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Human gastrointestinal (GI)-tract microbiome-derived lipopolysaccharide (LPS): (i) has
been recently shown to target, accumulate within, and eventually encapsulate neuronal
nuclei of the human central nervous system (CNS) in Alzheimer’s disease (AD) brain; and
(ii) this action appears to impede and restrict the outward flow of genetic information
from neuronal nuclei. It has previously been shown that in LPS-encased neuronal nuclei
in AD brain there is a specific disruption in the output and expression of two AD-relevant,
neuron-specific markers encoding the cytoskeletal neurofilament light (NF-L) chain
protein and the synaptic phosphoprotein synapsin-1 (SYN1) involved in the regulation
of neurotransmitter release. The biophysical mechanisms involved in the facilitation of
the targeting of LPS to neuronal cells and nuclei and eventual nuclear envelopment
and functional disruption are not entirely clear. In this “Perspectives article” we discuss
current advances, and consider future directions in this research area, and provide novel
evidence in human neuronal-glial (HNG) cells in primary culture that the co-incubation of
LPS with amyloid-beta 42 (Aβ42) peptide facilitates the association of LPS with neuronal
cells. These findings: (i) support a novel pathogenic role for Aβ42 peptides in neurons via
the formation of pores across the nuclear membrane and/or a significant biophysical
disruption of the neuronal nuclear envelope; and (ii) advance the concept that the
Aβ42 peptide-facilitated entry of LPS into brain neurons, accession of neuronal nuclei,
and down-regulation of neuron-specific components such as NF-L and SYN1 may
contribute significantly to neuropathological deficits as are characteristically observed
in AD-affected brain.

Keywords: Alzheimer’s disease (AD), brain microbiome, dysbiosis, gastrointestinal (GI) tract, lipopolysaccharide
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OVERVIEW

The highest known density of microorganisms anywhere
in the biosphere is in the human GI-tract microbiome at
about ∼1011 microorganisms per gram of GI-tract content
(Angelucci et al., 2019; Castillo-Álvarez and Marzo-Sola, 2019;
Fox et al., 2019). This vast number represents a remarkably
complex and highly dynamic source of microbes; of the
approximate ∼1,800 different microbial phyla that make up the
GI-tract microbiome, the overwhelming majority are facultative
anaerobic bacteria with archaea, fungi, microbial eukaryotes,
protozoa, viruses, and other microbes making up the remainder
(Bhattacharjee and Lukiw, 2013; Fox et al., 2019; Tierney
et al., 2019). One major species of bacteria in the human
GI-tract microbiome, about ∼100-fold more abundant than
Escherichia coli in certain GI-tract regions is Bacteroides
fragilis, an obligate, anaerobic, non-spore forming Gram-
negative, rod-shaped enterotoxigenic bacterium. B. fragilis: (i)
generates a remarkable array of highly neurotoxic exudates;
and (ii) produces a particularly virulent, pro-inflammatory LPS
glycolipid subtype (BF-LPS) that accumulates in Alzheimer’s
disease (AD) brain (Sears, 2009; Fathi and Wu, 2016;
Lukiw, 2016a,b; Wexler and Goodman, 2017; Zhao et al.,
2017a,b,c; Allen et al., 2019). Besides BF-LPS, B. fragilis-derived
neurotoxins include small non-coding RNA (sncRNA), bacterial
amyloids, endo-, exo-, and enterotoxins such as fragilysin,
and truncated LPS molecules known as lipooligosaccharides
(LOS). These neurotoxins have recently been shown to be
capable of transversing normally restrictive gastrointestinal
(GI) tract and blood-brain barriers (BBBs) in transgenic
murine models of AD (Varatharaj and Galea, 2017; Sweeney
et al., 2018; Tulkens et al., 2018; Barton et al., 2019; Erdö
and Krajcsi, 2019; Panza et al., 2019; Sweeney and Lowary,
2019). Both the GI-tract and BBB may become weakened
with aging or following surgery, disease or trauma (Sweeney
et al., 2018; Sweeney and Lowary, 2019). For example,
BF-LPS and the B. fragilis-derived enterotoxin fragilysin very
effectively disrupt cell-cell adhesion, in part by E-cadherin
cleavage and/or the action of LPS binding protein and
Toll-like receptor 4 (TLR4), and subsequent LPS internalization,
followed by translocation of neurotoxins into the systemic
circulation, past the BBB and on into the parenchyma
of the brain [Wu et al., 1998; Holton, 2008; Tsukamoto
et al., 2018; Barton et al., 2019; Jeon et al., 2019; Lukiw,
2019 (submitted)].

