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Abstract: A plethora of cellular functions are controlled by calcium signals, that are greatly
coordinated by calcium release from intracellular stores, the principal component of which is
the sarco/endooplasmic reticulum (S/ER). In 1997 it was generally accepted that activation of various
G protein-coupled receptors facilitated inositol-1,4,5-trisphosphate (IP3) production, activation of
IP3 receptors and thus calcium release from S/ER. Adding to this, it was evident that S/ER resident
ryanodine receptors (RyRs) could support two opposing cellular functions by delivering either
highly localised calcium signals, such as calcium sparks, or by carrying propagating, global calcium
waves. Coincidentally, it was reported that RyRs in mammalian cardiac myocytes might be regulated
by a novel calcium mobilising messenger, cyclic adenosine diphosphate-ribose (cADPR), that had
recently been discovered by HC Lee in sea urchin eggs. A reputedly selective and competitive
cADPR antagonist, 8-bromo-cADPR, had been developed and was made available to us. We used
8-bromo-cADPR to further explore our observation that S/ER calcium release via RyRs could mediate
two opposing functions, namely pulmonary artery dilation and constriction, in a manner seemingly
independent of IP3Rs or calcium influx pathways. Importantly, the work of others had shown that,
unlike skeletal and cardiac muscles, smooth muscles might express all three RyR subtypes. If this were
the case in our experimental system and cADPR played a role, then 8-bromo-cADPR would surely
block one of the opposing RyR-dependent functions identified, or the other, but certainly not both.
The latter seemingly implausible scenario was confirmed. How could this be, do cells hold multiple,
segregated SR stores that incorporate different RyR subtypes in receipt of spatially segregated signals
carried by cADPR? The pharmacological profile of 8-bromo-cADPR action supported not only this,
but also indicated that intracellular calcium signals were delivered across intracellular junctions
formed by the S/ER. Not just one, at least two. This article retraces the steps along this journey,
from the curious pharmacological profile of 8-bromo-cADPR to the discovery of the cell-wide web,
a diverse network of cytoplasmic nanocourses demarcated by S/ER nanojunctions, which direct
site-specific calcium flux and may thus coordinate the full panoply of cellular processes.

Keywords: 8-bromo-cADPR; cADPR; calcium; hypoxic pulmonary vasoconstriction; sarcoplasmic
reticulum; KV7; ryanodine receptor; two pore channel 2; arterial smooth muscle; nanojunction;
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1. Introduction

Cells select for one or a combination of distinct functions through calcium signalling. Therefore,
stimuli must induce different calcium signals to select for one or other of a variety of specific cellular
processes, such as cell activation, inhibition and proliferation, which additionally requires changes
in gene expression [1]. A variety of highly specialised, intracellular ion channels evolved for this
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purpose [2,3]. However, despite the extraordinarily detailed mapping of the temporal characteristics
of both unitary and macroscopic calcium signals across a variety of cell types [4–10], how cells deliver
the diverse range of site- and function-specific calcium signals necessary to coordinate the full panoply
of cellular processes remains enigmatic [11,12].

The primary intracellular calcium store is the sarco/endoplasmic reticulum (S/ER), which forms a
contiguous organelle from its origin at the outer nuclear membrane to the periphery of all cells [13].
Calcium signals with clear diversities of form and function are delivered via the S/ER, in a manner that
meets the specific functional requirements of a given cell type [6,7,10,12,14]. Irrespective of cell type the
current consensus is that within a wide, open cytoplasm highly localised calcium signals (e.g., calcium
sparks) direct region-specific functions, while propagating global calcium signals coordinate primary
cell-specific functions (e.g., muscle contraction, secretion). Adding to this, adjustments to gene
expression are presumed to be governed by variations in the spatiotemporal patterns of global
calcium transients that gain unrestricted entry to the nucleoplasm across the nuclear envelope and its
invaginations [15–19].

This review will retrace the steps in the development and testing of a novel hypothesis on
the mechanism of intracellular calcium signalling, that was first prompted by the very peculiar
pharmacology of 8-bromo-cyclic adenosine diphosphate-ribose (8-bromo-cADPR; Figure 1) [20].
Importantly, 8-bromo-cADPR had been proposed to be a competitive antagonist of cyclic adenosine
diphosphate-ribose (cADPR), a novel calcium mobilising pyridine nucleotide [21]. The pharmacological
profile of 8-bromo-cADPR of which I speak was at first sight surprising, but then became curiouser,
and curiouser still. There seemed to be one explanation for outcomes and one explanation only,
that different calcium signals must be delivered by different SR compartments, into functionally distinct
cytoplasmic spaces, somehow demarcated by junctions formed by the SR [11,22–25]. Our further
studies ultimately led to the discovery of the cell-wide web, a network of cytoplasmic nanocourses
demarcated by S/ER, which direct calcium signals in a manner that may be sufficient to allow for
stimulus-specified coordination of the full panoply of cellular processes.
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However, the path to the cell-wide web did not begin with considerations on calcium signalling
per se, but with the discovery of a novel potassium current in acutely isolated pulmonary arterial
smooth muscle cells. Therefore, in order to understand the “logic” of each step along this experimental
road, the story must begin here.
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2. A Tale of Two Channels and Perhaps a Few Dollars More

During 1994 I was tasked with characterising potassium channels in porcine pulmonary arterial
myocytes, with the aim of determining whether, as postulated, exposure to hypoxia during the perinatal
period altered normal developmental changes in potassium currents (kinetics and pharmacology) and
in doing so contributed to the development of persistent pulmonary hypertension of the newborn. It is
satisfying, with hindsight, to report that this hypothesis was confirmed [26], which deserves mention
because these studies were riddled with periodic delays and lengthy periods of out and out failure.
That said, these delays allowed me the freedom for pure unadulterated exploration of an unknown.

It had been proposed that the resting membrane potential of pulmonary arterial myocytes was
determined not by the large conductance voltage- and calcium-activated potassium current (BKCa;
KCa1.1 to the youth of today) but by a delayed rectifier potassium current (IKV), the primary component
of which we now know is carried by KV1.5 [27–30]. At the time pharmacological tools were limited and
poorly selective, while molecular interventions had yet to come of age. Therefore, I considered other
ways in which I might test whether it was indeed the delayed rectifier that set the resting membrane
potential of pulmonary arterial myocytes. Prolonged depolarisation was thought to evoke voltage-
and time-dependent inactivation of all known KV currents. Therefore, I designed a protocol that
would remove these potassium channels through voltage-dependent inactivation. I held cells under
voltage-clamp for 1–2 h at 0 mV and then switched immediately to current clamp (I = 0), leaving
each cell to report its residual resting membrane potential (experimental protocol reported in [31]).
In those few experiments that lasted the course, I was astonished to find that the resting membrane
potential remained the same as it was before the inactivation protocol had been engaged, not altered
by even a single mV. This led to the discovery of a novel low threshold voltage-gated, low conductance
potassium current that was activate at the resting membrane potential of pulmonary arterial myocytes
(approximately−60 mV), which I named IKN because it did not inactivate [32]. By contrast, the threshold
for activation of IKV/KV1.5 is −40 mV, +20 mV above the resting membrane potential recorded in
acutely isolated cells with a seal resistance ≥10 GΩ [32], or for that matter in smooth muscle cells
in-situ in an intact artery [33]. The characteristics of IKN were so strikingly similar to the neuronal
M-current [32] that subsequent studies of others inevitably demonstrated, as predicted [32], that they
were both conferred by the same potassium channel type, namely KV7 [34,35]. At this point I was
asked to involve a fellow post-doctoral researcher, Oleg Osipenko, in my further investigations on
IKN, which confirmed my findings, and furthermore suggested that IKN might be inhibited during
hypoxia [31]. It was therefore proposed that inhibition of IKN rather than IKV [27–29,36] was most
critical to the induction of hypoxic pulmonary vasoconstriction (HPV), a reflex response of pulmonary
arteries to falls in airway and alveolar oxygen availability [37]. It was made clear to me that the effects
of hypoxia on IKN were not for me to test, and to this day I have not done so. Rather than any long-term
compliance on my part, this was due to a twist in the tale that I was presented with on setting up my
own laboratory to further my independent studies on IKN.

3. KN or Not KN That Was the Question

HPV is a local response mediated by mechanisms intrinsic to the smooth muscles and endothelia of
the pulmonary blood vessels, that helps optimise ventilation-perfusion matching by diverting blood flow
through the path of least resistance, from oxygen-deprived to oxygen-rich areas of the lung; by contrast
most aspects of the systemic vasculature dilate during hypoxia to ensure that oxygen availability
meets the needs of the organs and tissues thus supplied [38]. HPV is triggered by airway and alveolar
hypoxia [37,39], rather than by vascular hypoxaemia [40], through the constriction of pre-capillary
resistance arteries within the pulmonary circulation, in a manner coordinated by signalling pathways
that are intrinsic to their smooth muscles and endothelial cells [41–44], independently of blood-borne
mediators or the autonomic nervous system [45,46]. The initiation phase of acute HPV is primarily
driven by smooth muscle constriction [41], with a threshold PO2 ≈ 80 mmHg [24]. The cell-specific
expression of atypical nuclear encoded subunits of the mitochondrial electron transport chain, such as
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COX4I2, may confer the acute sensitivity of these oxygen-sensing cells to physiological hypoxia [47,48],
while increased expression, relative to systemic arteries, and activation of the AMP-activated protein
kinase appears critical to induction of HPV downstream of mitochondria [49,50], including therein
direct phosphorylation and inhibition of KV1.5 channels that underpin the aforementioned IKV [50,51].
That is as it stands now, but we knew little of this back then.

When evoked in isolated pulmonary arterial rings by switching from normoxic to hypoxic
gas mixtures, HPV presents as a biphasic response (Figure 2), with an initial transient constriction
(phase 1) being followed by a slow tonic constriction (phase 2) [41,52–54]. Both phases of constriction are
superimposed on each other; that is to say, they are discrete events that are initiated concomitantly upon
exposure of pulmonary arteries to hypoxia. The initial transient constriction peaks within 5–10 min
of the onset of hypoxia, whilst the underlying, tonic constriction peaks after a further 30–40 min of
hypoxia. The gradual amplification of phase 2 is driven by the release of an endothelium-derived
vasoconstrictor [43,55,56], the identity of which is still open to question. Therefore, after the endothelium
is removed the phase 1 constriction declines to a maintained plateau [41].
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The prevailing hypothesis back then was, and still now remains so in the eyes of some, that HPV is
triggered by the inhibition of voltage-gated potassium channels, consequent membrane depolarisation
and voltage-gated calcium influx [27–29,36,47,57,58].

In 1996 I set about designing a series of experiments that would confirm the preeminent role
of potassium channels in HPV, and IKN in particular, using experimental protocols that extended
my work on acutely isolated smooth muscles to isolated pulmonary arterial rings and the whole
rat lung in-situ, with the kind support of Dr Piers Nye. In these investigations I was ably assisted
by my first PhD student, Michelle Dipp, who consistently obtained acute and robust HPV using
isolated pulmonary artery rings without the need for the application of pre-tone by way of an applied
vasoconstrictor; a common practice in other labs, perhaps to overcome less nimble dissection, and/or
the use of anaesthetics during sacrifice, such as pentobarbitone (see also [59]).

