphPad Software, Inc.). The latter took only

the comparisons for the 1/10 and 1/25 fluid dilution versus a

control into account.

Reference Gene Selection and Validation of Microarray
Data by RT-qPCR

Growth and harvest of P. larvae cells. Reference gene

stability was determined for 66 independent P. larvae 3 ml cultures

(in test tubes), grown at the above-mentioned conditions, until they

reached an OD595 of 0.2. At this density, 33 cultures were spiked

with 4% (final concentration) larval bodily fluids (t, test) and 33

with BHIT broth (c, control). Eleven test cultures were further

incubated for one hour (116t1), eleven others for three hours

(116t3) and the remaining eleven for nine hours (116t9). The

same incubation regime was dictated to the control cultures

Figure 2. Effect of honey bee larval bodily fluid on Paenibacillus larvae bacterial density. OD590 (white bars) and CFU/ml (black bars) for
T1, C1, T4 and C4. T1 (n = 12): test sample collected one hour after spiking with 5% larval fluids. T4 (n = 12): test sample collected four hours after
spiking with 5% larval fluids. C1 (n = 11): control sample collected one hour after spiking with BHIT-broth. C4 (n = 12): control sample collected four
hours after spiking with BHIT-broth. Between brackets (n): number of independent replicates. Error bars: standard deviations.
doi:10.1371/journal.pone.0089175.g002

Table 1. General overview of the microarray experiment, showing the total number of up- and down-regulated genes, for three
selection criteria (columns) and four comparisons (rows).

up-regulated down-regulated

P,0.05 |FC| $2 Hyb
$75% P,0.05 |FC| $2 P,0.05

P,0.05 |FC| $2 Hyb
$75% P,0.05 |FC| $2 P,0.05

T4–C4 201 224 434 248 266 571

T1–C1 147 172 686 310 321 641

T4–T1 373 386 663 243 261 769

C4–C1 136 138 257 87 92 204

T1: test sample collected one hour after spiking with larval bodily fluid. T4: test sample collected four hours after spiking with larval bodily fluid. C1: control sample
collected one hour after spiking with BHIT broth. C4: control sample collected four hours after spiking with BHIT broth. P: p-value. FC: fold change. Hyb: at least 75% of
the different, hybridized probes for the same gene shows differential expression for a particular comparison.
doi:10.1371/journal.pone.0089175.t001
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(116c1, 116c3, 116c9), thereby creating six different conditions

(t1, t3, t9, c1, c3, c9). Bacterial cells were collected by centrifuging

for 5 min at 87206g and 4uC. The bacterial pellets were

immediately resuspended in 650 ml RNAlater Solution (Ambion).

Aliquots (50 ml each) of these suspensions were incubated on ice

for 30 min, centrifuged for 5 min at 67086g and 4uC and stored

at 220uC until RNA preparation.

RNA preparation. Prior to RNA extraction thawed aliquots

were centrifuged for 2 min at 67086g and 4uC. Bacterial pellets

were resuspended by vortexing in 100 ml TE buffer (10 mM Tris-

HCl, 1 mM EDTA, pH 8.0), containing lysozyme (15 mg/ml).

The samples were incubated for 10 min at room temperature with

constant shaking.

RNA was isolated with the InviTrap Spin Cell RNA Mini Kit

(Invitek), using the protocol ‘‘Total RNA extraction from Gram-

positive or Gram-negative bacteria’’ provided by the manufactur-

er. Additionally, an on-column DNase I treatment with the

RNase-free DNase set (Qiagen) was performed. RNA was eluted

in 40 ml elution buffer and stored at 220uC.

cDNA synthesis. RNA (5 mg) was converted to cDNA using

random primers with the RevertAid First Strand cDNA Synthesis

Kit (Fermentas), according to the manufacturer’s instructions.

Primer design and secondary structure formation of

amplicon. Primers for nine candidate reference genes (Table

S1 in File S1), with product size-ranges of 80 to 150 bp, were

designed with Primer3Plus [27], using the default settings.

Amplicon secondary structures were evaluated with MFold [28],

using the default settings except for the folding temperature (60uC)

and ionic concentrations ([Na+] = 50 mM, [Mg2+] = 3 mM).

RT-qPCR reaction mixture. For the RT-qPCR assay the

reaction Platinum SYBR Green qPCR SuperMix-UDG (Invitro-

gen) kit was used. Each 15 ml reaction consisted of 7.5 ml SYBR

master mix, 0.2 mM forward and 0.2 mM reverse primers

(Integrated DNA Technologies) and 1 ml cDNA template using

the CFX96 Real-Time PCR Detection System (Bio-Rad). The

PCR program comprises a UDG digestion step of 2 min at 50uC,

an activation step of 2 min at 95uC and 40 cycles of a combined

denaturation (20 sec at 95uC) and annealing (40 sec at 60uC) step.

Table 2. GO-enrichment analysis for comparison T1–C1, showing the most specific over- and under-represented biological
process GO-terms for both up- and down-regulation.

