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Abstract

Recombinant influenza viruses are promising viral platforms to be used as antigen delivery vectors. To this aim, one of the
most promising approaches consists of generating recombinant viruses harboring partially truncated neuraminidase (NA)
segments. To date, all studies have pointed to safety and usefulness of this viral platform. However, some aspects of the
inflammatory and immune responses triggered by those recombinant viruses and their safety to immunocompromised
hosts remained to be elucidated. In the present study, we generated a recombinant influenza virus harboring a truncated
NA segment (vNA-D) and evaluated the innate and inflammatory responses and the safety of this recombinant virus in wild
type or knock-out (KO) mice with impaired innate (Myd88 -/-) or acquired (RAG -/-) immune responses. Infection using
truncated neuraminidase influenza virus was harmless regarding lung and systemic inflammatory response in wild type
mice and was highly attenuated in KO mice. We also demonstrated that vNA-D infection does not induce unbalanced
cytokine production that strongly contributes to lung damage in infected mice. In addition, the recombinant influenza virus
was able to trigger both local and systemic virus-specific humoral and CD8+ T cellular immune responses which protected
immunized mice against the challenge with a lethal dose of homologous A/PR8/34 influenza virus. Taken together, our
findings suggest and reinforce the safety of using NA deleted influenza viruses as antigen delivery vectors against human or
veterinary pathogens.
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Introduction

Influenza A viruses (Orthomyxoviridae) have two glycoproteins

anchored on the viral envelope: hemagglutinin (HA) and

neuraminidase (NA). Hemagglutinin mediates viral entry into

the lung epithelial cell by binding the viral particle to cell surface

receptors (the sialic acid units), while the neuraminidase cleaves

the sialic acid allowing the release of the newly formed viral

particles [1].

Recombinant influenza viruses have been proven to be very

efficient as antigen delivery vectors [2,3]. Although some strategies

have already been developed to generate recombinant influenza

viruses, most of them are hampered by retention of their original

virulence [4,5]. To bypass this, Fuji and colleagues generated

recombinant influenza viruses harboring a partially deleted

neuraminidase segment, where its catalytic region was replaced

by a foreign sequence [6,7]. Although influenza viruses lacking

functional neuraminidase have been found to be highly attenuated
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in wild type mice, the inflammatory response triggered by those

viruses, as well as their safety in immunocompromised hosts

remains to be evaluated. [6,7,8].

The pro-inflammatory milieu is important for counteracting the

viral infection before the development of acquired immunity. It is

also responsible for the influenza-induced injury [7,9,10,11]. The

unbalanced cytokine and chemokine production by cells from the

lung parenchyma is a significant pathological component which

plays a major role in amplification of pulmonary damage and

collapse in mortality in influenza infected patients

[12,13,14,15,16,17]. Thus, it is important to improve our

knowledge about how recombinant influenza viruses lacking

functional neuraminidase modulate the inflammatory immune

response in lungs and impact the lung physiology.

Therefore, in the present study, we evaluated the immunopath-

ogenic profile induced by a recombinant influenza virus harboring

a truncated neuraminidase segment and its safety for wild type

mice and those lacking the innate or the acquired branches of

immune response. Our results show that recombinant influenza

viruses without functional neuraminidase induce discrete pulmo-

nary inflammatory response and lung damage. In addition,

vaccination with this recombinant virus elicits local and systemic

acquired specific immune responses which are able to protect mice

challenged with homologous highly virulent wild type virus A/

PR8/34. Moreover, the recombinant influenza virus harboring a

truncated neuraminidase are attenuated even in MyD88 -/- and

Rag -/- mice. Overall, our results support the safety of using such

genetically engineered influenza vectors carrying heterologous

sequences as live bivalent vaccines.

Results

Generation and characterization of recombinant viruses
Wild type A/PR8/34 virus (herein named PR8) and recombi-

nant influenza (vNA-D) harboring a spacer sequence of 660

nucleotides (figure 1A) were generated by eight plasmid driven

reverse genetics, as described by de Goede [10]. The recombinant

vNA-D virus displayed lysis plaques on MDCK cells smaller than

those of the reverse genetics generated PR8 virus (figure 1B) and

its infectious titer was 10-fold lower (107 PFU/ml vNA-D).