My first priority was to complete the most obvious and critical experiment the literature appeared
to lack. In my mind this was a sure-fire bet, IKN would win the day. We (Michelle) would remove
extracellular calcium from the medium using the calcium chelator EGTA, and balance the loss of this
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divalent cation by addition of equimolar quantities of magnesium. Constriction of pulmonary artery
rings during hypoxia would be abolished, there could be no doubt about that, and then we would
move on. To be doubly sure, I suggested we control for any input from the endothelium by removing
it from paired artery rings. Michelle and I met at the end of the first week to discuss her preliminary
findings. To my astonishment, she informed me that there was only a very little change in the response
to hypoxia of the endothelium-denuded artery [41]. I think I said something along the lines of, “What,
show me the records!”. She did and sure enough HPV (phases 1 and 2) was at best partially inhibited,
whether one considered each individual experiment, or the average. Michelle replied “Is that not
what you expected?”; she was not surprised at all as she had simply been asked to tell me what
she found. Moreover, the constriction induced through membrane depolaristion in response to high
extracellular potassium (80 mM; negative control) was abolished as expected, confirming the most
unexpected of outcomes, that neither potassium channel inhibition or voltage-gated calcium influx
was a pre-requisite for acute HPV. Michelle offered me solace by revealing records from intact arteries,
where the endothelium-dependent component of HPV had been attenuated, suggesting that calcium
influx into the endothelium was required for vasoconstrictor release. This did not help my mindset
at the time, as I was so focused on the mechanism at play within the smooth muscles. However,
intrinsic HPV was and, as attested to by removal of the endothelium, it was most likely triggered by
calcium release from intracellular stores within pulmonary arterial myocytes. This was confirmed
by pre-incubation of pulmonary arteries with ryanodine and caffeine, which blocked calcium release
from the SR via RyRs without depleting the SR calcium store. Phase 1 and phase 2 of HPV were
duly abolished, but this intervention did not affect constriction by high potassium [41]. Perhaps
most astonishingly, when considered alongside the fact that HPV could be induced in the absence
of extracellular calcium, this outcome indicated that calcium released from the SR was somehow
locked inside the cell, because HPV was sustained for a long time in calcium-free media, longer than
the limits of any test we carried out (i.e., hours). It should however be noted that the maintained
phase of constriction of pulmonary artery rings without endothelium was attenuated by up to 50% in
calcium-free medium, consistent with the view that HPV is supported by consequent activation of a
store-depletion-activated calcium entry pathway(s) [60].

Several investigations had previously suggested that HPV may be facilitated in part by calcium
release from SR stores [52,61–64], but none had so clearly demonstrated that this was initiated
independent voltage-gated calcium influx and endothelium-derived vasoconstrictors. Hence general
acceptance of the dominant hypothesis of the time, that HPV was triggered by KV channel inhibition
and consequent voltage-gated calcium influx [27–29,36,47,57,58], which had now been debunked,
from my perspective at least.

4. Two for Tea: Another Awkward Moment in Time

My first post-doctoral researcher, Francois Boittin, joined us the following year. I set Francois a
parallel study, to examine the cellular mechanism by which a β-adrenoceptor agonist, isoprenaline,
mediated relaxation of pulmonary arterial smooth muscles. It turned out that while Francois was
an excellent electrophysiologist, he was not adept at small or large artery dissection; when supplied
with Francois’ arteries, Michelle pointed out that they were almost dead on arrival, “Mark, they may
contract to potassium, just, but not hypoxia!”. In short, this study became a team effort, naturally.

Like many other Gs coupled receptors, β-adrenoceptors had been shown to activate adenylyl
cyclase, increase cyclic adenosine monophosphate (cAMP) levels and mediate vasodilation in a
protein kinase A (PKA)-dependent manner. In a variety of smooth muscles PKA appeared to
facilitate relaxation by: (1) increasing SR filling through SERCA pump acceleration, consequent to
PKA-dependent phosphorylation of the SERCA inhibitory protein phospholamban, which promotes
its dissociation from SERCA [65,66]; (2) increasing calcium spark frequency through peripheral RyRs
due to increased SR calcium load [67,68]; (3) facilitating activation of plasmalemma resident voltage-
and calcium-activated large conductance potassium channels (BKCa, KCa1.1) and thus membrane
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hyperpolarisation, directly through BKCa channel phosphorylation [69] and indirectly through increased
calcium spark frequency from regions of the SR proximal to the plasmalemma [8,70]. Thereafter,
voltage-gated calcium entry would be reduced, and calcium removal from the cell facilitated via
sodium/calcium exchangers and/or P-type calcium ATPase pumps located in the plasmalemma [71].
What had intrigued me was a report that hypoxia attenuated this response in pulmonary arteries,
as it seemed plausible that inhibition of this pathway to vasodilation might facilitate HPV by
removing opposition to depolarisation-evoked calcium influx consequent to the inhibition of IKN

and IKV. Consistent with previous studies, we found that β-adrenoceptor activation and membrane
permeable cAMP analogues did indeed hyperpolarise pulmonary arterial myocytes by activating
iberiotoxin-sensitive BKCa channels, and in a PKA-dependent manner. Critically, vasodilation by
β-adrenoceptor activation was attenuated by ~60% by blocking RyRs with ryanodine, ~60% following
depletion of SR calcium stores through SERCA inhibition using cyclopiazonic acid (Figure 3), and by
~90% following direct block of BKCa channels with iberiotoxin [25]. In short, vasodilation was indeed
facilitated by SR calcium release through RyRs and consequent activation of BKCa channels.
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8-bromo-cADPR attenuates isoprenaline-induced vasodilation

Figure 3. Example records show that the cADPR antagonist 8-bromo-cADPR (top left), ryanodine
receptor block with ryanodine (bottom left) and depletion of sarcoplasmic reticulum calcium stores
with cyclopiazonic acid (CPA; top right) attenuates (~60%) pulmonary artery dilation induced by
Isoprenaline. Blocking BKCa channels with iberiotoxin delivers ~90% attenuation (bottom right).

5. Hey Hey CPA Say: Had Me a Store but One Ran Away

We had confirmed that two opposing responses, vasodilation and vasoconstriction, were mediated
by calcium release from the SR through RyRs. Moreover cAMP-dependent vasodilation was facilitated
by calcium release from a cyclopiazonic acid-sensitive SR store. There is only one contiguous unit of
SR [13,72] and cyclopiazonic acid is a non-selective SERCA inhibitor [73,74], right? So, HPV would be
even more sensitive to pre-incubation with cyclopiazonic acid, particularly when the endothelium is
removed from the arteries. Stands to sense, under these conditions we had shown HPV to be entirely
dependent on SR calcium release through RyRs. Right question, wrong answer, again!

Cyclopiazonic acid abolished the first transient phase of HPV, but left the sustained phase 2
constriction unaltered, the second phase reaching a steady plateau much like control, that was sustained
for hours [24]. My response to Michelle was, “it doesn’t make sense, do it again”. Same thing happened,
again and again (Figure 4). Adding to this, in case it has escaped your attention, our studies on
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vasodilation had relied upon pre-constriction of pulmonary arteries with prostaglandin F-2α, which we
had previously confirmed to induce vasoconstriction, at least in part, by mobilising intracellular
calcium stores [41].

Could there be two discrete SR stores after all, one sensitive and one insensitive to cyclopiazonic
acid? There were data in the literature to support such a position [75–79], and the earliest of these
studies was on pulmonary arteries; albeit from the guinea-pig, which exhibits markedly attenuated
HPV due to adaptation to life at altitude [80]. Moreover, much like previous studies on acutely isolated
airway smooth muscles [81,82], we had found that in acutely isolated pulmonary arterial myocytes
isoprenaline-induced signalling pathways preferentially raised intracellular calcium concentration at
the perimeter of these cells, proximal to the plasmalemma [25].
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8-bromo-cADPR identifies two components of SR calcium release during HPV

Figure 4. Example records show that pre-incubation of pulmonary artery rings with 8-bromo-cADPR,
a cADPR antagonist, blocked phase 2, but not phase 1, of HPV (upper panels). By contrast, depletion
of sarcoplasmic reticulum calcium stores with cyclopiazonic acid (CPA) blocked phase 1, but not phase
2, of HPV (lower panels).

6. 8-Bromo-cADPR and the Magical Mystery Tour Takes Off

During 1997 I became aware of a certain β-NAD+ metabolite, cADPR, from a poster I read while
wandering the corridors at Oxford. Between 1989 and 1991, Hong-Cheung Lee and co-workers had
published their seminal studies on sea urchin eggs that led to the discovery of cADPR, and the enzyme
activities for its synthesis and metabolism [21,83,84]. More importantly still, from my perspective at
the time, they had also identified the most likely downstream target of cADPR, namely sea urchin
RyRs [85]. Albeit very slowly, data had thereafter begun to emerge in support of a similar role for
cADPR in mammalian cells [84,86–90]. A competitive and membrane permeable cADPR antagonist
had also been developed and was made available to me, namely 8-bromo-cADPR (Figure 1) [20].
Given its likely role in regulating RyRs, it seemed more than plausible that cADPR might facilitate
HPV or pulmonary artery dilation, but it couldn’t be involved in both now, could it?

To break the suspense, 8-bromo-cADPR did indeed block isoprenaline-induced dilation of
pulmonary arteries (Figure 3) [25], and also inhibited HPV in isolated pulmonary artery rings and in
the rat lung in-situ (Figure 4) [24]. However, with respect to the latter its effects were quite different
from the picture painted by the combinatorial action of ryanodine and caffeine, which blocked HPV in
its entirety [41].
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In arteries with and without endothelium, pre-incubation with 8-bromo-cADPR had no effect on
phase 1 of HPV, which was blocked by pre-incubation with ryanodine and caffeine. But, somewhat
counterintuitively, it abolished the sustained phase 2 constriction whether the endothelium was present
or not (Figure 4) [24]. Once again, I told Michelle that the experimental outcomes did not make any
sense, and that she would have to repeat this experiment again, but this time in a variety of different
ways. We’ll come back to that later, suffice to say for now that 8-bromo-cADPR blocked phase 2, but not
phase 1 of HPV. This was in stark contrast to cyclopiazonic acid, which had taken out the phase 1
constriction but left the sustained phase 2 constriction unaltered (Figure 4) [24]. In short, with respect
to HPV the effects of inhibiting RyR activation with 8-bromo-cADPR and blocking SR calcium uptake
with cyclopiazonic acid were not simply opposite from each other, but contrary. These findings
appeared incompatible with the view that the SR operated as one contiguous unit [13]. Yet the effects
of pre-incubation with ryanodine and caffeine were consistent with a contiguous SR, given that HPV
and constriction by prostaglandin F-2α were blocked in their entirety under these conditions [41].
Recall again, that for studies on cADPR-dependent vasodilation we pre-constricted pulmonary arteries
with prostaglandin F-2α, which induced vasoconstriction, in part, by mobilising SR calcium from a
cyclopiazonic-insensitive store [41].

Accepting all of the above to be bona fide, it was evident that if the effects of 8-bromo-cADPR
on HPV were indeed due to it blocking the action of cADPR, then cADPR must be necessary for SR
calcium release to occur during the initiation and maintenance of phase 2 of HPV, even though it
was not required in the context of phase 1. For this to be the case hypoxia must somehow increase
cADPR levels in pulmonary arterial smooth muscles. This was confirmed by parallel analysis of the
synthesis and metabolism of cADPR within homogenates of pulmonary arterial smooth muscles,
with the support of the Galione laboratory through the redeployment of Heather Wilson and Justyn
Thomas; a favour to be repaid, and some, a few years later. Surprisingly, these endogenous enzyme
activities were greater in smooth muscles from pulmonary arteries when compared to that from
systemic arteries. This was a significant finding because it provided, in some small part, the necessary
degree of pulmonary selectivity that would be required of any mediator of HPV. Moreover, the level of
ADP-ribosyl cyclase and hydrolase activities were inversely related to pulmonary artery diameter [91].
Accordingly, analysis of smooth muscle cADPR levels revealed marked increases in its accumulation
during hypoxia (16–21 mm Hg; 1 h). Twofold in second-order branches of the pulmonary arterial tree,
and tenfold in third-order branches. Thus, much like the magnitude of HPV and the distribution of the
enzyme activities for cADPR synthesis, hypoxia-evoked increases in cADPR content were inversely
related to pulmonary artery diameter [91].

Our further studies provided evidence that increased β-NADH formation under hypoxic
conditions may facilitate cADPR formation from β-NAD+, by either augmenting ADP-ribosyl cyclase
and/or inhibiting cADPR hydrolase activities [91]. Adding to this, later experiments suggested that
cADPR accumulation and/or RyR activation by cADPR requires prior activation of AMPK, consequent
to inhibition of mitochondrial oxidative phosphorylation during hypoxia [49,50]. Over and above
this, the precise mechanism by which hypoxia promotes cADPR accumulation in pulmonary arterial
smooth muscles remains to be confirmed.