Biological process GO number NS FE P-value

Up-regulation

Over-representation

Electron transport chain GO:0022900 6 13.49 3.70E-05

Nitrate assimilation GO:0042128 3 ‘ 6.90E-05

Down-regulation

Over-representation

Benzoate metabolic process GO:0018874 6 12.73 2.10E-04

b-alanine metabolic process GO:0019482 5 14.09 5.90E-04

Carbohydrate catabolic process GO:0016052 15 3.18 5.50E-04

Carboxylic acid biosynthetic process GO:0046394 27 2.11 1.70E-03

Electron transport GO:0006118 13 3.03 1.70E-03

Inositol metabolic process GO:0006020 6 6.35 2.10E-03

Limonene catabolic process GO:0046251 5 ‘ 1.40E-05

Lysine catabolic process GO:0006554 5 ‘ 1.40E-05

Mitochondrial electron transport, NADH to ubiquinone GO:0006120 5 ‘ 1.40E-05

Oligopeptide transport GO:0006857 4 ‘ 1.30E-04

PEP-dependent sugar PTS GO:0009401 9 5.13 5.10E-04

Photosynthesis, light reaction GO:0019684 5 ‘ 1.40E-05

Reductive tricarboxylic acid cycle GO:0019643 6 6.35 2.10E-03

Sodium ion transport GO:0006814 7 11.93 7.60E-05

Sulfate transport GO:0008272 3 ‘ 1.20E-03

Sulfur amino acid metabolic process GO:0000096 10 3.56 2.20E-03

Ubiquinone biosynthetic process GO:0006744 5 21.15 2.40E-04

Under-representation

DNA metabolic process GO:0006259 0 0 1.80E-08

RNA metabolic process GO:0016070 8 0.34 1.20E-03

Translation GO:0006412 0 0 4.00E-05

NS: number of differentially expressed genes, annotated with a particular GO-term. FE: fold enrichment (.1: over-represented GO terms; ,1: under-represented GO
terms; 0: zero genes in the test group, annotated with a particular GO term; ‘: zero genes in the reference group, annotated with a particular GO term). FE for a
particular GO term is calculated as follows: (number of genes with GO term in test group/number of genes with GO term in reference group)/(number of genes without
GO term in test group/number of genes without GO term in reference group). P-value: significance measure (cut-off: 0.05) as calculated by Blast2GO during enrichment
analysis.
doi:10.1371/journal.pone.0089175.t002
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At the end of this program a melt curve is generated by measuring

fluorescence after each temperature increase of 0.5uC for 5 sec

over a range from 65uC to 95uC. Primer efficiencies, R2 values

and melt curves were calculated with CFX Manager Software

(Bio-Rad). Reference gene stability was analyzed with the

geNormPLUS algorithm within the qBasePLUS environment

(Biogazelle NV). Default settings were kept, except that target

specific amplification efficiencies were used. Differential gene

expression of twenty target genes (Table S2 in File S1) was

statistically assessed with qBasePLUS [29,30], by means of unpaired

t-tests (T4–C4 and T4–T1) or Mann-Whitney U tests (T1–C1 and

C4–C1).

Sample Preparation for Microarray and Validation
Experiment

Growth and harvest of P. larvae cells. Samples for the

microarray and the validation (by RT-qPCR) experiment were

prepared by growing 16 independent 20 ml P. larvae cultures in

250 ml Erlenmeyer flasks, under the above mentioned conditions.

The conditions were slightly changed in comparison with previous

experiments in order to obtain enough bacterial cells to perform

the microarray and validation experiment. Eight cultures were

spiked with 5% (final concentration) larval bodily fluids (T, test)

and eight with BHIT broth (C, control) at OD595 of 0.3. Four of

the test and control cultures were incubated for 1 h (46T1, and

46C1) and the others for 4 h (46T4, 46C4). The bacterial cells

were collected as described for reference gene selection and stored

at 280uC until RNA preparation.

An accessory evaluation of P. larvae growth promotion in

response to larval fluids was executed by comparing OD590

measurements on all bacterial cultures subjected to microarray

analysis (16 samples: 46C1, 46T1, 46C4, 46T4). Comparisons

T1–C1 and T4–C4 were statistically evaluated with a Mann-

Whitney U test (p-value threshold = 0.05), using GraphPad Prism

(GraphPad Software, Inc.).
RNA preparation. Bacterial pellets were resuspended in

200 ml TE buffer (30 mM Tris-HCl, 1 mM EDTA, pH 8.0) with

additional proteinase K (Qiagen; 1/10 dilution). RNA was isolated

with the RNeasy Plus Mini Kit, using the protocol ‘‘Purification of

Total RNA for Animal Cells’’ and performing the optional on-

column DNase I treatment, according to the manufacturer’s

instructions. The RNA pellet was dissolved in 30 ml RNase-free

water and stored at 280uC until use.

Table 3. GO-enrichment analysis for comparison T4–C4, showing the most specific over- and under-represented biological
process GO-terms for both up- and down-regulation.

Biological process GO number NS FE P-value

Up-regulation

Over-representation

Biotin biosynthetic process GO:0009102 4 ‘ 6.00E-06

Electron transport chain GO:0022900 6 10.89 1.10E-04

Glyoxylate cycle GO:0006097 3 ‘ 1.20E-04

Nitrate assimilation GO:0042128 3 ‘ 1.20E-04

Pyrimidine nucleotide biosynthetic process GO:0006221 5 10.99 4.00E-04

Reductive tricarboxylic acid cycle GO:0019643 5 10.99 4.00E-04

Under-representation

Cellular macromolecule metabolic process GO:0044260 9 0.26 8.90E-06

Nucleic acid metabolic process GO:0090304 8 0.33 8.70E-04

Over-representation

Benzoate metabolic process GO:0018874 5 14.34 2.50E-04

b-alanine metabolic process GO:0019482 4 14.24 1.10E-03

High-affinity iron ion transport GO:0006827 4 ‘ 2.00E-05

Isoleucine catabolic process GO:0006550 5 11.94 4.30E-04

Leucine catabolic process GO:0006552 5 11.94 4.30E-04

Limonene catabolic process GO:0046251 4 57.04 9.30E-05

Lysine catabolic process GO:0006554 4 57.04 9.30E-05

Oligopeptide transport GO:0006857 3 42.47 1.10E-03

Potassium ion transport GO:0006813 5 35.90 2.40E-05

Siderophore biosynthetic process GO:0019290 4 ‘ 2.00E-05

Sporulation resulting in formation of a cellular spore GO:0030435 7 12.72 2.20E-05