LPS ACCUMULATION IN AD BRAIN

Multiple, independent research laboratories have reported:
(i) the association of LPS and microbial-derived amyloid with
AD brain (Zhao and Lukiw, 2015; Zhao et al., 2015); (ii)
the remarkable affinity of specific LPS isoforms with AD
brain parenchyma (Lukiw, 2016a,b); (iii) that Gram-negative
bacterial molecules associate with AD neuropathology (Zhan
et al., 2016); (iv) that microbiome-derived E. coli LPS and
B. fragilis LPS associate the hippocampal CA1 region of AD
brain (Zhao et al., 2017a,b,c); (v) of LPS accumulation within

neocortical neurons of the AD brain that impair transcriptional
output (Zhao et al., 2017a,b,c); (vi) that there is a strong
association of LPS with neuronal nuclei and the specific
LPS-mediated impairment of expression of the neurofilament
light (NF-L) chain gene expression (Lukiw et al., 2018);
(vii) of LPS association with the amyloid plaques, neurons
and oligodendrocytes in AD brain (Zhan et al., 2018); and
(viii) a significantly reduced expression of the AD-relevant
synaptic components such as synapsin-1 (SYN1) in LPS-treated
human neuronal-glial (HNG) cells in primary culture (Zhao
et al., 2019). Most recently, it has been shown that LPS has
a very strong affinity for, and association with, the neuronal
nuclear envelope of the HNG cells in primary culture. This
is also observed in the superior temporal lobe neocortex
(Brodmann area A22; Wernicke’s area) and the hippocampal
CA1 region of AD-affected brain (Lukiw, 2016a,b; Zhao et al.,
2017a,b,c, 2019; Lukiw et al., 2018; Ticinesi et al., 2019;
Figure 1). Interestingly in moderate-to-late-stage AD LPS
totally encapsulates neuronal nuclei in the AD brain with the
subsequent restriction in the output of genetic information
from those neuronal nuclei (Lukiw et al., 2018; Zhao and
Lukiw, 2018a,b; Zhao et al., 2019). Interestingly, gene expression
profiling showed a long-lasting deficit in neuron- and synaptic-
specific gene expression and signaling in the hippocampus and
neocortex of both transgenic murine models for AD and in
patients with mild cognitive impairment or AD (Colangelo et al.,
2002; Counts et al., 2014; Jaber et al., 2019; Parra-Damas and
Saura, 2019).

FIGURE 1 | Human neuronal-glial (HNG) cells (transplantation grade) in
primary co-culture were used to study the dynamics of amyloid-beta 42
(Aβ42) peptide-mediated entry of lipopolysaccharide (LPS) into neurons
(Bhattacharjee and Lukiw, 2013; Zhan et al., 2018; Zhao and Lukiw, 2018a,b;
Zhao et al., 2019). (A) HNG cells are a primary co-culture of neuronal
[β-tubulin III (βTUBIII)-stained; red; λmax = 690 nm] and glial (GFAP-stained;
green; λmax = 520 nm) human brain cells; HNG cells are also stained for
nuclei (DAPI-stained; blue; λmax = 470 nm); cells shown are ∼2 weeks in
culture; HNG cells are about ∼60% neurons (red) and about ∼40% astroglial
(green) at ∼65% confluence; human primary neuronal and glial “support” cell
co-cultures are utilized, because human neuronal cells do not culture well by
themselves (Cui et al., 2010; Zhao et al., 2017c); HNG cells were exposed to
50 nM LPS for 36 h in the presence or absence of 10 nM Aβ42 peptides;
other LPS concentrations at similar times displayed analogous trends; yellow
scale bar (lower right) ∼50 µm. (B) Affinity of LPS for the neuronal nuclear
envelope (white arrows); LPS (red; λmax = 690 nm); β-tubulin III
(βTUBIII)-stained (green; λmax = 520 nm) and nuclei (blue; λmax = 470 nm)
stained HNG cells; white arrows indicate punctate and perinuclear clustering
of LPS and LPS affinity for the nuclear envelope as has been previously
reported (Hill and Lukiw, 2015; Zhan et al., 2016, 2018; Yang and Chiu,
2017; Zhao et al., 2017a,b); yellow scale bar (lower right) = 20 µm.
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Aβ42 PEPTIDES AND LPS IN AD NEURONS