7. 8-Bromo-cADPR Action: On the Face of It All or Nothing

The aforementioned studies led us to perhaps the most unexpected and surprising observation
thus far. As mentioned above, when presented with the records showing that 8-bromo-cADPR
blocked phase 2, but not phase 1, of HPV, I told Michelle that these experimental outcomes did not
make any sense, and suggested she repeat this experiment again, and in a variety of different ways.
This was Pharmacology we were dealing with, not Physiology, and 8-bromo-cADPR was purportedly
a competitive antagonist. Therefore, to understand its mechanism of action on pulmonary arteries in
necessary detail, a concentration-response curve would be required, with and without the endothelium.
My general viewpoint was that the differential effects on phase 1 and phase 2 of HPV must in some way
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be related to the concentration applied. Either we were dealing with differences in affinity between
different RyR subtypes, or the pharmacokinetics of 8-bromo-cADPR led to difficulties in accessing one
cellular compartment relative to another.

As ever Michelle received the plan with a smile, and promptly got on with it. We reconvened
to discuss her findings sooner than I had expected, within one week. She presented me with yet
another imponderable. When arteries were pre-incubated with 8-bromo-cADPR at 1µM there was no
effect on either phase 1 or phase 2 of HPV, but at 3 µM phase 2 was abolished (Figure 5). All-or-none
block with a competitive antagonist? Quite mad! I began to doubt the compounds legitimacy, as not
even phenoxybenzamine would act like this over the time period given for pre-incubation; for the
uninitiated, phenoxybenzamine binds to its protein targets (e.g., alpha adrenoceptors) covalently,
irreversibly and in a time-dependent manner. A competitive antagonist should block a response driven
by agonist-receptor coupling in a concentration-dependent manner, with complete block achieved
1–2 orders of magnitude above the threshold concentration at which partial inhibition of this response
is first seen.

Could we reveal concentration-dependency of 8-bromo-cADPR in another way? I recalled the
all-or-none, quantal activation of units of nicotinic acetylcholine receptors by acetylcholine at the
neuromuscular junction, and the demonstration that competitive antagonists of nicotinic acetylcholine
receptors could block neuromuscular transmission in an all-or-none manner when applied prior
to induction of a single “spike” of contraction, yet deliver concentration-dependent inhibition of
contraction once tetanus (sustained contraction) had been induced [92–96]. The all-or-none block of
neuromuscular transmission occurred when the activation of a “critical mass” (~45%) of nicotonic
acetylcholine receptors could no longer be achieved. With this in mind I decided that we should test
the effect of 8-bromo-cADPR after prior induction of HPV in arteries without endothelium (to remove
confounding effects of endothelium derived vasoactive agents). Once initiated, the maintained phase 2
constriction was, to my relief and excitation, reversed by 8-bromo-cADPR in a concentration-dependent
manner. The threshold concentration for partial inhibition of HPV was 3 µM, which delivered
all-or-none block by pre-incubation, while complete reversal of HPV was achieved at 100 µM (Figure 5).
As indicated above, outcomes were analogous to the action of competitive antagonists at the skeletal
neuromuscular junction, that told us so much about the importance of junctional complexes to
intercellular signalling [95,97–99], and where neuromuscular transmission is compromised once a
critical mass of skeletal muscle nicotinic acetylcholine receptors are blocked. Could there be an
intracellular junction of the SR that is critical to the induction of HPV, in which RyRs play a role similar
to that of junctional nicotinic acetylcholine receptors? We concluded that our data for 8-bromo-cADPR
were consistent with this idea. We proposed that a similar “margin of safety” may therefore be built
into HPV through signal transmission across some form of intracellular junction, and in a manner
coordinated through the activation of a subpopulation of RyRs. We suggested [24] that this might allow
for the cADPR-dependent component of HPV to be initiated in an all-or-none manner, and thus offer
a plausible explanation for the all-or-none block of HPV by 8-bromo-cADPR, providing its primary
action was to block:

“the activation by cADPR of a certain proportion of RyRs” that is critical to the initiation of
HPV. and

“cADPR-dependent calcium mobilisation from a sub-population of RyRs” that serve a unique
and specific function in the context of HPV.

This was pertinent to the wider picture derived from further consideration of isoprenaline-induced
vasodilation and HPV, which led to the following postulates:

“β-adrenoceptor signalling targets cADPR synthesis to a particular (read distinct) RyR subtype in
the “peripheral” SR that is in close apposition to BKCa channels in the plasma membrane” [25];

“cADPR-dependent vasoconstriction results from the activation of a discrete RyR subtype localised
in the “central” SR . . . ” [25];
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An SR compartment... “in close apposition to the plasma membrane, (is) served by a SERCA
pump that is sensitive to cyclopiazonic acid” [23];

An SR compartment...“in close apposition to the contractile apparatus is served by a SERCA
pump that is insensitive to cyclopiazonic acid” [23];

Thereafter I proposed that [23]:
Phase 1 of HPV might be mediated by the mobilisation of calcium from an SR compartment

served by a cyclopiazonic acid-sensitive SERCA, that is inhibited by hypoxia due to a fall in ATP
supply proximal to the plasma membrane.

The phase 2 constriction driven by cADPR-dependent SR calcium release therefore requires the
presence of a second, spatially segregated SR calcium store that is served by a discrete, cyclopiazonic
acid-insensitive SERCA pump that recycles calcium locked into the cell by inhibition during hypoxia
of the cyclopiazonic acid-sensitive SERCA operating at SR juxtaposed to the plasma membrane.

Only time and further investigations would determine whether or not this was indeed the case.
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Figure 5. Pre-incubation of pulmonary artery rings with 8-bromo-cADPR blocks hypoxic pulmonary
vasoconstriction (HPV) in an all-or-none manner (left hand panels). By contrast, when applied after
prior induction of HPV in pulmonary arteries without endothelium, 8-bromo-cADPR reverses HPV in
a concentration-dependent manner (right hand panel).

8. Location, Location: Dispense with the Wax and Shine Some Light on Here

In certain cell types, such as smooth muscles, evidence had long suggested that at least two spatially
segregated and independently releasable subcompartments of calcium may exist within the SR network,
perhaps supplied by different, pharmacologically distinct types of SERCA pump [75–79]. Moreover,
previous studies on acutely isolated airway smooth muscles [81,82] and our own similar studies
on pulmonary arterial myocytes [25] suggested that β-adrenoceptor activation preferentially raised
intracellular calcium at the perimeter of cells, proximal to the plasmalemma. However, such proposals
had gained little traction, even though emerging evidence indicated that a single cell type could express
SERCA2a, SERCA2b [100] and a wider variety of intracellular calcium release channels than previously
thought. In some cases all three RyR subtypes were present [101,102], in combination with one or more
of the three IP3R subtypes [25,77,103].

I considered this information in the context of the pharmacological insight provided by
8-bromo-cADPR, and decided to explore the possibility that the functional segregation of SR calcium
stores could be very effectively achieved through the deployment of spatially segregated subtypes of
RyR and SERCA. At this point I was supported by a new crew at the bench, namely Nick Kinnear
and Jill Clark, and further aided by the kind gift during 2002 of affinity purified sequence-specific
antibodies against RyR1, RyR2 and RyR3 from Sidney Fleischer, and sequence-specific antibodies
against SERCA2a and SERCA2b from Frank Wuytack. With these tools at our disposal we then
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developed semi-quantitative approaches by which we could assign spatial locations to each RyR and
SERCA subtype. Briefly, we analysed the relative density of labelling for each within one of three
designated regions of the cell, the subplasmalemmal region (within 1µm of the plasma membrane),
the perinuclear region (within 1µm of the nucleus) and the extra-perinuclear region (everything that
lay in between).

8.1. The SERCA Circus

One could not have wished for more strikingly different outcomes for SERCA2a and SERCA2b.
Our analytical nous was hardly required to draw a conclusion. Visual inspection of deconvolved Z
sections and three-dimensional (3D) reconstructions of immunofluorescence labelling was sufficient.
SERCA2a was restricted to perinuclear regions, while SERCA2b was located proximal to the
plasmalemma (Figure 6).
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Figure 6. Example cells showing labelling for SERCA2a (left hand series of panels) and SERCA2b
(right hand series of panels) in pulmonary arterial myocytes. In each case, from left to right, a bright
field image, z section, 3D reconstruction and 3D digital representation of labelling colour coded by
region of the cell are shown. Nucleus identified by DAPI labelling (navy blue). Scale bar, 10 µm.

Semi-quantitative analysis of their density of labelling by region simply confirmed what we
could see with our own eyes [103]. The vast majority of SERCA2b labelling (~70%) lay within the
sub-plasmalemmal region, with ~8% extra-perinuclear and ~20% perinuclear. In marked contrast,
SERCA2a labelling was almost entirely (~90%) restricted to the perinuclear region. Therefore, native
SERCA2b must feed the SR proximal to the plasma membrane, where cADPR must facilitate the
calcium-dependent component of vasodilation in response to β-adrenoceptor activation (Figure 7).
If so, then SERCA2b must represent the cyclopiazonic acid sensitive SERCA, perhaps due to its location
proximal to the plasmalemma rather than by any selective pharmacological action per se. By contrast,
SERCA2a clearly supplies deeper, perinculear SR and most likely represents the cyclopiazonic
acid-insensitive SERCA that supplies the component of SR critical to HPV; perhaps spared simply
because the duration of pre-incubation allowed was insufficient to attain an effective concentration
anywhere except at the periphery of the cell [103].

So, why might hypoxia mobilise calcium from two discrete SR compartments? Well, it appeared
that the same cyclopiazonic acid-sensitive SR store was utilised during phase 1 of HPV and vasodilation
in response to β-adrenoceptor activation. It is possible, therefore, that SR calcium release by hypoxia
serves two purposes. Hypoxia may primarily trigger constriction by calcium release from a central SR
compartment that is in close apposition to the contractile apparatus and served by a cyclopiazonic
acid-insensitive SERCA pump (SERCA2a). A secondary action of hypoxia could be to deplete and/or
block filling of a peripheral SR compartment by inhibition of a cyclopiazonic-acid-sensitive SERCA
pump (SERCA2b) that lies in close apposition to the plasma membrane, and normally facilitates
vasodilation by removing cytoplasmic calcium to the peripheral SR (Figure 7). This could explain why
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pulmonary artery dilation by β-adrenoceptor activation is attenuated by hypoxia [104], and HPV is
enhanced by cyclopiazonic acid [105] yet abolished by SERCA inhibition with thapsigargin [106].
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Figure 7. Schematic representation of an early two compartment model developed to explain the
curious pharmacology of 8-bromo-cADPR and cyclopiazonic acid.

8.2. To Be Three RyRs

Analysis of the distribution of RyRs by subtype was a little more problematic, as they were not
so cleanly separated. Adding to this, two years into our study I discovered to my surprise, that Sid
Fleischer had provided James Sham with samples of his RyR antibodies, for the same purpose as
that which I had outlined to him some years earlier. Sid apologised for this oversight, caused by his
forgetting the precise nature of our project; which perhaps argues in favour of completing material
transfer agreements even with supporters and friends. Thankfully, James’ laboratory completed a
qualitative analysis of labelling in primary cultures of pulmonary arterial myocytes [107], which did
little more than confirm earlier studies that had identified the expression of all three RyR subtypes
in arterial myocytes [101,102]. As we will see below, cultured myocytes are an altogether different
model when compared to acutely isolated cells. Therefore, Nick and Jill, independent of each other,
ploughed on with their exhaustive, comparative analyses of RyR subtype distribution which confirmed
the following outcomes [103,108].