To assert if the generated virus is able to trigger immune

response in human epithelial cells we evaluated the induction of

type I and III interferons in A549 cells infected with PR8 or

recombinant vNA-D virus in the presence of exogenous neur-

aminidase or incubated with the same media without virus (VcNA

treated control). At different time points, total cellular RNA was

extracted and mRNA levels of human (hu) IFN-b (type I) and hu

IFN-l2/3 (type III) were evaluated by qRT-PCR. The results

depicted in figure 1C show that both PR8 and recombinant

vNA-D viruses were able to induce type I and III interferons,

which attained their maximal fold induction at 24 hours post-

infection.

Reduced viral loads and attenuated pulmonary
inflammatory response in mice inoculated with vNA-D
virus

Mice were anesthetized and inoculated with 105 PFU of PR8

(corresponding to approximately 20 LD50) or 105 PFU of vNA-D
virus. As depicted in figure 2A, the animals inoculated with PR8

lose around 25% of body weight and approximately 75% of

animals died by 7 days post inoculation (dpi). By contrast, the

animals inoculated with 105 PFU of vNA-D showed neither weight

loss nor death (figure 2A and 2B), corroborating the results

obtained in previous studies [6,10]. In addition, animals inoculat-

ed with PR8 virus displayed detectable virus in lungs 1, 4 and 7

dpi, whereas the viral titers in lungs of mice inoculated with vNA-

D dropped dramatically at day 4 and became virtually undetect-

able 7 dpi (Figure 2C).

It is well established that inflammatory response plays a pivotal

role in immunopathology during influenza infection [7]. To

evaluate the inflammatory response triggered by recombinant

vNA-D, we inoculated mice with 105 PFU of PR8 virus or

recombinant vNA-D virus and measured inflammatory parameters

at different time points after infection.

Histopathological analysis showed that mice inoculated with

wild type PR8 virus displayed macroscopic signs of pneumonia

such as petechiae and even hepatization of lungs at 4 and 7 dpi. By

contrast, no macroscopic lesions were found in lungs of animals

inoculated with vNA-D at any time point (data not shown).

Moreover, the grading scores demonstrated that inflammatory

lesions in lung parenchyma, vessels, airways and epithelial injury

in mice inoculated with PR8 virus were significantly higher than

those found in animals inoculated with vNA-D or inoculated with

PBS (mock) at 4 and 7 dpi (figure 2D). Importantly, histopath-

ological analysis demonstrated that PR8 inoculation resulted in

higher injury due to the inflammatory response (figure 2E-G),

whereas inoculation with vNA-D resulted in only a mild

inflammatory response (figure 2H-J), similar to PBS inoculated

mice (figure 2K). Overall, increased inflammatory response in

mice inoculated with PR8 virus resulted in a higher pathology

score (figure 2L), while this parameter was highly reduced in

mice inoculated with vNA-D.

Accordingly, histopathological analysis of classical inflammatory

parameters showed that there was a high neutrophilic and

mononuclear cell infiltrate in the lungs of mice infected with

PR8 virus (figure 3A). This result was correlated with myeloper-

oxidase (MPO) activity (figure 3B), and with increased levels of

N-acetylglucosaminidase (NAG, figure 3C), which are markers

for lesions mediated by neutrophils and macrophages, respectively.

By contrast, those parameters were reduced in mice inoculated

with vNA-D and comparable to those in PBS inoculated mice

(mock). The only exception was the level of NAG, which were

increased in the lungs of mice inoculated with vNA-D, suggesting

an elevation in macrophage accumulation into lung tissue after

infection with vNA-D (figure 3C).

Consistently, analysis performed on bronchoalveolar lavage

(BAL) and fluid (BALF) demonstrated that the overall number of

leukocytes, total protein and nitric oxide levels were significantly

reduced in vNA-D compared with wild-type inoculated mice

(figure 3D-F). Interestingly, the levels of chemoattractants for

neutrophils (KC/CXCL1), monocytes (MCP-1/CCL2), lympho-

cytes (MIG/CXCL9) and eosinophils (CCL11) were found to be

significantly higher in BAL of mice inoculated with PR8, which

was correlated with increased cell infiltrate in BAL of animals

inoculated with PR8 (figure S1). Overall, this data suggests that

vNA-D inoculation cause mild inflammation in the lung.