Sulfate transport GO:0008272 3 ‘ 3.00E-04

Valine catabolic process GO:0006574 5 11.94 4.30E-04

Under-representation

Cellular macromolecule metabolic process GO:0044260 18 0.40 1.30E-04

Nucleobase, nucleoside, nucleotide and nucleic acid metabolic process GO:0006139 20 0.47 1.60E-03

NS, FE, P-value: see Table 2.
doi:10.1371/journal.pone.0089175.t003
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Microarray Study on P. Larvae Transcriptional Response
to Bee Bodily Fluids

Microarray experimental procedures. A custom 8615 k

Agilent array for P. larvae was developed with Agilent eArray

software. RNA concentration and purity were determined

spectrophotometrically using the Nanodrop ND-1000 (Nanodrop

Technologies) and RNA integrity was assessed using a Bioanalyser

2100 (Agilent). For each sample, 5 mg of total RNA, spiked with 10

viral polyA transcript controls (Agilent), was converted to single

stranded cDNA. The sample was subsequently labeled with

Cyanine 3 (Cy3) mono-reactive dye or Cyanine 5 (Cy5) mono-

reactive dye (GE Healthcare) according to the manufacturer’s

protocol (two-color microarray-based prokaryote analysis (Fairplay

III labeling) - Agilent). A mixture of purified and labeled cDNA

Table 4. Annotation and pathway analysis for both up- and down-regulated genes for T1–C1.

Pathway ID #

Up-regulation

Alkylnitronates degradation PWY-723 3/4

Arginine degradation III PWY0-823 1/2

Arginine dependent acid resistance PWY0-1299 1/1

Asparagine degradation I ASPARAGINE-DEG1-PWY 1/1

Demethylmenaquinol-8 biosynthesis I PWY-5852 1/1

Leucine biosynthesis LEUSYN-PWY 1/7

Pyruvate fermentation to ethanol I PWY-5480 1/4

Reductive monocarboxylic acid cycle PWY-5493 1/3

Tetrapyrrole biosynthesis I PWY-5188 1/7

Trehalose degradation I TREDEGLOW-PWY 1/4

Down-regulation

5-dehydro-4-deoxy-D-glucuronate degradation PWY-6507 2/4

Acetate conversion to acetyl-CoA PWY0-1313 1/1

Acetyl-CoA biosynthesis PYRUVDEHYD-PWY 3/9

Adenine and adenosine salvage IV PWY-6610 1/5

Arginine degradation VI ARG-PRO-PWY 1/4

Arginine degradation VII ARG-GLU-PWY 2/2

Aspartate degradation II MALATE-ASPARTATE-SHUTTLE-PWY 1/2

Branched-chain alpha-keto acid dehydrogenase complex PWY-5046 1/6

Citrulline biosynthesis CITRULBIO-PWY 2/9

Cysteine biosynthesis I CYSTSYN-PWY 2/5

DIMBOA-glucoside degradation PWY-4441 1/1

dTDP-L-rhamnose biosynthesis I DTDPRHAMSYN-PWY 2/7

Ethanol degradation II PWY66-21 1/4

Ethanol degradation IV PWY66-162 2/4

Glutamate biosynthesis I GLUTSYN-PWY 1/1

Glutamate biosynthesis IV GLUGLNSYN-PWY 1/1

Glutamine degradation II GLUTAMINEFUM-PWY 1/1

Glycine betaine biosynthesis II PWY-3722 1/2

Glycine cleavage complex GLYCLEAV-PWY 1/6

Guanine and guanosine salvage I PWY-6620 1/4

Lysine biosynthesis III PWY-2942 1/7

Lysine biosynthesis VI PWY-5097 3/9

Methionine biosynthesis I HOMOSER-METSYN-PWY 1/7

NADH to cytochrome bd oxidase electron transfer PWY0-1334 10/11

Ornithine degradation I ORN-AMINOPENTANOATE-CAT-PWY 1/1

Selenocysteine biosynthesis I PWY0-901 1/4

Superoxide radicals degradation DETOX1-PWY 1/4

Xanthine and xanthosine salvage SALVPURINE2-PWY 1/3

ID: MetaCyc identifier. #: number of up- or down-regulated genes annotated with a particular pathway in relation to the number of genes annotated with that
pathway.
doi:10.1371/journal.pone.0089175.t004
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(Cy3 label: 300 ng; Cy5 label: 300 ng) was hybridised followed by

(manual) washing, according to the manufacturer’s procedures. To

assess the raw probe signal intensities, arrays were scanned using

the Agilent DNA MicroArray Scanner with SureScan High-

Resolution Technology and probe signals were quantified using

Agilent’s Feature Extraction software (version 10.7.3.1). The

microarray data were deposited in the NCBI Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/)

under accession numbers GPL15243 (microarray including

detailed annotation) and GSE37481.