By density of labelling (Figure 8) RyR1 was the primary subtype targeted to the sub-plasmalemmal
region of pulmonary arterial myocytes (3–5-fold higher levels than RyR2 and RyR3). This is consistent
with a role for RyR1 in facilitating vasodilation in response to β-adrenoceptor activation. Accordingly,
our findings and those of others suggested that of the available RyRs, RyR1 is most sensitive to
activation by cADPR [86,109,110]. By contrast, cADPR does not appear to activate RyR2, rather it
increases the sensitivity of RyR2 to activation by calcium, and thus facilitates signal propagation along
arrays of RyR2 clusters by calcium-induced calcium release (CICR) [86,90,110]. RyR3 is, much like
RyR1, activated by cADPR, albeit at slightly higher concentrations [109]. However, we detected
little or no RyR3 within 1µm of the plasmalemma, which argues strongly against a role for RyR3 in
facilitating calcium release from subplasmalemmal SR in support of vasodilation. We gained further
insights from the studies of others on the kinetics of RyR activation. Under matched conditions
the threshold for activation of RyR1, RyR2 and RyR3 appears similar, with channel activation when
calcium concentrations at the cytoplasmic surface exceed 100nM [111–113]. However, RyR1 is relatively
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insensitive to CICR. It exhibits relatively little gain in probability of opening (0–0.2) with increasing
cytoplasmic calcium concentration, while mean open times increase only twofold over the activation
range for RyR1 [111–113]. Adding to this the IC50 for inactivation of RyR1 is ~1 µM [111,112]. Moreover,
it is evident that propagation of calcium signals away from discrete RyR1 clusters can be limited by
proximal RyR1 binding partners, the organisation of the SR and proximal plasmalemma, and the
presence or absence of structures that span these two membranes (for review see [113,114]). Therefore,
all things considered, it appeared most likely that cADPR-dependent activation of RyR1 offered the
most likely path through which SR calcium flux might recruit plasmalemmal BKCa channels, to thus
deliver membrane hyperpolarisation, calcium removal from the cell (SR emptying) and ultimately
vasodilation. That said, significant levels of RyR1 were present in the extra-perinuclear region of
pulmonary arterial myocytes, and to a lesser extent in the perinuclear region. It was therefore evident
that RyR1 may also contribute in some way to the regulation of calcium signalling in other regions of
the cell, a matter which we will return to later.

RyR2 was found to be primarily located within the wider extra-perinuclear region of pulmonary
arterial myocytes (Figure 8). The density of labelling for RyR2 within this region was 3–4 fold higher
than that for RyR1 and RyR3, and fell 2 and 5 fold either side in the subplasmalemmal and perinuclear
regions, respectively [103,108]. This appeared consistent with a role for RyR2 in signal propagation
and myocyte contraction, particularly when one considers excitation-contraction coupling in cardiac
muscles, which is so precisely coordinated by RyR2 clusters that carry propagating calcium waves by
CICR [5,9,113,115]. Critical in this respect is the 0.5µm spacing between RyR2 clusters, its relatively
low EC50 for CICR, low sensitivity to inactivation by calcium and high gain in open probability with
increasing calcium concentration, which together ensure that once initiated a propagating calcium
wave is less prone to failure than when carried by other RyR subtypes [111–113,115]. We concluded,
therefore, that RyR2 most likely functioned to carry propagating global calcium waves in support of
contraction in pulmonary arterial smooth muscles. Supporting this, as mentioned above, it is evident
that cADPR does not activate RyR2 per se, rather it facilitates CICR via RyR2 by increasing its sensitivity
to activation by calcium, which may facilitate the propagation of calcium waves once initiated [86,110].

This left us with a clear question to resolve. In the context of HPV and in the absence of
calcium influx from the extracellular milieu, where could the trigger calcium necessary for stable RyR2
recruitment arise from, and with the required margin of safety?

In this respect, I excluded RyR1 as the source of trigger calcium for little good reason, other than
our conclusion that subplasmalemmal RyR1s most likely facilitated calcium-dependent vasodilation.
This left RyR3. Significantly, the density of RyR3 labelling declined markedly (between 4- and 14-fold
by region) outside the perinuclear region of the cell (Figure 8 [103,108]). Irrespective of the mechanism
of RyR3 activation, therefore, once recruited it seemed unlikely that RyR3 would function to carry a
propagating calcium wave far beyond the point of initiation. This sat well with the marked increase in
density of labelling for RyR2 within the extra-perinuclear region when compared to the perinuclear
region. In short, RyR2 might function to receive calcium from RyR3. A plausible solution, given that a
discrete signalling pathway for activation of perinuclear RyR3s could be delivered by regions of the
plasmalemma that are necessarily juxtaposed to perinuclear SR where the nucleus sits. But how might
RyR3 be differentially activated?

In 2004 we were presented with one possibility, through the discovery by Nick Kinnear and I of
lysosome-SR nanojunctions in pulmonary arterial myocytes (Figure 9 [116,117]), during investigations
that were informed by the previous publications of Grant Churchill on lysosome-ER coupling in sea
urchin eggs [118,119]. Lysosome-SR nanojunctions appeared to be critical to the action of the second
calcium mobilising pyridine nucleotide previously discovered by HC Lee and co-workers, nicotinic
acid adenine dinucleotide phosphate (NAADP) [120], and were primarily formed by the interaction of
dense lysosome clusters with perinuclear regions of the SR that were rich in RyR3 (Figure 9 [108]).

In short, it appeared that lysosome-SR nanojunctions provided a trigger zone, or intracellular
synapse, for induction of calcium signals. Accordingly, we established that SR resident junctional
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Figure 8. Example cells showing labelling for RyR1 (upper panels), RyR2 (middle panels) and RyR3
(lower panels) in pulmonary arterial myocytes. In each case, from left to right, a bright field image,
3D reconstruction and 3D digital representation of labelling colour coded by region of the cell are
shown. Nucleus identified by DAPI labelling (navy blue). Scale bars, 10 µm.
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Figure 9. Example images showing lysosome-SR nanojunctions. Left hand image shows enlarged
segment of an acutely isolated pulmonary arterial myocyte, that identifies nanojunctions (yellow)
between LysoTracker Red labelled acidic stores and Bodipy-ryanodine positive SR in an acutely isolated
pulmonary arterial myocyte. Dashed blue rectangle (vertical axis, 0.5 µm) identifies a Lysotraker Red
labelled organelle and Bodipy-ryanodine labelled SR in the same focal plane, but separated by ~0.5 µm.
Right hand panels show a brightfield image (left) and a 3D reconstruction (right) of a fixed cell labelled
for lysosomes (αIGP120), RyR3 and the nucleus (DAPI, navy blue), that identifies lysosome-RyR3
clusters colour coded by region of the cell.
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While presenting these findings to the great and the good of Robert Wood Johnson Medical School
in New Jersey during 2005, my host and good friend Jianjie Ma suggested that he might have a good
collaboration for me. On returning to the UK a conference call was organised by Jianjie, during which
I was introduced to Mike Zhu, who had cloned Two Pore Channel 2 (TPC2) some years earlier and
demonstrated that it was targeted to lysosomes. Mike had then hit a brick wall, due to the fact that
he had no way of examining the functional role of TPC2 inside cells. My lab offered the necessary
approaches, namely intracellular dialysis of second messengers from a patch pipette and parallel
calcium imaging. Mike promptly supplied HEK293 cells that stably over-expressed human TPC2.
With this model at my disposal and two new recruits to deploy, namely in Peter Calcraft (PhD student)
and Chris Wyatt (post-doc), my lab became the first to demonstrate that NAADP gated lysosomal
calcium release in a TPC2-dependent manner, which was confirmed using siRNA knockdown of TPC2
and supporting pharmacological interventions [121,122]. I then, with Mike’s prior approval, invited
Antony Galione to join our collaborative team, with a view to his lab confirming that TPC2 was an
NAADP receptor by radioligand-binding assay. I was aware that Antony had been looking for a
candidate NAADP receptor for years, so it seemed only right to repay him for his previous support of
my work. The rest, one could say, is another history [123–125].

Could NAADP-dependent activation of TPC2 within lysosome-SR nanojunctions offer a logical
solution to our conundrum? Well yes, providing hypoxia triggers lysosomal calcium release through
TPC2, which is then amplified through RyR3 activation by CICR, such that a propagating calcium
wave is initiated by all-or-none recruitment of arrays of RyR2 clusters that span the wider cell, and in
a manner that could be facilitated by cADPR. Indirect support for this view was provided by the
identification of frequent discharge sites (FDS) in the perinuclear region of visceral and vascular
myocytes, which were generally devoid of mitochondria [126], but, as we had now shown, replete with
large lysosome clusters [108,116]. A role for lysosome-SR nanojunctions seemed all the more plausible
when mTORC1, which is inhibited by AMPK, was implicated in the progression of hypoxic pulmonary
hypertension [127,128]. Unfortunately, however, science is never that simple. Our subsequent
unpublished studies indicated that the putative, non-selective NAADP antagonist NED-19 did not
affect hypoxia-evoked constriction of isolated pulmonary artery rings, while others found that HPV
remained unaltered after pre-incubation with two putative, non-selective NAADP antagonists [59].
Adding to this, using spectral Doppler ultrasound we recently found acute HPV in-vivo in mice to
remain unaffected following global deletion of the gene (Tpcn2) that encodes TPC2 (unpublished).
In short, if TPC2 plays a role in acute HPV it is a subtle one. Alternatively, there may be redundancy
of function within the system, perhaps through the expression of alternative lysosome-resident,
calcium permeable channels such as TRPML1 [129–132] and TRPM2 [133,134], each of which has
been proposed to couple to RyRs and impact smooth muscle function and vascular reactivity. In this
respect it is notable that mTORC1-dependent modulation of autophagy impacts pulmonary vascular
remodeling [127,128], given that inhibition of mTORC1 [135] may regulate lysosomal TPC2 [121]
and TRPML1 [136]. Therefore, while lysosomal calcium flux may not be required for HPV, it likely
contributes to the development of hypoxic pulmonary hypertension.

If neither TPC2 or lysosomal calcium flux is required for induction of acute HPV, could activation
of RyR3 by cADPR be key to the all-or-none block of HPV by 8-bromo-cADPR? Well, we now know
that RyR3 is activated by cADPR, and at slightly higher concentrations than required to activate
RyR1 [109]. Accordingly, intracellular dialysis from a patch pipette of low concentrations of cADPR
increases cytoplasmic calcium concentration at the perimeter of pulmonary arterial smooth muscles [25],
while higher concentrations of cADPR initiate a global calcium transient [135]. Therefore, an alternative
explanation could be that cADPR-dependent activation of junctional clusters of RyR3 might be critical
to the induction of HPV, through subsequent recruitment by CICR of extra-junctional arrays of RyR2
clusters. If RyR3 clusters are organised into discrete active units or couplons (for review see [113]),
then this could indeed explain the all-or-none block of HPV by 8-bromo-cADPR. Once HPV is initiated,
cADPR accumulation could then act to facilitate regenerative, propagating calcium waves by sensitising
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RyR2s to CICR. Blocking the latter could plausibly explain the concentration-dependent reversal of
HPV by 8-bromo-cADPR, following its initiation. In short, activation of perinuclear RyR3 couplons
alone could provide a “margin of safety” for all-or-none recruitment of extra-junctional RyR2 clusters
and reduce the probability of false events being initiated. Moreover, such a model would allow discrete,
cADPR-dependent activation of peripheral RyR1s in support of vasodilation.

While the studies of others have confirmed the regional distribution of SERCA and RyRs in
pulmonary arterial smooth muscles [137] (see also airway smooth muscles [138] and cerebral artery
smooth muscles [139]), and the critical role in HPV of SR calcium release via RyRs [59,105,140],
outcomes for studies using knockout mice have been perplexing. Briefly, gene deletion strategies
have suggested a prominent role in HPV for RyR1 [141], RyR2 [142] and RyR3 [143]. A role in HPV
for all three RyR subtypes seems highly unlikely, but one never can tell, especially when so many
studies fail to distinguish between phase 1 and phase 2 of this response. So, we have arrived at one
plausible mechanism, but without critical evidence in support of a role for lysosome-SR nanojunctions,
the nature of the junctional complex involved remains elusive.