Reduced inflammatory cytokine levels in lungs of mice
inoculated with vNA-D

In order to evaluate if the lack of inflammation could be related

to decreased levels of pro-inflammatory cytokines we analyzed the

lung tissue of mice inoculated with PR8 or vNA-D. By qRT-PCR

we detected an increase in muIFN-b and mu IFN-l2/3 gene

expression in the lung of mice inoculated with PR8 virus at all

evaluated timepoints. This increase could not be detected in mice

inoculated with vNA-D virus except by muIFN-b at 1dpi

(figure 4A). In addition, ELISA performed on lung homogenates

showed the production of IFN-c only in mice inoculated with PR8

NA-D Flu Virus Links Safety and Immunity
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(figure 4B). Consistently, the pro-inflammatory cytokines TNF-a
(figure 4C), IL-1b (figure 4D) and IL-6 (figure 4E) were

augmented in mice inoculated with PR8. By contrast, the levels of

all measured pro-inflammatory cytokines found in the lungs of

mice inoculated with vNA-D were similar to those found in PBS

(mock) inoculated mice (figure 4A-E). Finally, the same cytokine

production profile could be observed in BALF of inoculated mice

(figure S2).

Interestingly, the levels of counter-regulatory cytokines inter-

leukin 4 (IL-4) and IL-10 in lungs of mice infected with PR8 were

reduced at day 4 and 7, whereas the levels of those cytokines in the

lungs of mice inoculated with the attenuated vNA-D were

unaltered or slightly increased when compared to PBS (mock)

inoculated mice (figure 4F and G).

Finally, we assessed the systemic levels of inflammatory or

regulatory cytokines in serum collected from inoculated mice at 1,

4 or 7 dpi by Cytometric Bead Array (CBA). No significant

cytokine production was detected in sera of mice inoculated with

vNA-D virus compared to PBS inoculated mice (p.0.05,

Figure 5). In mice inoculated with PR8 virus, increased levels

of IFN-c and CCL2/MCP-1 were detected at 7 dpi (figure 5A
and 5B). Increased levels of IL-6 (figure 5C) were found only at

1 dpi and TNF-a (figure 5D) at days 4 and 7. No significant

increase in levels of IL-12p70, and IL-10 were found in serum of

animals inoculated with any virus (data not shown). Collectively,

these data suggest that PR8 induces a robust local and systemic

inflammatory response and reduced levels of counter-regulatory

cytokines, which result in increased lung injury when compared to

that found in vNA-D.

Evaluation of adaptative immune response elicited by
vNA-D

Next, we evaluated if the attenuated recombinant influenza

virus is able to induce a proper acquired immune response and

protect mice against homologous lethal challenge. For this

purpose, C57BL/6 mice were anesthetized and inoculated

intranasally with PBS (mock inoculation), vNA-D or PR8 virus

(103 or 105 PFU). Mice inoculated with 105 PFU of PR8 displayed

remarkably weight loss and died, whereas most of the animals

inoculated with 103 PFU of PR8 survived the inoculation in spite

of their weight loss (figure 6A). As expected, the animals

inoculated with vNA-D survived the inoculation without weight

change, irrespective of the inoculum used (figures 6A and 6B).
Three weeks after the first inoculation, mice were challenged with