Microarray data quality control and statistical

analysis. Statistical data analysis was performed on the

processed Cy3 and Cy5 intensities, as provided by the Feature

Extraction Software version 10.7. Further analysis was performed

in the R programming environment, in conjunction with the

packages developed within the Bioconductor project (http://www.

bioconductor.org; [31]. Differential expression between the

conditions was assessed via the moderated t-statistic, described in

Smyth, G. [32] and implemented in the Limma package of

Bioconductor. This moderated t-statistic applies an empirical

Bayesian strategy to compute the gene-wise residual standard

deviations and thereby increases the power of the test, especially

beneficial for smaller data sets. To control the false discovery rate,

multiple testing correction was performed [33] and a significant

result was defined where any probe had a corrected p-value below

0.05 and an absolute fold change larger than 2. As all probes had 3

or 4 replicates on the array, only those probes were retained that

were called differentially expressed in 2 out of 3 or 3 out of 4.

Genes were considered as (significantly) differentially expressed if

(1) their BH-corrected p-value fell below 0.05, (2) their fold

changes were at least 2 and (3) if at least 75% of the different

probes for a same gene met the first two criteria.

Table 5. Annotation and pathway analysis for both up- and down-regulated genes for T4-C4.

Pathway ID

Up-regulation

Alkylnitronates degradation PWY-723 3/4

Aspartate degradation II MALATE-ASPARTATE-SHUTTLE-PWY 1/2

Biotin biosynthesis from 7-keto-8-aminopelargonate PWY0-1507 4/4

Cadmium transport I PWY-6213 1/2

Folate polyglutamylation PWY-2161 1/3

Formate oxidation to CO2 PWY-1881 1/1

Glutamate biosynthesis I GLUTSYN-PWY 1/1

Glutamate biosynthesis IV GLUGLNSYN-PWY 1/1

Glutamine degradation II GLUTAMINEFUM-PWY 1/1

Glycine biosynthesis I GLYSYN-PWY 1/1

Pentose phosphate pathway (non-oxidative branch) NONOXIPENT-PWY 1/5

Pyruvate fermentation to ethanol I PWY-5480 1/4

Pyruvate fermentation to ethanol III PWY-6587 1/5

Reductive monocarboxylic acid cycle PWY-5493 2/3

Down-regulation

2,3-dihydroxybenzoate biosynthesis PWY-5901 3/3

Acetyl-CoA biosynthesis PYRUVDEHYD-PWY 3/9

Adenine and adenosine salvage IV PWY-6610 1/5

Branched-chain alpha-keto acid dehydrogenase complex PWY-5046 1/6

Citrulline biosynthesis CITRULBIO-PWY 1/9

Ethanol degradation IV PWY66-162 1/4

Glycine cleavage complex GLYCLEAV-PWY 1/6

Glycogen biosynthesis I GLYCOGENSYNTH-PWY 5/7

Guanine and guanosine salvage I PWY-6620 1/4

Isoleucine biosynthesis I ILEUSYN-PWY 1/11

Leucine biosynthesis LEUSYN-PWY 1/7

Methylthiopropionate biosynthesis PWY-5389 1/1

NADH to cytochrome bd oxidase electron transfer PWY0-1334 3/11

Starch biosynthesis PWY-622 5/9

Superoxide radicals degradation DETOX1-PWY 1/4

Valine biosynthesis VALSYN-PWY 1/7

Xanthine and xanthosine salvage SALVPURINE2-PWY 1/3

ID: MetaCyc identifier. #: number of up- or down-regulated genes annotated with a particular pathway in relation to the number of genes annotated with that
pathway.
doi:10.1371/journal.pone.0089175.t005
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Microarray Data Functional Analysis
P. larvae genes were functionally annotated (already before

qPCR validation) with Blast2GO [34], stand-alone BLAST [20]

and KAAS (KEGG Automatic Annotation Server) [35] plus

KEGG Mapper [36]. Putative transporter genes were also

annotated with TransporterDB [37], putative transcription

regulator genes with DBD [38] and RegPrecise [39] and putative

proteolytic enzymes with MEROPS [40,41]. COG functional

categories were assigned with COGNITOR and stand-alone PSI-

BLAST using the COG database [42]. After GO term annotation,

an enrichment analysis (two-tailed Fisher’s exact test with default

settings) within the Blast2GO environment was undertaken to

compare different conditions.

Annotation and pathway pipeline. The annotation and

pathway pipeline employed here finds ORFs with Prodigal [43],

annotates genes with blastp against KEGG [44], COG [42],

Metacyc [45] and RefSeq [46] and makes a Pathway Genome

Database (PGDB) with Pathway Tools [47].

Results

Honey Bee Larval Bodily Fluid Stimulates in vitro Growth
of P. Larvae

The P. larvae strain BRL 230010 was genotypes via REP-PCR

using ERIC primers and could be assigned to ERIC I. We studied

the effect of larval bodily fluids on P. larvae gene expression by

in vitro exposure of bacterial cultures to larval fluids. We could

show treatment-induced bacterial growth shifts (Figure 1). Merely

considering the two highest fluid concentrations (in the post hoc

analysis; 1/10 and 1/25 dilutions), both seem to significantly

(p,0.05) promote in vitro growth of P. larvae cultures, in

comparison to control cultures. In addition (significantly) higher

bacterial densities are observed as a result of larval fluid treatment

(Figure 2). Thus, it is now reasonable to assume that these bacterial

growth shifts reflect the phenotypic response to altered transcrip-

tion and so the subsequent microarray experiment was be

performed using 5% larval fluids.