Recent evidence shows that LPS-type glycolipids not only have
an unusually high affinity for neuronal nuclear membranes but
also that amyloid-β 42 (Aβ42) peptides significantly facilitate LPS
access and translocation into human neuronal cells and across
neuronal nuclear envelopes in HNG cells in primary co-culture
(Figures 2A–L). There are several possible explanations for
the facilitation of LPS entry into, and their association with,
neuronal membranes and neuronal nuclei by Aβ42 peptides or
Aβ42 oligomers and these include:

Pore Formation by Aβ42 Peptides
Amyloid peptides (both Aβ40 and Aβ42) form a remarkable
number of heterotypic structures and configurations under
pathological conditions. These include: (i) the self-assembly and
deposition of multiple types of fibrillar and globular structures
and polymorphic assemblies both in solution and on membrane
surfaces; and (ii) the formation of heterogeneous ionic pores
spanning the lipid bilayer that is linked to the pathogenicity of
these molecules. These later findings are supported by multiple
independent reports regarding the capability of Aβ42 peptides
[2 hydrophobic amino acid residues (isoleucine and alanine)
longer (at the C-terminal) than Aβ40] to form up to 2.4-
nm diameter pores through lipid bilayer membranes (Lashuel
et al., 2002; Connelly et al., 2012; Sciacca et al., 2012; Ullah
et al., 2015; Di Scala et al., 2016; Jang et al., 2016; Davidson,
2019; Hicks et al., 2019; Nguyen et al., 2019; Sun et al., 2019;
Österlund et al., 2019). Interestingly, the slightly longer and
more hydrophobic Aβ42-based peptide assemblies in oligomeric
preparations have been observed to form voltage-independent,
non-selective ion channels in contrast to Aβ40 peptide-based
oligomers, fibers, and monomers which do not generally support
pore structure formation (Bode et al., 2017, 2019; Nguyen et al.,
2019). Although LPS is intrinsically heterogeneous and over time
tends to form aggregates of∼1–4 mDa or greater, smaller LOS or
LPS monomers in the range of ∼50 to ∼100 kDa appear to have
little difficulty in transversing ∼2.4 nm diameter pores to reach
their final destination within the nucleoplasm (Zimmer et al.,
1988; Millipore Sigma; Lipopolysaccharides1).

Membrane Disruption by Aβ42 Peptide
Oligomers
As recently visualized by atomic force, transmission electron
microscopy, mobility-mass spectrometry and liquid surface
X-ray scattering there is a remarkable influence of Aβmonomers,
short fibrillar Aβ oligomers, globular non-fibrillar Aβ oligomers
and full-length Aβ fibrils on lipid bilayer membrane integrity
and stability (Bode et al., 2019; Nguyen et al., 2019; Österlund
et al., 2019; Vander Zanden et al., 2019). Abundant evidence
indicates an Aβ oligomeric fibril-induced reorganization of
membrane lipid packing and the induction of membrane
destabilization and lipid disorganization by globular non-fibrillar
Aβ oligomers (Di Lorenzo et al., 2019; Vander Zanden et al.,

1https://www.sigmaaldrich.com/technical-documents/protocols/biology/
lipopoly-saccharides.html (last accessed November 5, 2019)