a lethal dose (105 PFU) of PR8 virus. Weight change and mortality

was followed over two weeks (figures 6A and 6B). As expected,

the animals that were previously inoculated with PBS and further

challenged with a lethal dose of PR8 displayed abrupt weight loss

and high mortality (87%, n = 8). Most of the mice inoculated

previously with sub lethal dose of pathogenic PR8 survived the

challenge (78%, n = 14). Remarkably, the mice inoculated with

103 PFU of vNA-D showed significant weight loss (figure 6A) and

Figure 1. Generation and characterization of recombinant viruses harboring truncated neuraminidase. Deleted neuraminidase
segments displaying deletions at 39 and 59 extremities were generated as described in Material and Methods. The remaining neuraminidase coding
regions are shown in white squares. A spacer sequence was inserted between the 39 and 59 moieties (A). Wild type PR8 virus and recombinant vNA-D
influenza viruses were generated by reverse genetics as described in Material and Methods. The plaque phenotypes of these viruses were assessed by
standard agarose plaque assay in MDCK infected cells after 3 days of incubation (B). Confluent monolayers of A549 cells were cultured with DMEM
media containing BSA, Trypsin and neuraminidase (VcNA treated control) or infected with wild type PR8 virus or recombinant vNA-D at M.O.I of two.
The induction of hu-IFN-b (type I, A) and hu-IFN l2/3 (type III, B) was assessed at different time points by quantitative PCR using lightcycler Real Time
PCR Machine (Applied Biosystems; C). Analysis was performed using SDS 2 software. All data are expressed as a ratio relative to VcNA treated control.
doi:10.1371/journal.pone.0098685.g001
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two of twelve mice died (figure 6B). Differently, the animals that

were inoculated with 105 PFU of vNA-D showed no weight loss

(figure 6A) and all the animals survived the challenge (figure 6B).

Next, we assessed specific antibodies against influenza in

Bronchoalveolar Lavage Fluid (BALF) and sera, as well as CD8+
T cells specific for nucleoprotein (NP) in the spleen of mice

inoculated with vNA-D or PR8, after the prime inoculation and

the challenge infection. Measured by ELISA, significantly higher

levels of both IgG and IgA were found in the BALF of mice

inoculated with PR8 virus (figure 6C and 6D). The IgA levels

found in mice inoculated with either dose of vNA-D were similar.

Differently, higher levels of IgG were found in BALF of mice

inoculated with 105 PFU of vNA-D when compared to those found

in BALF of animals inoculated with 103 PFU of vNA-D
(figure 6C). In contrast to BALF, anti-influenza total IgG levels

in sera derived from mice inoculated with 105 PFU of vNA-D were

similar to those found in mice inoculated with PR8, but higher

than those inoculated with vNA-D 103 (figure 6E). Interestingly,

the levels of antibodies found in sera (total IgG and IgA) and in

BALF (IgA; figures 6C-E) of mice inoculated with vNA-D were

similar to those found in mice inoculated with PR8 after the

challenge infection.

Serum hemagglutinin inhibition (HI) titers of PR8 vaccinated

mice (log2 7.4764.85) were similar to those found in sera of mice

inoculated with 105 PFU of vNA-D (log2 6.9264.85) and higher

than those found in BALF of mice inoculated with 103 PFU of

vNA-D (log2 6.1764.17; figure 6F). In line with these results, we

found that all the animals (n = 5) inoculated with 103 PFU of vNA-

D harbored virus in the lung after challenge with PR8. By contrast,

only one among five animals inoculated with 105 PFU of vNA-D

Figure 2. Characterization of virulence and lung inflammation in mice inoculated vNA-D. C57BL/6 mice were infected intranasally with
105 PFU Influenza PR8, vNA-D or PBS (mock) inoculated (n = 4–6 in each group). Weight loss (A) and lethality (B) were evaluated over 10 days. Mice
were euthanized 1, 4 and 7 dpi and virus titers were quantified in lung (C). The figure shows one representative experiment. Lung pathologic score
after infection with influenza PR8 virus or vNA-D was assessed in lung slices stained with H&E by a pathologist showing parenchyma, vascular and
airway inflammation, and epithelial injury (D). Representative slides of PR8 virus (E, F and G), vNA-D (H, I and J) and mock (K) inoculated mice at 1, 4
and 7 dpi. The pathology overall score was determined (L). n = 5 for all groups. Data are presented as mean 6 SEM. * and ** for p,0.05 and p,0.01,
respectively, when compared to mock or indicated groups (one-way ANOVA, Newman-Keuls).
doi:10.1371/journal.pone.0098685.g002