Reference Gene Selection for Normalization of RT-qPCR
Data

The reliability of the data of the microarray experiment was

checked with RT-qPCR. To correct for experimental error qPCR

data require normalization against reference genes [48]. To this

end, 9 reference genes were selected (Table S1 in File S1) and their

expression in P. larvae was quantified for six different in vitro growth

conditions: one, three or nine hours after spiking with larval bodily

fluid (test) or BHIT broth (control). Arranging the genes from most

to least stably expressed across all conditions, produced the

following ranking (Figure S1A in File S1): rpoD (0.631),gyrA

(0.634),cmk (0.656),sucB (0.694),eftu (0.848),fum (0.944) ,

purH (1.03),adk (1.116),gapdh (1.195). Between brackets the

geNorm M-value, assessing gene stability, is indicated. Another

Figure 3. Differential expression of transporter encoding genes. Stacked percentage bar chart, showing the numbers of up- and down-
regulated (putative) transporter encoding genes for T4-C4 (left) and T1-C1 (right), respectively, relative to the total numbers of (putative) transporter
encoding genes within the P. larvae genome. The latter are indicated between square brackets. Round brackets: GO term numbers. GO terms were
assigned with Blast2GO. White bars: down-regulation for T4-C4. Dark grey bars: up-regulation for T4-C4. Light grey bars: down-regulation for T1-C1.
Black bars: up-regulation for T1-C1. Arrow heads: arbitrary GO term hierarchy (b.o. ).
doi:10.1371/journal.pone.0089175.g003
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measure, the geNorm V-value, is useful for determining the

optimal number of reference genes for data normalization (Figure

S1B in File S1): V2/3 (0.214) – V3/4 (0.157) – V4/5 (0.200) – V5/

6 (0.166) – V6/7 (0.155) – V7/8 (0.151) – V8/9 (0.141). Setting

the threshold to 0.15, all tested genes except gapdh should be

included in the calculation of the normalization factors [30].

Validation of Microarray Data by RT-qPCR
Microarray validation by RT-qPCR was performed with twenty

randomly picked genes, belonging to different functional groups

(Table S2 in File S1). Expression profiles obtained in the RT-

qPCR experiment were similar in comparison to those of the

microarray experiment, for all of the twenty genes in all of the four

conditions (Figure S2 in File S1 and Figure S3 in File S1; Table S3

in File S1 and Table S4 in File S1).

General Overview of Differential Gene Expression as
Revealed by Microarray Analysis

Depicting the microarray data as a heatmap analysis allowed us

to correlate the corrected Cy3 and Cy5 dye intensities showed

separate clusters for all eight samples (four replicates, each labeled

with both Cy3 and Cy5) of C1, T1 and C4 respectively, and for six

of the eight samples of T4 (not shown). In order not to corrupt true

biological patterns, one of the four samples for T4, clustering

together with C1, was omitted from further analysis. Table 1

shows the total number up- and down-regulated genes for each of

the four comparisons (T4–C4, T1–C1, T4–T1, C4–C1). The

three selection criteria were p-value ,0.05, fold change $2 and at

least 75% of the different, hybridized probes for the same gene

shows differential expression for a particular comparison.

Figure 4. Differential expression of metabolic genes. Stacked percentage bar chart, showing the numbers of up- and down-regulated
(putative) metabolic genes for T4-C4 (left) and T1-C1 (right), respectively, relative to the total numbers of (putative) metabolic genes within the P.
larvae genome. C: carbohydrate metabolism. The latter are indicated between square brackets. Round brackets: KO numbers (KEGG pathways). KEGG
pathways were assigned with KAAS. White bars: down-regulation for T4-C4. Dark grey bars: up-regulation for T4-C4. Light grey bars: down-regulation
for T1-C1. Black bars: up-regulation for T1-C1. E: energy metabolism. L: lipid metabolism. N: nucleotide metabolism. A: amino acid metabolism. ,:
KO:00061; KO:00071; KO:00592; KO:01040. *: KO:00360; KO:00350; KO:00380. u: KO:00410; KO:00430; KO:00450; KO:00460; KO:00480. :̂ KO:00740;
KO:00770; KO:00780; KO:00670; KO:00860; KO:00130. ‘:KO:00900; KO:00903; KO:00281; KO:00523; KO:01053; KO:01055; KO:00940; KO:00311; KO:00521.
‘’: KO:00362; KO:00627; KO:00625; KO:00622; KO:00633; KO:00642; KO:00643; KO:00930; KO:00363; KO:00621; KO:00626.
doi:10.1371/journal.pone.0089175.g004
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General Biological Patterns from Microarray Data by GO
Term Assignment and Enrichment

At first GO terms were assigned to the P. larvae gene sequences.

Using Blast2GO with Gene Ontology (GO) terms describing

cellular component, biological process or molecular function, 2050

of the 3490 (unique) predicted genes within the P. larvae genome

were assigned to at least one GO category. Subsequently GO term

enrichment analysis identified (significantly) over- or underrepre-

sented GO terms for the differentially expressed genes for each of

the four comparisons (Table 2, Table 3, Table S5 in File S1 and

Table S6 in File S1). The annotation and pathway pipeline

annotated 10/147, 15/210, 9/136 and 45/373 of the up-regulated

and 34/310, 19/248, 7/87 and 14/243 of the down-regulated

genes for T1–C1, T4–C4, C4–C1 and T4–T1 (Table 4, Table 5,

Table S7 in File S1 and Table S8 in File S1).