2019). Scanning electron microscopy (SEM) and thioflavin-T
fluorescence assay have revealed: (i) that LPS and/or LPS-binding
protein (LBP) have strong disruptive effects on the structural and
biophysical organization of Aβ peptides and amyloidogenesis
in Parkinson’s disease (Montagne et al., 2017; Pretorius et al.,
2018); and (ii) that LPS strongly induces NF-kB signaling,
inflammatory responses, neuroinflammation, the generation of
Aβ42 peptides and amyloidogenesis in transgenic murine models
of AD (Gu et al., 2018; Jeon et al., 2019; Sheppard et al.,
2019). Conversely, as evidenced by atomic force and electron
microscopy imaging, short fibrillar Aβ42 oligomers appear to
have a profound detergent-like, highly-localized, solubilizing
effect on lipid membrane bilayers and this may predispose
to hydrophobic interaction with LPS already present in the
parenchyma of AD brain (Bode et al., 2019).

Highly Specialized Features of Neuronal
Nuclear Membranes
Used for highly regulated nucleocytoplasmic transport, the
nuclear envelope of typical neuronal cells contain about
∼10,000 nuclear pore complexes/transporters (significantly
more than the ∼3,000 nuclear pores of a typical eukaryotic
cell), and each ∼110 MDa nuclear pore complex (NPC)
consists of about ∼1,000 nucleoporin proteins (Cooper, 2000;
Kabachinski and Schwartz, 2015; Davidson, 2019; Lin and
Hoelz, 2019; Sun et al., 2019). The affinity of LPS for any
NPC component or any nucleoporin protein is not well
understood and is an understudied area of both the neurobiology,
microbiology and neuropathology of the human central nervous
system (CNS). The perinuclear accumulation of LPS and
LPS-mediated envelopment of human neuronal nuclei (Zhao
et al., 2017a,b,c), and the restriction of the outflow of neuron-
specific information, such as thosemRNAs encoding the neuron-
specific neurofilament light (NF-L) chain protein and SYN1
(Zhao et al., 2019), underscore the novel pathogenic potential of
LPS in supporting dysfunction in neuronal cytoarchitecture and
the capacity for efficient inter-neuronal signaling by disrupting
SYN1 availability and hence synaptic integrity. In addition, LPS
strongly associates with amyloid plaques (Zhan et al., 2018)
and perinuclear LPS, and encasement of neuronal nuclei by
LPS may also contribute to the biophysical blockage of exit
of mRNA through the NPC into the cytoplasm in AD brain
(Zhao et al., 2019). Interestingly, using stable isotope labeling
of amino acids in cell culture and quantitative proteomics, it
has recently been shown that the interactome of the 695 amino
acid beta-amyloid precursor protein βAPP695, which is the direct
precursor to Aβ42 peptide, interacts strongly with the NPC and
nucleoporin proteins in neuronal cells (Andrew et al., 2019). This
suggests some novel roles for both βAPP695 and Aβ42 peptide
in both NPC function and amyloid peptide processing and
generation. The unique phospholipid composition of the inner
nuclear neuronal membrane (that encases the genome) and
the outer neuronal nuclear membrane that together form the
nuclear envelope, their extremely high ratio of phospholipid
to cholesterol, the biophysics of nuclear lipid membrane
remodeling and lipid raft formationmay predispose the neuronal
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FIGURE 2 | Increased affinity of LPS for neuronal nuclei in the presence of Aβ42 peptide. Panels (A–L) show LPS-neuronal interactions in the presence or absence
of Aβ42 peptide; (A–F) in the absence of Aβ42 peptide and (G–L) in the presence of Aβ42 peptide. LPS preferentially associates with human neuronal nuclei both in
Alzheimer’s disease (AD) and in LPS-addition experiments (Zhao et al., 2017a,b,c; Zhao and Lukiw, 2018a,b). Panels (A,D) show LPS (red) affinity for a polar region
of a single DAPI-stained neuronal nucleus (blue). Panels (B,E) show single neuronal nucleus stained with neuron-specific β-tubulin III (green). Panels (C,F) show
merged stain indicating LPS affinity for the polar region involving a single DAPI-stained neuronal nucleus. Panels (G,J) show the presence of Aβ42 significantly
increases the affinity of LPS for single DAPI-stained neuronal nucleus. Panels (H,K) show single neuronal nucleus stained with neuron-specific β-tubulin III (green).
Panels (I,L) show merged stain indicating LPS affinity for the neurite and soma of a single DAPI-stained neuronal nuclei. The results suggest that LPS is stimulated to
associate with DAPI-stained neuronal nuclei in the presence of the hydrophobic Aβ42 peptide; neither Aβ40 peptide or β-actin showed comparable “association”
effects (Zhao et al., 2017a,b,c; Lukiw et al., 2018); yellow scale bar (lower right) = 50 µm.

nuclear envelope to the potential interaction between amyloid
peptides and LPS, and with NPC nucleoporin proteins.