Figure 3. Leukocyte recruitment to the lungs and BAL following vNA-D infection. C57BL/6 mice were inoculated with PBS (mock) or
infected intranasally with influenza 105 PFU of PR8 virus or vNA-D (n = 5). Mice were euthanized and lungs removed 1, 4 and 7 dpi. The recruitment of
neutrophils and macrophages/mononuclear (A) cells to the lungs was assessed in lung H&E stained slides. Frozen lungs sections were assessed for
Myeloperoxidase (B) and N-acetylglucosaminidase (C) contents, indirect measurements for neutrophils and macrophages, respectively. Mice were
euthanized (n = 6–8 in each group) 1, 4 and 7 dpi and bronchoalveolar lavage was performed. Absolute numbers of airways leukocytes after
infection with 105 PFU (D). Total proteins (E) and nitrite (NO22; F) were also determined in BALF. Data are presented as mean 6 SEM. *, ** and *** for
p,0.05, p,0.01 and p,0.001, respectively, when compared to mock or indicated groups (one-way ANOVA, Newman-Keuls).
doi:10.1371/journal.pone.0098685.g003
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had detectable virus in lungs after challenge and the viral load was

lower than that found in mice inoculated with PBS and further

challenged with PR8 virus (p,0.01, figure S3).

Examining the cellular immune response, we found significantly

higher number of NP specific CD8+T cells in the spleen of mice

inoculated with PR8 virus than those found in mice inoculated

with 103 PFU of vNA-D after the prime inoculation (figure 6G).

Differently, two weeks after challenge the number of NP specific

CD8+ T cells in spleen of mice inoculated with 103 PFU or 105

PFU of vNA-D was significantly higher than those found in spleens

of mice inoculated with PR8 virus (figure 6G).

Taken together, our results showed that vaccination using

recombinant influenza harboring a neuraminidase deficient

segment elicits humoral and cell-mediated immune responses.

Moreover, the antibody levels, the HI levels and the number of

specific CD8+ T cells elicited by inoculation with vNA-D are

inoculum dependent, resulting in different degrees of protection

against the challenge infection.

Recombinant vNA-D is highly attenuated in knock-out
mice for innate or acquired branches of immune
response

One drawback of the use of recombinant viruses is the potential

hazard of such vectors to immunocompromised hosts [18,19,20].

Thus, we evaluated the virulence of recombinant vNA-D in mice

lacking innate (MyD88 -/-) or acquired (RAG -/-) branches of

immune response. To this aim, KO mice and WT C57BL/6 mice

were anesthetized and inoculated with PBS (mock) or infected

intranasally with a sub lethal inoculum of 56103 PFU of PR8 or

with a higher inoculum of 56104 PFU of vNA-D. Weight loss and

mortality of inoculated mice were tracked during the experiment

(figure 7). C57BL/6 mice inoculated with PR8 virus displayed

dramatic weight loss and one out of ten inoculated mice died. In

addition, all the Myd88 -/- (n = 11) and RAG -/- (n = 7) mice

inoculated with PR8 virus displayed abrupt weight loss (Figure 7A
and 7B) and died (figure 7C). In sharp contrast, 87% of Myd88

-/- (n = 13) and 100% RAG -/- (n = 10) mice inoculated with

vNA-D survived to the challenge (figure 7C). Taken together,

Figure 4. Measurement of cytokines in the lung. C57BL/6 mice were inoculated with PBS (mock) or infected intranasally with 105 PFU influenza
PR8 virus or vNA-D (n = 5) and euthanized 1, 4 and 7 dpi. The induction of murine IFN-b and IFN-l2 (A) was measured in lungs by qRT-PCR as
described in Material and Methods. The levels of cytokines IFN-c (B), TNF-a (C), IL-1b (D), IL-6 (E), IL-4 (F) and IL-10 (G) were measured in lung tissue by
ELISA. n = 5 for all groups at days 1 and 4, n = 5, 4, 6 for mock, PR8 and vNA-D viruses at day 7. Data are presented as mean 6 SEM. * ** and *** for
p,0.05, p,0.01 and p,0.001, respectively, when compared to mock or indicated groups (one-way ANOVA, Newman-Keuls or unpaired t test (qRT-
PCRs).
doi:10.1371/journal.pone.0098685.g004
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these results suggest that recombinant viruses lacking functional

neuraminidase are attenuated in vivo, even in mice severely

handicapped in innate or acquired branches of immune response.