The differently expressed transporter and metabolic genes are

represented in stacked percentage bar chart in Figure 3 and

Figure 4 for T4-C4 and T1-C1 and Figure S4 in File S1 and

Figure S5 in File S1 for T4-T1 and C4-C1 General trends in

biological processes are also graphically depicted, according to the

COG (Clusters of Orthologous Groups) functional classification

(Figure 5 and Figure S6 in File S1).

In control cultures (C1 and C4) P. larvae seems to invest more in

oligopeptide and ion (sulfate ion; cation: Na+ for C1, K+ for C4)

transport, amino acid (b-A, K; sulfur AAs for C1, BCAAs for C4),

benzoate and limonene metabolism, while restricting nucleic acid

metabolism. One hour after spiking (C1) P. larvae appears to rely

more on carbohydrate (phosphotransferase system, inositol),

carboxylic acid and ubiquinone metabolism, while limiting

translation. The data also suggest that energy storage (electron

transport, NADH to ubiquinone) and carbon fixation (photosyn-

thesis, reductive citric acid cycle) are also upregulated. Four hours

after spiking (C4) P. larvae tend to rely more on iron uptake (high-

affinity iron transport and siderophore biosynthesis) and sporula-

tion.

In test cultures, on the other hand, P. larvae seems to change its

metabolism to nitrate assimilation and store energy through the

electron transport chain. Four hours after spiking (T4) P. larvae

appears to rely more on biotin, pyrimidine and carbon (TCA/

glyoxylate cycle) metabolism. In addition, at late time points (T4-

C4) P. larvae tend to restrict cellular macromolecular metabolic

processes.

Discussion

The reasons behind the trends observed in the gene expression

data presented here become clear if one considers the chemical

composition of bodily fluids from honey bee worker larvae. These

fluids are thought to contain mainly hemolymph and liquid gut

contents. Since this material was collected from third, fourth and

fifth larval instars, the gut is thought to hold (digested) honey/

nectar, pollen and royal jelly [49]. Honey/nectar is particularly

rich in sugars (especially fructose and glucose; [50], while royal

jelly is a source of proteins [51]. The protein composition from

honey bee worker larvae has been described in most detail [52].

Paralleling the diet, hemolymph of adult worker bees is rich in

sugars [53], free amino acids [54] and proteins [55]. Fresh [56]

and powdered [57] bee brood has been shown to be especially rich

in amino acids/proteins.

The general down-regulation of carbohydrate and amino acid/

peptide metabolism and transport in the presence of larval fluids at

early time points (T1-C1) is unexpected, although genes involved

in trehalose metabolism and transport are strongly upregulated:

phosphotrehalase (treA; 12.936q) and trehalose-specific IIBC

subunit of PTS system (treP; 16.856q). This could point towards

carbon catabolite repression (CCR): a phenomenon by which

usage of secondary carbon sources is reduced in the presence of

the preferred one, which allows the fastest growth [58]. Thus

trehalose, the principle blood sugar of many insects [59], is

probably the preferred sugar of P. larvae. This hypothesis is

supported by observations made for the Paenibacillus popilliae [60].

Figure 5. Numbers of genes that are differentially expressed per subset. Stacked percentage bar chart, showing the numbers of up- and
down-regulated genes for T4-C4 (left) and T1-C1 (right), respectively, relative to the total numbers of genes within the P. larvae genome. The latter
are indicated between square brackets. Round brackets: COG functional category label. C: cellular processes and signaling. I: information storage and
processing. M: metabolism. P: poorly characterized. White bars: down-regulation for T4-C4. Dark grey bars: up-regulation for T4-C4. Light grey bars:
down-regulation for T1-C1. Black bars: up-regulation for T1-C1.
doi:10.1371/journal.pone.0089175.g005
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This pathogen of beetle larvae takes up trehalose through the PTS

system and phosphorylates it to trehalose 6-phosphate (T6 P) in a

PEP-dependent way. T6 P is subsequently cleaved to glucose and

glucose-6-phosphate (G6 P). Down-regulation of genes for citric

acid cycle enzymes (T1-C1; citB: 1.326Q (ns); citC: 4.536Q; citH:

3.646Q; citZ: 8.396Q; [61]) and virulence factors [62] -

exemplified by toxin Etx/Mtx (T1-C1; .8.506Q) - provide

additional support to the CCR hypothesis. Genes ccpA and codY,

however, are not differentially expressed. Their products are

global regulators of carbon (glucose) metabolism by sensing FBP

and G6P (for CcpA) and GTP and BCAA (for CodY) in Bacillus

subtilis [61]. Additionally, fatty acid catabolism in B. subtilis is

repressed through CCR [63]. In contrast, this study reveals a

strong up-regulation for genes involved in fatty acid degradation

(eftA, B: .24.506q; fadA, E, F, N, R: .20q; lcfA: 14.516q).

The down-regulation of many oligopeptide permeases (opp)

might reflect the high free amino acid content of insect

hemolymph [64]. The investment of P. larvae in peptide transport,

subsequent catabolism and amino acid synthesis will be minimal as

amino acids are copiously provided. Sulphate transport is also

repressed when cysteine is present [65] and because of the high

free amino acid availability, the down-regulation of sulphate

transporters (T1-C1; cysA, P, U, W; .406Q) can be explained.