Other Interactions Between LPS and
Aβ42 Peptides
Lipopolysaccharide (LPS) is a type of prokaryotic
glycoconjugate-glycolipid comprised of three major domains:
(i) an ‘‘O’’ antigen consisting of an ‘‘O polysaccharide’’; (ii) a
‘‘core’’ polysaccharide domain (the innermost hydrophilic
domain of the three regions of LPS); and (iii) a hydrophobic
‘‘lipid A’’ domain. The ‘‘core’’ polysaccharide domain contains
an oligosaccharide covalently attached directly to the ‘‘lipid
A’’ moiety and commonly contains sugars such as heptose,
3-deoxy-D-mannooctulosonic acid as well as non-carbohydrate

components that include phosphate, amino acids linkages and
ethanolamine components characteristic of each Gram-negative
bacterial genus and species (Whitfield and Trent, 2014; Tulkens
et al., 2018). Both the 50–100 kDa LPS monomer (especially
the ‘‘lipid A’’ domain responsible for much of the toxicity
of Gram-negative bacteria) and the 4.5 kDa Aβ42 peptide
monomer are highly hydrophobic and this alone may favor
their mutual interaction with the lipid bilayer of neuronal
membranes (National Institutes of Health, PubChem, 2019). As
mentioned earlier, Aβ42-based oligomers are highly disruptive
toward lipid bilayer membranes, but whether the chaotropic
actions of LPS and Aβ42 peptide are additive or synergistic
is unknown as their specific interactions are currently not
well understood.
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UNANSWERED QUESTIONS

While Aβ42 peptides clearly support LPS entry into neurons
it is not clear why neuronal membranes are specifically
targeted for these actions and/or why other cellular plasma
membranes (lipid bilayers) are not preferred or involved to
a lesser extent; perhaps this has something to do with the
unique neuronal membrane proteolipid composition and/or the
electrical activity of these cell types or other unique neuronal
features including Aβ42 peptide-mediated pore formation (see
above; Nguyen et al., 2019; Österlund et al., 2019). While LPS
has been shown to completely envelope neuronal nuclei in
the superior temporal lobe neocortex (Brodmann area A22)
in both aging, and especially in AD brain, there is emerging
evidence that the end result of this biophysical occlusion of
nuclear pores is the restriction of outflow of genetic information,
i.e., messenger RNA (mRNA) through these nuclear pores,
however some other pathogenic mechanism may be involved
(Clement et al., 2016; Lukiw et al., 2018; Zhao et al., 2019;
Cornelison et al., 2019). Very recently it has been demonstrated
that there is an LPS-induced translocation of cytosolic NF-κB
into the cell nucleus (Bagaev et al., 2019) and LPS-induced
neuronal hypertrophy (Tellez-Merlo et al., 2019) but these
potentially pathogenic and neuroinflammatory outcomes require
further investigation. It would be very useful to know at
what point an induced disruption along the gut-brain axis
and LPS-signaling pathways might be beneficial in the clinical
management of AD.

A HUMAN BRAIN MICROBIOME?