Discussion

Recombinant influenza viruses have been proven to be valuable

tools for vaccine development against infectious agents and tumors

[21,22,23]. Therefore, some strategies to generate recombinant

influenza viruses attenuated or defective for multiplication, such as

replacing the part of the neuraminidase sequence by a foreign

sequence have already been developed [2,24]. However, questions

about the lung and systemic inflammations triggered by those

recombinant viruses as well as their potential virulence in

immunodeficient hosts remain unclear. To better study these

questions, we used eight plasmid driven reverse genetics to

generate a recombinant influenza virus carrying only the first and

the last 150 nucleotides of neuraminidase coding region, flanking a

spacer, truncated neuraminidase and evaluated this recombinant

virus in an experimental mouse model. Our results demonstrate

the safety of this vector, which causes mild lung pathology in wild

type mice and is attenuated in immunocompromised hosts.

Furthermore, vaccination with the vNA-D induced robust T cell

and humoral mediated immunity, protecting mice against the

highly virulent PR8 virus influenza strain.

The first antiviral response in infected epithelial cells is type I

and III interferons, which are of pivotal importance to control

influenza infection and modulate immune response [25]. The

inoculation with vNA-D elicited reduced and short lived produc-

tion of IFN-b and undetectable production of IFN-l in lungs of

inoculated mice. Interestingly, we were able to detect both

interferons in A549 cells infected with vNA-D. This apparently

contradictory results could probably be explained by the fact that

the A549 cells were infected in the presence of V. cholera

neuraminidase in culture medium, which allowed full multiplica-

tion of vNA-D, whereas the infection of cells in mice lungs were

abortive.

Because innate immunity plays a pivotal role in infection and

inflammatory mechanisms, we evaluated parameters regarding

neutrophils and monocytes in lungs of mice inoculated with vNA-

D and wild type (PR8) virus. Neutrophils are important in killing

infected cells through neutrophil extracellular traps (NET) and

myeloperoxidase (MPO) activities [26,27,28]. However, the

inflammatory mediators released by this cell type also relate to

the immunopathology in experimental and natural influenza

infection [29,30]. Although monocytes play an important role in

controlling viral infection by release of proinflammatory cytokines,

Figure 5. Measurement of cytokines in sera of inoculated mice. C57BL/6 mice were inoculated with PBS (mock; n = 9) or infected intranasally
with 105 PFU of influenza PR8 (n = 10-12) or vNA-D (n = 9–11) viruses. By CBA, the levels of IFN-c (A), CCL2/MCP-1 (B), IL-6 (C) and TNF-a (D) were
measured in the sera collected from mice at days 1, 4 and 7 after inoculation. Data represents two independent experiments and are presented as
mean 6 SEM. * ** and *** for p,0.05, p,0.01 and p,0.001, respectively, when compared to mock or indicated groups (one-way ANOVA, Newman-
Keuls).
doi:10.1371/journal.pone.0098685.g005
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Figure 6. Evaluation of protection and acquired immune response elicited by inoculation with vNA-D. C57BL/6 mice were inoculated
with PBS (mock) or infected intranasally with 105 PFU Influenza A/PR8 virus, 103 or 105 PFU of vNA-D virus. Twenty-one days after the prime-
inoculation the animals were challenged with a lethal dose of 105 PFU of PR8. The weight loss and survival were determined after the prime-
inoculation (A) and the challenge (B) infection (data represents two independent experiments). Blood and BALF were collected fourteen days after
prime-inoculation and challenge infections. Tenfold dilutions of BALF samples were used to determine total IgG (C) and IgA (D) in BALF and total IgG
in serum by ELISA (E)(Data depict one representative experiment). Two fold serial dilution of serum was used for the hemagglutinin-inhibition assay
(F). n = 4 for BALF IgA and IgG measures after inoculation. n = 4, 7, 7, 6 for mock, vNA-D 103, vNA-D 105, PR8 103 for serum IgG. n = 4, 5, 6, 5 for
mock, vNA-D 103, vNA-D 105, PR8 103 for hemagglutinin-inhibition assay (Data represents two independent experiments). Spleens of mice (n = 4)
were obtained two weeks after the inoculation or challenge infection. Specific NP CD8+ T cells were assessed by ELISPOT using nucleoprotein (NP) of
PR8 ASNENMETM peptide (NP; aa 366–374) as stimulus (G) Data represents two (inoculum) or three (challenge) independent experiments. Data were
evaluated by Mann-Whitney test *, ** and *** for p,0.05, p,0.01 and p,0.001 respectively.
doi:10.1371/journal.pone.0098685.g006