9. Another Twist in the Tale

In support of our immunofluorescence labelling we carried out RT-PCR and Western blots,
supported by the forever positive Gordon Cramb, and his lucky white heather. RT-PCR identified
transcripts for SERCA1, SERCA2a, SERCA2b and SERCA3 in whole arteries without endothelium [103].
By contrast, our sequence-specific antibodies identified only SERCA2a and SERCA2b on Western blots of
pulmonary artery homogenates that excluded the nuclear fraction, in agreement with previous studies
on other vascular smooth muscles [100]. Jill Clark had, however, proceeded with immunofluorescence
assays for all SERCA using acutely isolated pulmonary arterial myocytes. During 2004 she presented
me with a number of beautiful images of 3D reconstructions of DAPI labelled nuclei that identified
odd bands of labelling for SERCA1 across the outer surface of the nucleus (three animals, n = 10 cells).
No labelling was evident in any other part of the cell, so I dismissed this as non-specific labelling,
much to Jill’s evident disappointment. A couple of months later I was to eat my words.

During one particular lab meeting Nick Kinnear was taking me through his data analysis on RyR1
distribution in 3D reconstructions of pulmonary arterial myocytes. He had applied a digital skin/mask
to better highlight RyR1 distribution and removed all labeling smaller than 100 nm3. The bar chart
(mean ± SEM) in Nick’s Excel spreadsheet indicated a massive amount of RyR1 in the perinuclear
region of the cell, yet there appeared to be little or no labelling in the perinuclear region of the 3D image
of the example cell he had chosen. I pointed this out to him, but he struggled to dismiss the data in the
spreadsheet. I interrupted Jill’s daydream by asking her to have a look, “Do you understand where my
concern lies?”. She said yes, and I told her to explain it to Nick, find out what the discrepancy was and
then come and find me. Sometime later, maybe a week but no more, Jill appeared in my office and told
me they had something to show me. I told her I was about to give a lecture, my adrenaline was up,
and that it was perhaps not the best time. She insisted, and said I would be happy with what they’d
found. She was right but I was also perplexed, yet again.

Nick and Jill had created a movie in which the cell labelled for RyR1 was rotated, the DAPI
channel removed, and then the cell rotated once more (Figure 10). This revealed a tubular network
of labelling within the boundary of the nucleus. I recalled the SERCA1 labelling Jill had shown me
earlier. They were ahead of me, and the movie revealed a similar tubular network of labelling within
the nucleus (Figure 10). No such network was observed in any cell labelled for RyR2, RyR3, SERCA2a
or SERCA2b. I asked Jill if she’d retained the nuclear fraction removed from the homogenates used for
her previous Western blots. Like all good scientists she had, and when this fraction was run it revealed
a very faint band for SERCA1 [144].

Jill went on to load the lumen of the SR with Calcium Orange, which revealed a clear tubular
network that appeared to span the nucleus within living cells, but there was no membrane permeable
marker for the nucleus of living cells available at this time. I didn’t know how to take this work forward,
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so I decided to exclude any comment on nuclear labelling from our subsequent publications [103,108],
“sat back” and waited for a day when I could further explore this signalling domain, hoping that
no-one would beat me to the punch.
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By chance, that same year I was invited to give a talk at a symposium in honour of the pending
retirement of Tom Bolton and Alison Brading, both of whom had been very kind in their advice and
guidance to me, during my time at the Pharmacology Departments of St George’s Hospital Medical
School and Oxford, respectively. I was thrilled to be invited and sought to put together my best slide
presentation yet. It was a fortuitous moment in time, because during one coffee break I was approached
by an elder Dutch gentleman, Casey van Breemen. Casey said he liked my talk, suggested that we
collaborate, and asked me to drop him an e-mail after the conference had finished. Due to my circuitous
route into the field of smooth muscle calcium signalling (Oxford, and beyond for that matter) I had no
detailed knowledge of Casey”s work, even though I had sat through his talk, all too blindly focused
on the delivery of my own. However, Casey had given me his card, and I later e-mailed him. I then
realised he was based in Vancouver, where I had booked a holiday ahead of Experimental Biology 2006.
I visited UBC Vancouver, gave a seminar, and met Nicola Fameli for the first time. Then, in 2008 Casey
invited me out to Vancouver again, and this time paid for my flight and accommodation. During this
visit I decided to show Casey and Nick the nuclear labelling for RyR1 and SERCA1. Casey advised me
not to show this to anybody else before a paper was submitted, not that I needed any such advice.

10. We Will Be Fine, Its Nano Time: Even though “NAScA” Say We Out of Line

I had learned that Casey, Nick Fameli and I shared a common interest in segregated signalling
domains within cells, Casey having been the first to characterise plasma membrane (PM)-SR
nanojunctions in smooth muscles (for historical perspective see [145,146], while I had conceived
of and identified lysosome-SR nanojunctions while pursuing our independent evidence of calcium
signalling within discrete cytoplasmic “microdomains” (for historical perspective see [23]). Nick Fameli
was not a biologist, but a physicist with expertise in computer modelling who had been employed by
Casey to apply such modelling in the further examination of how PM-SR junctions may function to
adjust the calcium load within the SR lumen, by studying “what we could not yet see”. We further
developed our joined-up thinking during (for me) late night Skype sessions from my office, now at
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the University of Edinburgh, while Casey and Nick enjoyed their morning coffee. During these
discussions I was introduced to considerations of not microdomains, but cytoplasmic nanodomains
for calcium signalling. On one occasion Casey could not make the allotted Skype time, so Nick
Fameli took me through his latest modelling of calcium exchange across cytoplasmic nanodomains.
He was explaining that once a junctional membrane pair was separated by more than 50 nm junctional
integrity weakened in a manner that could be compensated for by increasing the number of SERCA
pumps, but above 200 nm the capacity for site-specific calcium exchange was not just reduced but lost
entirely. I cut him short to ask “Where does the calcium go then?”. Nick replied “it diffuses out of the
sides”. To be precise, the probability of random diffusion of calcium away from the junction formed
by the membrane pair was higher than that for capture by SERCA when the junctional membrane
separation was increased from 200 nm to 400 nm, irrespective of the density of SERCA pumps in
the SR membrane [147,148]. Eureka, it was not just the “nanodomain” but the “nanojunction” that
was critical to our thinking! Nanojunctions not only acted to direct calcium signalling, but also
restricted the random diffusion of calcium away from the cytoplasmic space demarcated by them.
We hastily arranged another Skype meeting with Casey to discuss this “revelation”. Our ongoing
discussions led to the “Panjunctional Sarcoplasmic Reticulum” hypothesis that was framed in an
invited review for the Journal of Physiology [22], which, at my insistence, excluded any consideration
of nuclear calcium signalling. In essence this hypothesis was built around the proposal that cellular
membrane-membrane nanojunctions are formed by the SR at defined “target sites” to deliver highly
localised and functionally segregated calcium signals, with the functional specification of a given
signal determined both by the constraints on diffusion imposed by the nanojunction itself and by the
calcium signalling machinery incorporated within a given junctional complex. Nanojunctions are
defined by their distances of separation and had been identified not only between the S/ER and the
PM, but a variety of organelles including lysosomes, mitochondria and the nucleus [22]. We knew at
the time that the underlying mechanisms of signal generation were likely more elaborate in nature
than we could possibly envisage, but evidently relied on the strategic targeting to their designate
nanojunction of macromolecular complexes that incorporate different types of calcium transporters
and release channels, each of which may be characterised by different kinetics and affinities for calcium,
and may in turn be differentially modulated by their respective binding partners, second messengers
and enzymes [103]. This is self-evident when one considers, for example, the fact that in arterial and
arteriolar smooth muscles alone, we now know that intracellular calcium signalling is coordinated by
the gating of:

Two of the three known S/ER resident IP3 receptors (IP3R1-3) by inositol 1,4,5 trisphosphate
(IP3) [149–153];

Up to three S/ER resident ryanodine receptor subtypes (RyR1-3) [101,107,108,153] by calcium
and/or cADPR [24,25,91,108,109,117,154];

Endolysosome targeted two pore channel (TPC) subtypes 1 and 2 by either NAADP [116,117,122,
135,155], phosphatidylinositol-3,5-bisphosphate (PI3,5P2) [156], or mTORC1 [135,157];

Endolysosome targeted TRPML1 [129–132] and TRPM2 [133,134] by mTORC1 and/or ADP-ribose;
The mitochondrial calcium uniporter [158,159].
Furthermore, the expression pattern of calcium release channels and pumps in smooth

muscles may vary between regions in the same vascular bed [153] and from one vascular
bed to another [103,138,153,160–162]. In short, variations in the prevalence of nanojunctions,
their ultra-structure and their respective molecular machinery could explain, in part, both functional
heterogeneity [25,153,160,161,163] and plasticity [22,137] of smooth muscles, and wider differences
evident between smooth muscles and other cell types [13].

With regard to the likely importance of nanojunctions themselves to cellular communication,
we need look no further than the neuromuscular junction, where the critical role of nanojunctions
in intercellular communication has been evident for nearly a century [11]. It is the organisation of
these junctional membranes that proved to be so critical to neuromuscular transmission through
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their coordination of the release, receptor interactions and reuptake of acetylcholine [95,97–99]. Here,
electron micrographs indicate that the pre- and post-junctional membranes are approximately 20 nm
apart, and extend more or less parallel to each other over several hundred nm. It is important to note,
however, that junctional dimensions seen within electron micrographs may be smaller than they are in
reality, due to sample dehydration.

Given the above it is surprising that so little attention has been paid to the role in intracellular
signalling of the plethora of junctions formed between intracellular membranes, beyond acknowledging
that there are “contact sites” that may aid the direction of ion fluxes, exchange or the action of other
messengers. The one notable exception is of course in the process of excitation-contraction coupling
in skeletal and cardiac muscles, where the junctional complexes formed between T-tubules of the
sarcolemma and terminal cisternae of the SR are well documented, and are equally critical to the
coordination of excitation-contraction coupling as the neuromuscular junction itself. In each instance
electron micrograpahs suggest that the junctional membrane pair are separated by ~20 nm [164–168].
There is, however, one important distinction between skeletal and cardiac muscles that must be
mentioned in terms of the mechanism by which calcium is mobilised during excitation-contraction
coupling, and this will undoubtedly have resonance with respect to our future understanding of
the versatility of signalling across all intracellular nanojunctions. Against earlier predictions, it is
now evident that the sarcolemma-SR nanojunctions of skeletal muscle allow for the transfer, through
non-covalent association, of electrostatic charge between sarcolemma resident dihydropyridine
receptors and SR resident RyR1s (see for example [169–171]), which ultimately gates calcium release
from the SR via RyR1 couplons [113]. By contrast, the sarcolemma-SR nanojunctions of cardiac muscle
support what is generally regarded as the classical form of junctional coupling, namely agonist-receptor
interactions, by targeting calcium influx to RyR2 clusters located on the terminal cisternae of the SR
which, in turn, trigger a propagating calcium wave and contraction by further CICR from the SR via
arrays of RyR2 clusters, each RyR2 cluster separated from the other by ~500 nm [9,115]. Whatever the
mechanism of transduction, electrostatic or agonist-receptor gating mechanisms, these sarcolemma-SR
junctions represent the archetypal intracellular nanojunctions, with each one being separated by ~20 nm
(not allowing for reductions through dehydration) and clearly designed to accurately deliver calcium
to one defined target above all else.