The up-regulated import of especially mannose (levD, E, F, G;

.56q/.116q) at later time points (T4-C4/T4-T1) indicate

that the consumption of trehalose proceeds and P. larvae seems to

switch to alternative carbon sources at higher cell densities.

Although high densities are reached at T4 (OD590 < 1.14), no

starvation seems to occur (e.g. ctsA: .2.36Q) and as a

consequence sporulation is not initiated. Sporulation starts at late

time points (C4-C1), which is suggested by the up-regulation of 19

from the 52 spore/sporulation related genes in the control

cultures. Addition of larval bodily fluids delays sporulation

initiation, which is illustrated by the down regulation of 35/52

sporulation related genes in the treated cultures; none of these

genes showed up-regulation. Moreover, sporulation is mostly

regulated by environmental signals through chemotaxis [66]. The

gene expression patterns of putative signaling proteins (e.g. MCPs,

HPKs, RRs) are similar to those of the sporulation related genes.

Nutrient limitation and competition often leads to the production

of antibiotics [67], which is reflected in the up-regulation of

(putative) synthetases for antimicrobial biosurfactans, plipastatin

(five genes) and surfactin (four genes) at later time points (T4-T1;

C4-C1) however addition of larval bodily fluids seems to diminish

the production and transport of antibiotics (T4-C4; T1-C1). Other

antibiotic-related genes - amongst which penicillin acylase [68],

two peptides AS-48 [69], four lantibiotic/lanthionine synthesis

proteins [70], neotrehalosadiamine [71] and circularin A/uber-

olysin [72] - together show a similar pattern (with some

exceptions). The same holds more or less for polyketide

biosynthesis genes (e.g. rfbB, C, D of the rhamnose pathway;

[73]). Closticin 574 tends to be up-regulated by larval fluids at late

time points (T4-C4, T4-T1) [74].

Differential expression of (putative) cofactor and vitamin

metabolic genes was observed for different pathways but one of

the most up-regulated pathways in the presence of larval fluids at

late time points is the one responsible for thiamine biosynthesis

(e.g. apbE: 85.806q for T4-C1 and 54.086q for T4-T1; [75]).

The same pathway is down-regulated in control cultures at late

time points (C4-C1). This indicates that thiamine seems exhausted

and biosynthesis of this vitamin/cofactor seems necessary. Another

remarkable fact is the quite large-scale phage-related gene

expression at late time points in the presence of larval fluids. If

bacteriophage particles are produced, this might reflect spontane-

ous induction of the prophages’ lytic cycle through signal

molecules of bacterial quorum sensing [76].

At late time points, oxygen appears to become limited. As a

consequence P. larvae seems to switch from aerobic to anaerobic

respiration/fermentation. Many bacteria follow a mixed acid

fermentation route for glucose metabolism with end products

ethanol, succinate, lactate, acetate, formate, and carbon dioxide

[77]. Typical indicators of this process arise from the activity of its

key enzyme, pyruvate formate lyase (Pfl), which leads to massive

excretion of formate and acetate as fermentative by-products.

Down-regulation of pyruvate dehydrogenase (pdhA: 5.396Q and

pdhB: 5.016Q) and up-regulation of pyruvate formate lyase (pflA:

21.616q, pflB: 9.566q) confirm this hypothesis. Moreover P.

larvae seems to rely mostly on cytochrome aa3-600 quinol oxidase

(qoxA, B, C, D: .96q; [78]) at T1-C1, while it switches to

cytochrome bd ubiquinol oxidase (cydA: 76.476q, cydB: 37.086q)

at T4-C4. The latter enzyme is expressed under oxygen-limiting

conditions in E. coli [79]. Furthermore nitrogen metabolism seems

boosted at T4-C4: formate/nitrite transport (yrhG: .36q),

assimilatory nitrite reductase (nasD, E: .106q) and anaerobic

regulator (fnr: 11.896up) are all up-regulated. NasDE nitrite

reductase functions as both an assimilatory and a dissimilatory

enzyme which is produced under oxygen limiting and nitrogen

limiting conditions [80]. The bacterial nitrogen cycle is compli-

cated and still a matter of debate as different pathways are

involved such as the dissimilative nitrate reduction to ammonia

and the denitrification pathway with reduction of nitrate to N2.

On the other hand, homologues to bifunctional alcohol/acetalde-

hyde dehydrogenase (adhE) are highly up-regulated at T4-C4

(108.916q, 97.526q and 60.686 respectivelyq). This could

point towards sugar fermentation, converting acetyl-coA to

acetaldehyde and then to ethanol. It has been suggested for E.

coli that transcription of adhE is repressed through CCR under

aerobic conditions (T1-C1; 626q) and that expression of adhE is

much higher in anaerobically grown cells [81].

Some other remarkable differences in gene expression as a result

of the addition of larval bodily fluids are three differentially

expressed (putative) toxin encoding genes. Two homologues of

e-toxins (ETX) or mosquitocidal toxins (MTX) [82] are down-

regulated for T1-C1 (8.536Q, 8.756Q) and C4-C1 (2.566Q,

2.606Q), and up-regulated for T4-T1 (4.476q, 4.476q). The

i-toxin Ib component [83], on the contrary, is up-regulated for

both T1-C1 (2.626q) and C4-C1 (2.066q). Next to toxins,

proteases/peptidases have been proposed as putative P. larvae

virulence factors [20,62,84,85]. However, no general pattern

emerges from the expression data which can be explained by their

divers biological roles. Recently S-layer proteins have been

suggested as potential P. larvae virulence determinants [86,87].