Figure 7. Characterization of recombinant vNA-D virus in immunodeficient mice. C57BL/6 mice, MyD88 -/- and RAG -/- mice were
anesthetized and inoculated with PBS (mock) or 56103 PFU of the PR8 or 56104 PFU of the recombinant vNA-D virus. The weight loss (A and B) and
mortality (C) were followed (n = 9–12 in each group; data represents two independent experiments). Results depicted in figure A and B were
obtained from the same experiment.
doi:10.1371/journal.pone.0098685.g007
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they are also involved in tissue injuries triggered by influenza

infection [18,31,32]. Importantly, vNA-D infection only induced

low level of type I interferons and chemokines CXCL1/KC and

CCL2/MCP-1 in epithelial cells, leading to a reduced influx of

leukocytes and pulmonary injury. Reduced inflammatory infiltra-

tion in the lungs of mice inoculated with vNA-D could be also

related to lower levels of IL-6 and TNF-a. Both cytokines have

been associated with exacerbated inflammation and poor prog-

nosis during influenza infection by allowing excessive recruitment

of neutrophils and macrophages to the site of infection [33]. Nitric

oxide, which is another hallmark of lung damage caused by

influenza infection was absent in respiratory airways of vNA-D
infected mice, reinforcing the mild character of inflammation

triggered by this virus [34,35].

In addition, we found augmented expression/production of pro-

inflammatory cytokines such as type I IFN, IL-1b, IL-6, IFN-c and

TNF-a in airways of mice inoculated with PR8 virus. These

cytokines are known to contribute to lung inflammation, injury

and lethality [36,37] and were barely detected in airways of mice

inoculated with vNA-D. Interestingly, we have also found

decreased levels of the counter-regulatory cytokines IL-4 and IL-

10 in lungs of PR8 infected mice, whereas in lungs of vNA-D
inoculated mice the levels of those cytokines were not altered or

slightly increased, which may have contributed to the reduced

inflammation found in lungs of mice inoculated with vNA-D.

Consistently with lung results, inoculation with vNA-D did not

increase the serum levels of TNF-a, IL-6, IFN-c and CCL2/

MCP-1, cytokines related to poor prognostic when their produc-

tion is unbalanced [18,19,20,38].

Another finding of our study was that inoculation with vNA-D
resulted in the production of specific IgA and IgG antibodies in

BALF and serum. Antibody levels and the antibody mediated

hemagglutination inhibition were inoculum dependent. Moreover,

the number of specific anti-NP CD8+ T cells in spleen elicited by

inoculation with vNA-D was also found dependent on virus

inoculum. This is particularly important since the CD8+ T cell

response is known to play a pivotal role in controlling primary

influenza infection [18,19,20,38,39].

Although vaccination with 103 and 105 PFU of vNA-D was able

to protect the inoculated mice against the challenge infection with

PR8 virus, only the group that received the higher vNA-D dose

(105 PFU) was completely protected. Therefore we believe that

both higher levels of neutralizing antibodies and CD8+ T cells

elicited by the higher dose of vNA-D could be an explanation for

the full protection that we observed after challenge with PR8 virus.

This explanation is reinforced by the recent demonstration of

cooperativity among neutralizing antibodies and CD8+ T cells

resulting in a robust protective immunity against influenza

infection [40,41].

Interestingly, after challenge infection we found a significantly

higher number of specific anti-NP CD8+ T cells in mice

vaccinated with vNA-D. These results could be due to the reduced

amounts of IgA and IgG elicited by inoculation with vNA-D,

which were unable to completely neutralize PR8 influenza virus

during challenge, triggering a more robust cell mediated response

in the lungs of those animals. Indeed, most of the animals

inoculated with PR8 or 105 PFU of vNA-D virus displayed no viral

load in the lungs after challenge infection whereas all animals

inoculated with 103 PFU of vNA-D harbored virus in the lungs

after challenge.

One of the most important aspects in the vaccine development

field is safety in immunocompromised hosts. Thus, we also

evaluated the safety of influenza virus without an enzymatically

active neuraminidase in severely immunocompromised mice.

vNA-D was attenuated in MyD88 -/- and RAG -/- mice, which

are unable to trigger toll-dependent (with exception of TLR3)

innate immune responses [41] and lack B and T lymphocytes,

respectively [42]. Remarkably, all the RAG -/- mice inoculated

with vNA-D survived the challenge, whereas some degree of

virulence was maintained in Myd88 -/- mice since 13% died.