Already there appears some consistency of form and function, so why nanojunction? As indicated
above, following more than 15 years of discussion on experimental data and modelling outcomes
with Casey and Nick Fameli, our firm assertion is that all active nanojunctions constitute at least two
adjacent biological membranes that demarcate a highly structured cytoplasmic space, with nanotubes
perhaps representing the optimal operational unit in biology. To maintain junctional integrity, it is now
clear that the optimal operating limit for intracellular nanojunctions is ≤ 200 nm in width, typically a
few 100 nm in extension, and that either side the membrane pair must contain complementary ion
transporters and channels that serve to deliver and/or receive site-specific calcium signals. As described
previously, it is evident that both the ultra-structure, the electrostatic properties of each membrane
of the junctional pair and the macromolecular composition of transport molecules embedded in
their limiting membranes will ensure that cytoplasmic ion concentrations, and calcium in particular,
are determined locally. Calcium flux may thus be specifically targeted to “receptive sites” with great
accuracy, due in no small part to the ability the nanojunction to restrict diffusion of calcium away from
the cytoplasmic space thus demarcated [147,172].

11. PM-SR Nanojunctions of Vascular Smooth Muscles

It is 40 years since analysis of electron micrographs first identified narrow cytoplasmic spaces
(~20 nm across) between the PM and the superficial SR of smooth muscles [173,174]. This led to Casey
van Breemen’s “superficial buffer barrier” hypothesis [145,175–177], which posited that restricted
diffusion from this “nanospace” allows the superficial SR to limit direct calcium flux from the PM
to the myofilaments [176]. This hypothesis has now received support from studies on a variety of
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smooth muscle types. PM-SR nanojunctions are abundant in myocytes and appear to demarcate a
cytoplasmic nanodomain that coordinates the delivery of calcium to, or the removal of calcium from
the SR [146,178–182]. In doing so these nanojunctions not only serve to regulate SR luminal calcium
load, but also hyperpolarisation and relaxation, depolarisation and vasomotion, and, as we will see,
may influence gene expression in parallel, in series or in isolation. PM-SR nanojunctions are therefore
polymodal [71,145. They may support either vasodilation or vasoconstriction, respectively, through
the capacity of the SR to not only empty when overloaded with calcium [183] or signalled to do so by
vasodilators [25], but to reload its calcium store once depleted [148,184]. If we take this as an example
of what is possible, then it is evident that all nanojunctions may exhibit similar levels of plasticity.

12. China Girl: How the Cell-Wide Web Was Weaved

In 2010 I picked up the “baton” left by Jill Clark, by reassessing her images of the SR lumen
loaded with Calcium Orange, which had, we presumed, revealed a tubular network within the nucleus
of living cells. Importantly, a membrane permeable marker for the nucleus had finally been made
available, namely the DNA marker Draq5 (Figure 11). These further studies were also aided by the
arrival of Jorge Navarro-Dorado, who joined my lab from Madrid in order to obtain a European
classification for his PhD. We explored the possibility that Jill had identified cytoplasmic nanotubes
within the boundary of the Draq5 labelled nucleus using Fluo-4 to report on cytoplasmic calcium.
By adjusting the threshold for fluorescence detection, it was evident that a network of narrow tributaries
of cytoplasm ≤500 nm wide penetrated the nucleus, perhaps reflecting the path of nuclear envelope
invaginations which I had first been introduced to in 1997 whilst viewing a new confocal microscope
in the Dunn School of Anatomy at Oxford [185].
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I subsequently coined the name cytoplasmic nanocourses to refer to these cytoplasmic networks, 
which exhibited markedly higher levels of Fluo-4 fluorescence than the surrounding nucleoplasm, 
and could be equally well distinguished from any aspect of the wider cytoplasm, which in turn and 
invariably exhibited higher basal fluorescence than the nucleoplasm (Figure 12). This suggested that 
invaginations of the nuclear envelope might demarcate discrete signalling compartments that could 

Figure 11. Upper panels show (from left to right) nuclear invaginations at differing orders of
magnification, in sections through the nucleus of a pulmonary arterial myocyte in which the lumen
of the sarcoplasmic reticulum has been loaded with Calcium Orange (Scale bars from left to right,
2 µm, 1 µm, 1 µm). Middle panels show ER tracker and Calcium Orange co-labelelling of nuclear
invaginations. Draq5 identifies the nucleus (blue) in each case (Scale bars, 2 µm). Lower panel, electron
micrograph shows nuclear invaginations in a pulmonary arterial myocyte in-situ in a pulmonary artery
section (Scale bar, 2 µm).
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I subsequently coined the name cytoplasmic nanocourses to refer to these cytoplasmic networks,
which exhibited markedly higher levels of Fluo-4 fluorescence than the surrounding nucleoplasm,
and could be equally well distinguished from any aspect of the wider cytoplasm, which in turn and
invariably exhibited higher basal fluorescence than the nucleoplasm (Figure 12). This suggested that
invaginations of the nuclear envelope might demarcate discrete signalling compartments that could be
observed without the need for further image processing, irrespective of whether or not differences
in fluorescence intensity resulted from differences in local cytoplasmic calcium concentration, or the
influence of the local environment within each of these compartments on general Fluo-4 fluorescence
characteristics [186,187]. Jorge then returned to Spain, while I finally sought direct funding to
further these investigations, at the risk of revealing our findings to the “wider” research community.
To my excitement and great relief, funding arrived through the award of a British Heart Foundation
Programme Grant in 2012. I re-appointed Jorge as a post-doctoral researcher in 2013, who was joined a
year later by a PhD student fresh from China, Jingxian Duan.
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that a variety of highly localised fluctuations in Fluo-4 fluorescence occurred within this variegated 
“map” of the cell. After viewing one particular cell during live acquisition, I requested that Duan 
carry out deconvolution of all Fluo-4 images within the time series acquired. She dutifully obliged; 
Jorge had previously stated that this was “impossible” and made no attempt to do so, which 
eventually settled arguments over first author status. In short, with the laser power, threshold, gain 
and Fmax set to highlight nuclear nanocourses, Duan’s further image processing revealed a cell-wide 
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Figure 12. Fluo-4 fluorescence (green) identifies cytoplasmic nanocourses within the boundary of the
Draq5 labelled nucleus (blue) of a confocal Z section through a pulmonary arterial myocyte (left hand
panels i-iii). A spectral intensity plot across the nucleus (right hand panel iv) shows that nanocourses
within nuclear invaginations (NI) exhibit higher levels of fluorescence than the nucleoplasm (N),
and cytoplasm (C) identified by the dashed line in panel iii.

In the meantime, a new Nikon A1R+ confocal microscope had been installed in our imaging
facility (IMPACT) at Edinburgh, which was critical to our further investigations due to the much
lower signal-to-noise and greater spatial resolution afforded by the Galvano scanner supplied with
this system (for details see [144]). Jorge and Duan spent the first 2–3 years focused on studying
calcium signals within raw images of nuclear nanocourses. ER Tracker labelling and Calcium Orange
loading of the SR lumen confirmed that nuclear nancourses were demarcated by invaginations of the
nuclear envelope (NE) and thus the outer nuclear membrane (ONM), which is continuous with the
SR (Figure 11 [72,126,188]). These studies were allied to an investigation of the distribution along
the inner nuclear membrane (INM) of lamin A and histone marks. Our longer-term goal being to
determine whether or not calcium signals passed from the nuclear invaginations into the nucleus to
thus modulate gene expression. How wrong could we be, yet again!!

With the Nikon A1R+ set to detect those cytoplasmic nanocourses visible within the boundary
of the nucleus, we frequently observed variegated, region-specific differences in Fluo-4 fluorescence
intensity in the bulk cytoplasm (beyond the boundary of the nucleus). In short, highly localised,
time-dependent and asynchronous fluctuations in Fluo-4 fluorescence intensity were evident across
the wider cell. At first, I saw this variegated loading as an irritation that was likely due to erroneous
loading of organelles, vacuoles and other aspects of the cells. However, cells presented like this far
more frequently than we ever observed “uniform” loading of Fluo-4. After three years of irritation
and periodic re-examination, I chose not to exclude such cells from further analysis as others had
done previously (see for example [189]), rather I focused our attention on the indications derived
from what could be seen in the clear majority. For when one suspended disbelief, it was all too clear
that a variety of highly localised fluctuations in Fluo-4 fluorescence occurred within this variegated
“map” of the cell. After viewing one particular cell during live acquisition, I requested that Duan
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carry out deconvolution of all Fluo-4 images within the time series acquired. She dutifully obliged;
Jorge had previously stated that this was “impossible” and made no attempt to do so, which eventually
settled arguments over first author status. In short, with the laser power, threshold, gain and Fmax

set to highlight nuclear nanocourses, Duan’s further image processing revealed a cell-wide network
of well-defined cytoplasmic nanocourses (≤400 nm across) that appeared to be demarcated by SR,
and spanned the entire cell from the Draq5 labelled nucleus to the plasmalemma. It is worth noting
here that the dimensions of the nanocourses we described likely provide larger estimates than reality,
because deconvolution will not have removed all stray light. Nevertheless, this was a consistent
observation, irrespective of cell shape or size (Figure 13). If we consider this in the context of electron
microscopy, where preparations are dehydrated and probably report smaller distances of separation of
junctional membranes than is reality, it seems likely that in fully hydrated cells the true dimensions of
many nanojunctions of the SR may lie somewhere between 20 and 200 nm.

Molecules 2020, 25, 4768 22 of 38 

 

reality, because deconvolution will not have removed all stray light. Nevertheless, this was a 
consistent observation, irrespective of cell shape or size (Figure 13). If we consider this in the context 
of electron microscopy, where preparations are dehydrated and probably report smaller distances of 
separation of junctional membranes than is reality, it seems likely that in fully hydrated cells the true 
dimensions of many nanojunctions of the SR may lie somewhere between 20 and 200 nm. 

 
Figure 13. From left to right, panels show pseudocolour representations of deconvolved z sections of 
Fluo-4 fluorescence that identify a cell-wide network of cytoplasmic nanocourses within three 
different acutely isolated pulmonary arterial myocytes, irrespective of cell size or shape. Right hand 
panels show enlarged images of two cytoplasmic nanocourses from the same cell, in which 
asynchronous, time-dependent fluctuations in hotspots of calcium flux (from top to bottom) can be 
seen. 

During short time series’ (2–6 min; time-limited by photo-toxicity) hotspots of local calcium flux, 
~200–400 nm in diameter, were readily identifiable in pseudocolour representations of this cell-wide 
network at rest (Figure 13), the intensity of which oscillated over a time course of seconds, without 
propagating beyond the nanocourse within which a given hotspot arose. Moreover, these hotspots 
of calcium flux exhibited asynchronous temporal characteristics when compared to adjacent hotspots 
within the same nanocourse, or hotspots arising in different nanocourses. It is possible, therefore, that 
these hotspots of calcium flux might represent activity akin to the “calcium sparklets” previously 
described in visceral and vascular myocytes [126,189]. Here too, a high degree of regional variability 
in the spatiotemporal characteristics of spontaneous SR calcium release was noted, which was 
proposed to be due to the presence of discrete calcium release units that are regulated autonomously 
[126]. However, the authors of these studies concluded that junctional complexes such as the PM-SR 
junction were not required for the extensive patterns of calcium release observed. To quote: “a 
diffusion barrier per se seems an unlikely explanation for some extended patterns of release which 
followed the surface membrane, it is more likely that such events come about as a result of the spatial 
distribution of RyRs near the membrane” [189]. Our studies are consistent with both proposals, but 
suggest yet more. They demonstrate that junctional membrane complexes, variations in RyR subtype, 
and variations in the spatial distribution of RyR clusters contribute to regional variations in the 
pattern of calcium flux from local release sites in smooth muscles. Accordingly, distances of 
separation between hotspots for subplasmalemmal (~350 nm) and nuclear nanocourses (350 nm) [144] 
are consistent with those for skeletal muscle RyR1s [166], while distances of separation for 
extra-perinuclear (~400 nm) and perinuclear (~450 nm) nanocourses are significantly greater [144] 
and closer to those reported for cardiomyocyte RyR2s (0.6–0.8 µm) [115]. This is significant, because 
these distances of separation are entirely consistent with the regional distribution of RyR1 and RyR2 
in pulmonary arterial myocytes previously reported by my laboratory and others [103,108,137]. 
Consistent with this, temporal fluctuations in the fluorescence intensity of hotspots were markedly 
attenuated by prior depletion of SR calcium stores by SERCA inhibitors and abolished upon blocking 
RyRs. In short, these events most likely reflect low level, basal calcium flux (leak) from the SR via 
RyRs. However, while RyRs can remain open for many seconds, the fastest gating events are on the 
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Figure 13. From left to right, panels show pseudocolour representations of deconvolved z sections of
Fluo-4 fluorescence that identify a cell-wide network of cytoplasmic nanocourses within three different
acutely isolated pulmonary arterial myocytes, irrespective of cell size or shape. Right hand panels
show enlarged images of two cytoplasmic nanocourses from the same cell, in which asynchronous,
time-dependent fluctuations in hotspots of calcium flux (from top to bottom) can be seen.