There exists the intriguing and enigmatic possibility, as
has been suggested for other major organ groups, that the
human brain and/or CNS might have its own, as yet poorly
characterized microbiome (Bhattacharjee and Lukiw, 2013;
Hill et al., 2014a,b; Köhler et al., 2016; Emery et al., 2017;
Zhao et al., 2017b,c; Roberts et al., 2018; Zhao and Lukiw,
2018a,b; Zhou and Bian, 2018; Javan et al., 2019; Mazmanian,
2019). Currently, it is understood that microbes can enter
the brain and CNS through the BBB which becomes leaky
via physical damage, disease and/or aging, and/or via nerves
that innervate both the brain and the gut (Roberts et al.,
2018; Javan et al., 2019). Very recent studies indicate the
presence of bacteria in the human and mouse brain at
the BBB under noninfectious or non-traumatic conditions.
Microbes have been identified via morphological criteria and
ultrastructural imaging analysis with high bacterial counts
found in the human hippocampus and prefrontal cortex, but
low bacterial counts in other brain anatomical regions such
as the striatum (Roberts et al., 2018; Javan et al., 2019).
Significantly increased bacterial populations have been observed
in association with neurological deterioration in AD brain
tissues compared with controls (Emery et al., 2017). Other
supportive studies come from investigations involving the
human thanatomicrobiome—the microbiome of death—that
reflects the post-mortem microbial changes which vary by

organ and as a function of time and temperature (Zhao
et al., 2017a,b,c; Zhou and Bian, 2018; Javan et al., 2019).
Further support for the idea that a microbiome may already be
present in the brain arises when considering that microbes (or
microbial-derived neurotoxins) in the GI tract would need to
travel a significant distance to reach the brain compartments
post-mortem vs. the extremely rapid proliferation of bacteria
in the brain shortly after death. This might contribute locally
to the presence of bacterial-derived neurotoxins such as LPS
and other microbial-derived molecules in brain tissues (Hill
et al., 2014a,b; Lukiw, 2016a,b; Zhan et al., 2016; Emery et al.,
2017). Put another way, post-mortem microscopic examination
of the post-mortem brain routinely detects bacteria far more
rapidly than the bio-physiological capability of microbes to
transit from the GI-tract across the systemic circulation into
the brain or other CNS compartments (Roberts et al., 2018;
Javan et al., 2019).

FUTURE DIRECTIONS

The remarkable affinity of the glycoconjugate LPS, the major
component of the outer membrane of Gram-negative bacteria
such as B. fragilis and E. coli, for the neuronal nuclear envelope
in human brain cells and tissues was first described just ∼2 years
ago (Zhao et al., 2017a,b,c; Zhan et al., 2018). The mean
abundance of GI-tract-sourced LPS can be increased by either an
up-regulation in the biosynthesis of LPS itself or via an increase
in the number of Gram-negative bacteria capable of generating
and releasing LPS in part through the process of dysbiosis.
Because both the de novo induction of LPS and bacterial division
times of ∼15–20 min are relatively rapid microbiological-
pathological events, it seems also that the production of LPS
can be a rapidly undertaken and perhaps even exponential
biological event (Raetz andWhitfield, 2002; Whitfield and Trent,
2014; Sweeney and Lowary, 2019). Interestingly, growth rates
in the GI-tract microbiome for Gram-negative bacteria have
been shown to be dependent on ingested dietary fiber, and
the relative proportion of B. fragilis in the GI tract can for
example decrease 2–3-fold after a fiber-laden meal while a high-
fat-cholesterol (HFC)meal has the opposite effect (Heinritz et al.,
2016; Huang and Liu, 2019). Indeed, dietary modification by
increasing both soluble and/or insoluble fiber intake has been
shown to decrease the abundance of B. fragilis in the GI-tract
microbiome on a time-scale of hours-to-days after the ingestion
of the fiber-enriched meal itself (Simpson and Campbell, 2015;
Chen et al., 2017; Dhillon et al., 2019; Huang and Liu, 2019;
Parada Venegas et al., 2019). Dietary manipulation, probiotics
and prebiotic supplementation and increased ingestion of fiber
is one research area urgently requiring more study, because
the management of diet could yield real and more effective
therapies for both the treatment of neurodegeneration and
malignancy (Rios-Covian et al., 2017; Poeker et al., 2018;
Dhillon et al., 2019; Huang and Liu, 2019). It should be
mentioned that under realistic physiological conditions the
∼1,800 phyla of bacteria of the GI-tract microbiome are
together most likely capable of generating an extremely complex
neurotoxic cocktail of exudates, and at this point in time we
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are analyzing just a very small number of GI-tract derived
neurotoxins from a vast neurotoxic pool of huge abundance and
bewildering biological complexity (Hicks et al., 2019; Tierney
et al., 2019).