Our study revealed up-regulation (62.56q) of three such genes at

late time points (T4–T1). At late time points the presence of larval

bodily fluids favors motility which is reflected by the up-regulation

of 7/8 genes. The eight differentially expressed (putative) flagellar

genes (MC) encode (1) filament capping-protein (fliD), (2) filament

(fliC), (3) filament-hook junction (flgK, flgL), (4) basal body stator

(motA, motB), (5) a flagellar export chaperone for FliC (fliS) and (6)

others (yvyF) [88].

Conclusions

We can conclude that the honey bee larval bodily fluid

stimulates in vitro growth of P. larvae which is reflected by the

large amount of transcriptional changes. Early responses are

characterized by a general down-regulation of transporter genes

and genes involved in the amino acid and carbohydrate
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metabolism. At later time points the sporulation genes are down-

regulated while phage-related genes are up-regulated. The

importance of the changed expression of phage-related genes will

be a subject for further research.

Supporting Information

File S1 Figure S1. Average expression stability (A) and

determination of the optimal number (B) of reference targets with

geNormPLUS. Figure S2. Validation of microarray data with

RTQ-PCR. (A) Log2-transformed expression ratio of T1 com-

pared to C1. (B) Log2-transformed expression ratio of T4

compared to C4. White bars: RTQ-PCR experiment. Black bars:

microarray experiment. T1: test sample collected one hour after

spiking with larval fluids. T4: test sample collected four hours after

spiking with larval fluids. C1: control sample collected one hour

after spiking with BHIT-broth. C4: control sample collected four

hours after spiking with BHIT-broth. +: differential expression

(significant). -: equal expression (non-significant). Figure S3.
Validation of microarray data with RTQ-PCR. (A) Log2-

transformed expression ratio of C4 compared to C1. (B) Log2-

transformed expression ratio of T4 compared to T1. White bars:

RTQ-PCR experiment. Black bars: microarray experiment. T1:

test sample collected one hour after spiking with hemolymph. T4:

test sample collected four hours after spiking with hemolymph. C1:

control sample collected one hour after spiking with BHIT-broth.

C4: control sample collected four hours after spiking with BHIT-

broth. +: differential expression (significant). -: equal expression

(non-significant). Figure S4. Stacked percentage bar chart,

showing the numbers of up- and down-regulated (putative)

transporter encoding genes for T4–T1 (left) and C4–C1 (right),

respectively, relative to the total numbers of (putative) transporter

encoding genes within the P. larvae genome. The latter are

indicated between square brackets. Round brackets: GO term

numbers. GO terms were assigned with Blast2GO. White bars:

down-regulation for T4–T1. Dark grey bars: up-regulation for

T4–T1. Light grey bars: down-regulation for C4–C1. Black bars:

up-regulation for C4–C1. Arrow heads: arbitrary GO term

hierarchy (;b.o. ). Figure S5. Stacked percentage bar chart,

showing the numbers of up- and down-regulated (putative)

metabolic genes for T4–T1 (left) and C4–C1 (right), respectively,

relative to the total numbers of (putative) metabolic genes within

the P. larvae genome. C: carbohydrate metabolism. The latter are

indicated between square brackets. Round brackets: KO numbers

(KEGG pathways). KEGG pathways were assigned with KAAS.

White bars: down-regulation for T4–T1. Dark grey bars: up-

regulation for T4–T1. Light grey bars: down-regulation for C4–

C1. Black bars: up-regulation for C4–C1. ,: KO:00061;

KO:00071; KO:00592. *: KO:00350; KO:00360; KO:00380;

KO:00400. u: KO:00410; KO:00430; KO:00450; KO:00480. :̂

KO:00740; KO:00760; KO:00770; KO:00780; KO:00790;

KO:00670; KO:00860; KO:00130. ‘:KO:00900; KO:00903;

KO:00281; KO:00523; KO:01053; KO:01055; KO:00960;

KO:00232; KO:00521; KO:00401. ‘’: KO:00362; KO:00627;

KO:00625; KO:00622; KO:00633; KO:00642; KO:00643;

KO:00930; KO:00621; KO:00626; KO:00983. Figure S6.
Stacked percentage bar chart, showing the numbers of up- and

down-regulated genes for T4–T1 (left) and C4–C1 (right),

respectively, relative to the total numbers of genes within the P.

larvae genome. The latter are indicated between square brackets.

Round brackets: COG functional category label. C: cellular

processes and signaling. I: information storage and processing. M:

metabolism. P: poorly characterized. White bars: down-regulation

for T4–T1. Dark grey bars: up-regulation for T4–T1. Light grey

bars: down-regulation for C4–C1. Black bars: up-regulation for

C4–C1. Table S1. Reference genes used to normalize the results

of the qRT-PCR experiment for microarray data validation.

Table S2. Randomly selected genes used in the RTQ-PCR

experiment to validate the microarray results. Table S3.
Validation of microarray data by qRT-PCR. Table S4.
Validation of microarray data by qRT-PCR. Table S5. GO-

enrichment analysis for comparison C4–C1, showing the most

specific over- and under-represented biological process GO-terms

for both up- and down-regulation. Table S6. GO-enrichment

analysis for comparison T4–T1, showing the most specific over-

and under-represented biological process GO-terms for both up-

and down-regulation. Table S7. Annotation and pathway

analysis for both up- and down-regulated genes for C4–C1.

Table S8. Annotation and pathway analysis for both up- and

down-regulated genes for T4–T1.

(PDF)
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