During short time series’ (2–6 min; time-limited by photo-toxicity) hotspots of local calcium flux,
~200–400 nm in diameter, were readily identifiable in pseudocolour representations of this cell-wide
network at rest (Figure 13), the intensity of which oscillated over a time course of seconds, without
propagating beyond the nanocourse within which a given hotspot arose. Moreover, these hotspots of
calcium flux exhibited asynchronous temporal characteristics when compared to adjacent hotspots
within the same nanocourse, or hotspots arising in different nanocourses. It is possible, therefore,
that these hotspots of calcium flux might represent activity akin to the “calcium sparklets” previously
described in visceral and vascular myocytes [126,189]. Here too, a high degree of regional variability in
the spatiotemporal characteristics of spontaneous SR calcium release was noted, which was proposed
to be due to the presence of discrete calcium release units that are regulated autonomously [126].
However, the authors of these studies concluded that junctional complexes such as the PM-SR junction
were not required for the extensive patterns of calcium release observed. To quote: “a diffusion barrier
per se seems an unlikely explanation for some extended patterns of release which followed the surface
membrane, it is more likely that such events come about as a result of the spatial distribution of RyRs
near the membrane” [189]. Our studies are consistent with both proposals, but suggest yet more.
They demonstrate that junctional membrane complexes, variations in RyR subtype, and variations
in the spatial distribution of RyR clusters contribute to regional variations in the pattern of calcium
flux from local release sites in smooth muscles. Accordingly, distances of separation between hotspots
for subplasmalemmal (~350 nm) and nuclear nanocourses (350 nm) [144] are consistent with those
for skeletal muscle RyR1s [166], while distances of separation for extra-perinuclear (~400 nm) and
perinuclear (~450 nm) nanocourses are significantly greater [144] and closer to those reported for
cardiomyocyte RyR2s (0.6–0.8 µm) [115]. This is significant, because these distances of separation are
entirely consistent with the regional distribution of RyR1 and RyR2 in pulmonary arterial myocytes
previously reported by my laboratory and others [103,108,137]. Consistent with this, temporal
fluctuations in the fluorescence intensity of hotspots were markedly attenuated by prior depletion of
SR calcium stores by SERCA inhibitors and abolished upon blocking RyRs. In short, these events most
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likely reflect low level, basal calcium flux (leak) from the SR via RyRs. However, while RyRs can remain
open for many seconds, the fastest gating events are on the millisecond time scale [190]. Therefore,
the development of confocal systems with higher temporal and spatial resolution is required before we
can measure the kinetics of hotspots of calcium flux with sufficient precision to determine whether or
not they are generated by “unitary” calcium release through discrete RyRs and/or RyR clusters.

Supporting the view that the wider network of cytoplasmic nanocourses may represent a circuit
for cell-wide communication, it was evident that a subpopulation of LysoTracker Red labelled
endolysosomes migrated through this network of cytoplasmic nanocourses, while, consistent with our
previous observations [108,116], a larger, static cluster was evident in the perinuclear region of these
cells [144]. By contrast, all MitoTracker Red labelled mitochondria formed static clusters in acutely
isolated cells [144], as reported previously by others [191], which sit within the nanocourse network
where they too likely form nanojunctions with the SR [192].

Site- and function-specific calcium signalling was confirmed using a membrane-traversing peptide
from scorpion venom that selectively activates RyR1, namely maurocalcine [193]. Consistent with the
distribution of RyR1s, maurocalcine preferentially increased calcium flux into subplasmalemmal and
nuclear nanocourses (Figure 14 [144]). Maurocalcine also evoked concomitant myocyte relaxation,
confirming our previous proposal that RyR1s might coordinate vasodilation [25,103]. By contrast there
was relatively little change in calcium flux within even the most proximal extra/perinuclear nanocourses.
In short, we had likely visualised for the first time unloading of SR calcium through RyR1s within the
“superficial buffer barrier” presumed to be demarcated by PM-SR nanojunctions [145], which confer
nanoscale path lengths and have long been predicted to coordinate calcium removal from the SR and thus
relaxation [25,71,103,183], as well as SR refilling during prolonged contraction [60,148,176,184,194–198].
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of a different cell (scale bar, 1 μm). 
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Figure 14. Upper panels, from left to right, show myocyte relaxation in response to RyR1 activation
by maurocalcine, with nanocourse-specific changes in calcium flux identified in pseudocolour
representations of deconvolved z sections of Fluo-4 fluorescence (scale bar, 2 µm). Lower left,
panels similarly show calcium flux during myocyte contraction induced by angiotensin II (scale bar,
3 µm). Lower right, panels show angiotensin II-induced increases in calcium flux within nuclear
nanocourses of a different cell (scale bar, 1 µm).

Curiously, however, over the time course of our experiments (2–6 min) maurocalcine-induced
myocyte relaxation was not accompanied by concomitant falls in calcium flux into extra/perinuclear
nanocourses. If anything, asynchronous calcium flux continued within these nanocourses, with perhaps
slight increases in activity but no evidence of cell-wide signal propagation. One explanation for this
could be that the relatively small population of RyR1s in extra/perinuclear nanocourses neither face
nor couple with the contractile apparatus, rather they act to direct calcium flux towards PM-SR
nanojunctions via SERCA2b and away from SR release sites occupied by RyR2s/RyR3s that guide
myofilament contraction.
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As one might expect of a vasoconstrictor, angiotensin II induced a calcium wave that propagated
throughout all extraperinuclear and perinuclear nanocourses, but not subplasmalemmal nanocourses,
and triggered concomitant myocyte contraction (Figure 14). Surprisingly, however, this propagating
signal was immediately preceded by a rapid fall in Fluo-4 fluorescence intensity within the majority of
cytoplasmic nanocourses, except for those at the point of wave initiation. This suggests that angiotensin
II might also act to pre-load the SR with calcium, which could be a critical step prior to induction of
cell-wide signal propagation and myocyte contraction, and may, for example, rely heavily on RyR
sensitisation through increases in calcium-calsequestrin binding within the lumen of the SR [199–201].
Importantly, angiotensin II-induced calcium signals were blocked by, you guessed it, 8-bromo-cADPR.
Given that cADPR preferentially activates RyR1s and RyR3s [109] but can only sensitise RyR2s
to CICR [110], it therefore seems likely that angiotensin II-evoked cADPR accumulation within
extraperinuclear nanocourses may serve to activate local subpopulations of RyR1s and/or RyR3s [109]
while delivering concomitant sensitisation of RyR2s to CICR [110]. In this way subsequent initiation
of a propagating calcium signal and thus myocyte contraction could be permitted. Accordingly,
prior depletion of SR stores with thapsigargin and block of RyRs with tetracaine abolished angiotensin
II-evoked calcium signals [144].

If, however, we consider the extra-perinuclear location of the site of signal initiation in response
angiotensin II (Figure 14), this rather surprisingly favours RyR1s over RyR3s, because RyR3s are so
heavily restricted to the perinuclear SR. If this is the case, then the action of maurocalcine (see above)
lends support to the view that a critical factor in the selection of vasoconstriction over vasodilation might
be the capacity of a vasoconstrictor to pre-load the SR prior to RyR activation [113,199,200,202,203].
In this respect it is worth noting that the studies of others have suggested that cADPR might act
to accelerate SR-filling by activating SERCA [204–206], although our studies have revealed no clear
evidence of this [109]. Such an action could provide an alternative explanation for the all-or-none block
of HPV by 8-bromo-cADPR, if 8-bromo-cADPR blocks the initiation of HPV by inhibiting the activity
of both SERCA and RyR1, 2 and 3.

It is important to note that although the widths of all extra/perinuclear nanocourses are ≤400 nm
across, when considering contraction the larger scale of nanocourses is not entirely incompatible with
limits imposed by models of calcium flux across nanojunctions, or electron micrographs. As mentioned
previously, calcium diffusion and signal propagation can be further limited by RyR binding partners,
the organisation of the SR, and the presence or absence of structures that span the two limiting
membranes of any given nanojunction (for review see [113,114]). It is therefore notable that separate
PM regions have been described for filament attachment and caveolae [207], while the density of
myosin filaments appears to be less in the cell periphery than in the central myoplasm [208]. In addition,
the functional calcium-binding protein calmodulin is tethered proximal to the SR membranes that
line myofilament arrays [209], rather than being freely diffusible in the cytoplasm. All relevant path
lengths from the SR to calcium binding proteins, and from calcium binding protein to myofilaments
may therefore be on the nanoscale, even if the distances of separation for the junctional membranes are
greater than 200 nm.

At this point it is worth highlighting a further, long-standing curiosity that remains to be resolved.
Our studies on pulmonary arterial myocytes and those of others have demonstrated that IP3Rs do
not couple by CICR to RyRs in this cell type [67,117], which is contrary to the findings of studies on,
for example, venous smooth muscles [210,211]. This strongly suggests that RyRs and IP3Rs might
be segregated in pulmonary arterial myocytes, perhaps in part by SR nanojunctions that demarcate
discrete cytoplasmic nanocourses.

13. Nuclear Invaginations: A Road for El Dorado

As mentioned above, maurocalcine also increased calcium flux into nuclear nanocourses adjacent
to relatively inactive perinuclear nanocourses. This further exposed the functional segregation of
nuclear nanocourses from their nearest neighbour, through the strategic targeting of RyR1s to the
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outer nuclear membrane (ONM) that demarcates nuclear nanocourses. Against all expectations,
however, maurocalcine-evoked calcium flux within nuclear nanocourses did not propagate freely into
the nucleoplasm to any great extent, i.e., calcium is released across the ONM into the cytoplasmic
nanocourses demarcated by each active invagination, but neither directly nor indirectly into the
nucleoplasm. Consistent with this, we found no evidence in quiescent cells of hotspots of calcium
flux propagating into the adjacent nucleoplasm. Closer inspection of calcium flux within nuclear
nanocourses also revealed functional signal segregation in response to not only maurocalcine but the
vasoconstrictor angiotensin II (Figure 14). Both stimuli triggered increases in calcium flux within a
subset of nuclear nanocourses, and with distinct spatiotemporal signatures evident in each of these
activated nanocourses. Intriguingly, with respect to angiontensin II alone we did observe evidence of
very low-level propagation of calcium flux from nuclear nanocourses into adjacent, Draq5-positive
nucleoplasm [144]. Therefore, it is possible that certain physiological stimuli might gate RyRs and
pathways for trans-NE calcium flux into the nucleus, while others may not. This could offer a powerful
mechanism for differential regulation of gene expression by different stimuli.

The functional reasons for the isolation of nuclear nanocourses are not clear, but it may be
to, for example, prevent wide-scale gene activation/inactivation events that could switch cells
from a differentiated to proliferative phenotype, operated through specific changes in calcium flux.
Using electron microscopy we observed 20–200 nm diameter invaginations, as have others [185], within
the nucleus of arterial myocytes in-situ in arterial sections. We could distinguish invaginations of the
outer nuclear membrane (ONM), forming open transnuclear channels, or shallow, blind invaginations
of variable depths reaching into the nucleus (Figure 11). As the NE is a double membrane, invaginations
also contained inner nuclear membranes (INM), with the luminal space between INM and ONM
ranging from 10–50 nm. Jorge Navaro-Dorado labelled fixed cells for lamin A, which generally lines the
INM, and this too revealed tubular networks that criss-crossed the nucleoplasm of these differentiated
cells (Figure 15), in much the same way as nuclear nancourses.
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Figure 15. Right hand panels, sections through a 3D reconstruction of the nucleus of a pulmonary arterial
myocyte reveal puncta of lamin A and H3K9me2 colocalisation on a lamin A positive transnuclear
invagination (from left to right scale bars 1 µm, 1 µm, 500 nm). Left hand panels, sections similarly
show puncta of emerin and BAF (barrier to autointegration factor) colocalisation on transnuclear and
blind invaginations (from left to right scale bars 1 µm, 1 µm, 500 nm).