SUMMARY

Over the last few years, the GI-tract microbiome-brain axis has
emerged as a focus of increasing interest in the establishment
of a neurophysiological and neurobiological basis for age-
related, developmental, neurodegenerative, neuroinflammatory
and psychiatric disease. The microorganisms which constitute
the human GI-tract microbiome have potential to secrete some
of the most neurotoxic and inflammation-inducing substances
known, including bacterial glycolipid lipopolysaccharide (LPS)
from abundant, anaerobic, GI-tract resident Gram-negative
bacteria (Whitfield and Trent, 2014; Batista et al., 2019;
Patrick et al., 2019; Ticinesi et al., 2019). As a particularly
abundant commensal, non-motile, non-spore forming obligatory
anaerobic, Gram-negative bacillus of the human GI-tract
microbiome, Bacteroides fragilis (B. fragilis), releases an intensely
pro-inflammatory species of LPS (BF-LPS), amongst the most
pro-inflammatory substances known, that in HNG cells in
primary culture induces the pro-inflammatory transcription
factor NF-kB (p50/p65) complex (Lukiw, 2016a,b; Zhao and
Lukiw, 2018a,b; Batista et al., 2019; Sweeney and Lowary, 2019).
LPS translocation into the nucleoplasm and access to neuronal
nuclei are greatly facilitated in the presence of Aβ42 peptides
(Figures 1, 2). LPS-triggered NF-kB (p50/p65) up-regulation
is associated with: (i) the induction of pro-inflammatory,
pathogenic microRNA-regulated gene expression programs in
the AD brain; these microRNAs have multiple NF-kB (p50/p65)
recognition features in their immediate promoters (Pogue and
Lukiw, 2018); and (ii) multiple independent laboratories have
provided evidence that GI-tract derived glycolipids such as
LPS associated with the pro-inflammatory, cytoarchitectural
and/or synaptic neuropathology of AD brain and transgenic
murine models of AD (Bhattacharjee and Lukiw, 2013; Hill and
Lukiw, 2015; Zhan et al., 2016, 2018; Lukiw et al., 2018; Zhao
et al., 2019). Many of these noxious biopolymers are potent
enterotoxins which can neutralize cadherins and other cell-cell
adhesion molecules, inducing leakage through the GI-tract
epithelial barrier, which normally is largely impermeable,
allowing neurotoxin access to the systemic circulation and
subsequent translocation across the BBB (Leshchyns’ka and
Sytnyk, 2016; Sweeney et al., 2018; Jeon et al., 2019; Sweeney
and Lowary, 2019). Clinically, the detection of these GI-tract
microbiome-derived neurotoxins in blood serum may be of
prodromal, prognostic and/or diagnostic value as biomarkers
for the onset and/or propagation of neurological disease or
malignancy; or of forensic value in the determination of temporal
aspects of the post-mortem interval (Li and Yu, 2017; Zhou and
Bian, 2018).

Lastly, obligate anaerobic bacteria such as Bacteroides fragilis
make up the largest proportion of Gram-negative microbes
in the human GI-tract microbiome. In a recent study of
2,100 human donors, the most recent estimate is that all

together microbial constituents of this microbiome harbor at
least 22.3 million non-redundant prokaryotic genes in contrast
to the 26.6 thousand protein-encoding transcripts of the human
genome (Venter et al., 2001; Tierney et al., 2019). Hence, GI-tract
microbial genes outnumber host genes by about 840-to-1, which
represents staggering genetic complexity (Fields et al., 1994;
Venter et al., 2001; Tierney et al., 2019). With this comes
a GI-tract microbial proteome of remarkable proportion and
speciation that includes highly neurotoxic and pro-inflammatory
exudates such as LPS (Hicks et al., 2019; Roy Sarkar and Banerjee,
2019). It is tempting to speculate that we are just scratching
the surface of our understanding of the potential impact of
these prokaryotic GI-tract microbiome-derived genes and their
extruded neurotoxic molecules on our own host gene signaling
and expression systems which are likely to have a tremendous
impact and relevance to both human health and disease.
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