Jorge then developed, later in association with Duan, novel and exhaustive image analysis
protocols, by which we began to examine the possibility that calcium flux across the ONM could in
some way modulate gene expression, with insightful comment and support from Eric Schirmer. Normal
ovoid nuclei tend to have histones carrying both H3K9me2 and H3K9me3 marks, and the chromatin
cross-linking protein barrier to autointegration factor (BAF) associating with NE proteins such as
emerin and making the nuclear periphery generally silencing [212–214]. Interestingly, these marks
segregate in differentiated arterial myocytes with the H3K9me2/3 both still at the outer limits of the
nucleus but depleted with respect to BAF, and the nuclear invaginations rich with H3K9me2 and BAF
(Figure 15), but depleted with respect to H3K9me3 [144]. The combination of H3K9me2/3 together
is strongly silencing, but absent the me3 mark and the me2 can reflect a poised state that has been
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found at myogenic regulators such as the myogenin promoter [215]. It is therefore possible that
the non-propagating calcium transients in distinct invaginations in some way specifically regulate
chromatin in differentiated cells, as the different chromatin marks are concentrated in puncta. Discrete
H3K9me2-lamin A puncta (≈ 500 nm diameter) were separated by ≈ 400 nm, while emerin-BAF
puncta (≈ 400 nm in diameter) were separated by ≈ 500 nm, approximating the 350 nm spacing
between the tetracaine-sensitive hotspots of nuclear nanocourses. Potentially calcium and/or charge
responsive and functionally distinct chromatin domains may therefore be established by nuclear
invaginations. Supporting this, blocking RyRs with tetracaine reduced the expression of two genes
of interest, one encoding the DNA mismatch repair protein MutL homolog 1 (Mlh1), which can be
repressed through interaction with H3K9me2 [216,217], and another encoding the S100 calcium binding
protein A9 (S100a9), which can be repressed by BAF [218].

Therefore, consistent with predictions based in large part on the actions of 8-bromo-cADPR against
pulmonary artery dilation and constriction, respectively, it is now evident that multiple coordinated
actions may very well be delivered by distinct nanojunctions of the SR that demarcate diverse
nanocourse networks, to thus provide for signal segregation sufficient to enable nanocourse-specific
delivery of calcium signals with the capacity to coordinate the full panoply of cellular processes.

14. More Than This: Lost in Proliferation

During the transition to proliferating myocytes in culture, the entire, cell-wide network of
cytoplasmic nanocourses was lost, inclusive of all lamin and emerin positive nuclear invaginations [144].
These observations are therefore consistent with the idea that invaginations act to regulate
anti-proliferative genes, that is until the proliferative phenotype [219] is ready to be engaged. During
proliferation we noted loss of S100A9 expression (but not MLH1 expression), namely the emerin and
BAF regulated gene whose expression was attenuated by blocking calcium flux through RyRs with
tetracaine, which is consistent with previous reports on S100A9 repression during proliferation of
airway smooth muscles [220]. These observations, the distribution of chromatin marks and general
tendency of NE-association to keep chromatin repressed [221,222] lends support to the view that NE
invaginations may play a role in genome regulation and cycles of gene repression and activation.
That this phenotypic change is delivered through reconfiguration of the cell-wide nanocourse network
that directs calcium flux is further highlighted by:

A switch in dependency of angiotensin II-induced calcium transients from RyRs to IP3Rs;
Unrestricted, cell-wide SR Ca2+ release due to loss of cytoplasmic nanocourses;
Loss of the “nuclear buffer barrier” [223] that opposed direct calcium flux into the nucleoplasm in

acutely isolated cells.
Accordingly, others have found that myocyte proliferation coincides with whole-scale changes

in gene expression inclusive of decreases in lamin A [224] and RyR expression, and augmented IP3R
expression [225].

15. Reviewing the Situation: Got to Pick a Pocket or Two Boys

From a curious piece of pharmacology that was the all-or-none block of HPV by 8-bromo-cADPR,
and the cautious proposal that outcomes may be explained by the presence of an intracellular
junction [24], twenty years on we reveal the cell-wide web (Figure 16).

This cell-wide network of cytoplasmic nanocourses appears to be delineated by membrane-
membrane nanojunctions of the SR, which provide discrete lines of communication that span the entire
cell. Functional specification may well, therefore, be determined by the constraints on calcium diffusion
imposed by SR junctional membranes, as predicted by computer models [147], and by the strategic
positioning of different types of calcium transporters and release channels targeted to them, through
unique kinetics, affinities for calcium and mechanisms of regulation [11]. The structural elements
that hold this junctional network in place remain to be determined, but there is evidence to suggest
that junctophilins may be critical to the formation of PM-SR nanojunctions at the very least [226–229],
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while others suggest, on the basis of the action of depolymerising agents (e.g., nocodazole), that actin,
tubulin and/or other components of microtubules may provide further structural support [230].

In pulmonary arterial myocytes calcium flux through RyR1s located within PM-SR nanocourses
evokes relaxation with no evidence of cell-wide signal propagation, confirming the existence of
a functional “superficial buffer barrier” [145]. Distinct nanocourses rich in RyR2s and RyR3s
carry rapid, propagating calcium signals that cross the entire cell from pole to pole triggering
myocyte contraction. Yet these latter signals did not enter those nanocourses demarcated by PM-SR
nanojunctions, which constitute the superficial buffer barrier. Therefore, RyR2 subtype designation
determines the capacity for rapid signal propagation by CICR across thus specified nanocourses, as it
does so effectively in cardiac muscle [113].
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cycles of reactivation in differentiated cells and providing a path for related gene repression during 
phenotypic modulation [219]. Importantly, others have confirmed the regional distribution of SERCA 
and RyRs not only in pulmonary arterial smooth muscles [137], but in airway smooth muscles [138], 
which may provide for the high degree of variability in kinetics of spontaneous SR calcium release in 
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Figure 16. Calcium signalling is analogous to quantum tunneling across a cell-wide circuit with the
nucleus at its centre. (a) and (b), Microprocessor at the centre of a circuit board. (c) (Fluo-4, green) and
(d) (Fluo-4, pseudocolour), show the nucleus (Draq5 in (c) only, blue) at the centre of a cell-wide circuit of
cytoplasmic nanocourses. e, Schematic shows calcium flux across cytoplasmic nanocourses demarcated
by junctions between the plasma membrane and sarcoplasmic reticulum (PM-SR nanojunction),
the sarcoplasmic reticulum nanojunctions aligned with the contractile myofilaments of a smooth muscle
and the nuclear invaginations. Angiotensin II, AngII; Ryanodine receptor, RyR; Sarco/endoplasmic
reticulum calcium ATPase, SERCA; sodium/calcium exchanger, NCX; ADP-ribosyl cyclase, ARC; Myosin
light chain kinase, MLCK; AT1, Angiotensin AT1 receptor; Protein kinase A PKA; large conductance
calcium-activated potassium channel, BKCa. Panels (a) and (b) are free images. The schematic in panel (e)
was adapted from previous versions developed and published by AME. Reprinted from Publication title,
Vol /edition number, Author(s), Title of article / title of chapter, Pages No., Advances in Pharmacology,
78, Evans AM, Nanojunctions of the Sarcoplasmic Reticulum Deliver Site- and Function-Specific
Calcium Signaling in Vascular Smooth Muscles, 1–47 Copyright (2017), with permission from Elsevier.

On one hand this allows cell-wide synchronous actions as required. On the other it may additionally
confer the capacity for onward transfer (perhaps sampling) of a fraction of released calcium through
SERCA that feed functionally distinct subsets of nanocourses. If we consider nuclear invaginations in
this respect, such sampling of released calcium may serve to inform the nucleus on activity-dependent
requirements of the cell. Invaginations of the nuclear envelope confer further segregated and diverse
networks of cytoplasmic nanocourses that project deep into the nucleoplasm, which break down
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themselves into multiple subtypes based on emerin-BAF and lamin A-H3K9me2 clusters, are served
by a unique pairing of ONM resident calcium pumps (SERCA1) and release channels (RyR1) and carry
calcium signals with different spatiotemporal characteristics when activated. Here, regulated calcium
flux across the ONM into nuclear nanocourses might contribute additional levels of genome regulation
by, for example, segregating specific chromatin types for cycles of reactivation in differentiated cells and
providing a path for related gene repression during phenotypic modulation [219]. Importantly, others
have confirmed the regional distribution of SERCA and RyRs not only in pulmonary arterial smooth
muscles [137], but in airway smooth muscles [138], which may provide for the high degree of variability
in kinetics of spontaneous SR calcium release in myocytes from the ileum [189] and hepatic portal
vein [126]. It is also notable that previous studies have identified RyR1, RyR2 and RyR3 expression in
cerebral arterial myocytes [139], which must at some stage inform current models on calcium signalling
in these cells too, which for some reason rely solely on a consideration of RyR2 clusters, whether
one considers PM-SR nanojunctions [230,231] or more recent “comparative” assessment of the role of
lysosome-SR nanojunctions in this cell type [129].

Importantly, and regardless of the functional subdivision of cytoplasmic nanocourses, all path
lengths from calcium release site to targeted signalling complex appear to be of the order of tens or
hundreds of nanometres, with picolitre volumes of cytoplasm lying within the boundaries of each
nanocourse [147]. Relatively small net increases in local calcium flux (1–2 ions per picolitre) will
therefore be sufficient to raise the local concentration into the affinity ranges of most cytoplasmic
calcium binding proteins [147]. Thus, calcium binding proteins may act much like local “switches”,
operated through changes in local, perhaps unitary calcium flux that coordinate nanocourse-specific
functions by adjusting the relative probability of a given switch sitting at some conformational state
between OFF and ON. Moreover, in this way coincident increases in calcium flux could be triggered
in two distant parts of the cell at the same time, to coordinate, for example, myocyte relaxation and
associated gene expression regulation. This draws obvious parallels to mechanisms of conduction in
single-walled carbon nanotubes, which behave as quantum wires that transmit charge carriers through
discrete conduction channels, enabling memory, logic and parallel processing. Thus, by analogy,
our observations point to the incredible signalling potential that may be afforded by modulating
quantum calcium flux on the nanoscale, in support of network activities within cells with the capacity to
permit stimulus-dependent orchestration of the full panoply of diverse cellular processes. Perhaps more
importantly, this cellular intranet and its associated network activities are not hardwired, reconfiguring
to deliver different outputs during phenotypic modulation on the path, for example, to cell proliferation.
In a similar way the cell-wide web may provide the capacity for cell- and system-specific outputs,
because nuclear envelope invaginations are a feature of many cell types [15–19], indicating that the
cell-wide web and its constituent nuclear nanocourses may vary in nature between different cell types
in order to meet the functional requirements of any given cell [11,149,188,232].

In conclusion, it is time for the field of cellular signalling to move away from casual reference
to microdomains, nanodomains and nanospaces, because these are all meaningless adjustments in
terminology in the context of cellular signalling. They simply indicate smaller size or increased
resolution, and offer no true functional insight, with the possible exception of organelle-specific
autoregulation. Moreover, given that estimates of the volume of cytoplasm demarcated by SR
nanojunctions are of the order of picolitres [147,172], when considering cytoplasmic domains or spaces
they are all inaccurate terms. In short, it is the dimensions of the nanojunction or nanotube that are
critical to effective control of site-specific ion flux or exchange across the cell-wide web. So, when it
comes to appropriate and informed use of terminology, nanojunction it is.
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