Overall, our results suggest that although vNA-D would be safe for

hosts with a functional adaptive immune response. Further studies

should be done to better understand the role of vaccination in

severely immunocompromised hosts especially those with com-

promised innate immunity. It is important to note that vNA-D
elicits an abortive infection, therefore precluding the risk of

vaccinated people shedding and spreading this virus.

In conclusion, we have demonstrated that vaccination with

recombinant influenza viruses truncated in neuraminidase gene

causes mild infection with reduced lung inflammation in wild type

mice and the virus is attenuated even in severely immunocom-

promised mice. In addition, vNA-D elicited strong humoral and

cellular viral immune responses, protecting vaccinated mice

against challenge with a highly virulent strain of influenza virus.

Hence, considering that the vNA-D virus expressing a heterolo-

gous protein is viable and induces a strong protection against

influenza, our study gives support to the use of such recombinant

influenza viruses in development of safe bivalent vaccines against

influenza and other pathogens.

Material and Methods

Ethical Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the Brazilian National Council of Animal

Experimentation (http://www.cobea.org.br/) and the Federal

Law 11.794 (October 8, 2008). All animal studies were approved

by the Ethical Commission on Animals Use (CEUA/Fiocruz,

license L-001/09).

Mice
MyD88-/-, Rag -/- mice and their respective control mice

(C57BL/6) matched by sex and age (8–12 weeks old) were

obtained from the animal facilities of the Federal University of

Minas Gerais (Centro de Bioterismo [CEBIO], Belo Horizonte,

Brazil) and Centro de Pesquisa René Rachou (CPqRR/FIO-

CRUZ) and were housed according to standard institutional

guidelines.

In all infection procedures, animals were anesthetized and kept

under observation until they completely recovered. We anesthe-

tized mice before euthanasia procedures for all in vivo experiments.

For weight loss and survival measures the animals were

monitored at different times after inoculation. For survival curves,

the animals were anesthetized and euthanized by cervical

dislocation when they reached certain degree of weight loss

(25%), except for differentiation of innate and adaptative immune

response, in which we used a different weight loss endpoint to

better differentiate the mortality curves (35%).

Cells
MDCK and A549 cells were grown at 37uC under 5% CO2

atmosphere in Dulbecco’s modified Eagle Medium (DMEM;

SIGMA) with 1 mM sodium pyruvate, 4.5 mg/ml L-glucose and

antibiotics (100 U/ml penicillin and 100 mg/ml streptomycin:

MDCK; 20 mg/ml of gentamicin and 5 mg/ml of amphoterecin B:

A549), herein called complete DMEM medium and supplemented

with 5% heat inactivated fetal bovine serum (FBS; CUTILAB).
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293T cells were grown at 37uC under 5% CO2 in complete

DMEM supplemented with 10% FBS.

Plasmids for influenza reverse genetics
The pPRNA plasmid was constructed as previously described

and encodes the wild type neuraminidase and segments of the A/

WSN/33 (H1N1, herein named WSN) [43]. Plasmid pPRNA38

codes for a recombinant WSN NA segment where the entire NA

ORF is followed by a duplicated 3’ promoter, a XhoI/NheI linker, a

duplication of the last 42 nucleotides (nt) of the NA ORF and the

original 5’ promoter [44]. In order to construct the truncated

neuraminidase segment, PCR amplified products were generated

using the pPRNA plasmid as template. These generated amplicons

contained the sequence of hepatitis d ribozyme followed by 19nt of

39 non-coding region and the first 150nt of NA coding region. To

generate the plasmid pPR150642nt, a PCR amplification

product, herein named NA150REV was cloned into the

pPRNA38 vector digested with SacI and XhoI restriction enzymes.

Next, we generated another PCR product, using pPRNA as

template which contained the last 150nt of the NA coding region,

which were followed by the 28nt of 59 non-coding region and the

truncated human RNA polymerase I promoter. This amplicon

was cloned into pPR150642nt digested by XhoI and HindIII

enzymes resulting in transfer plasmids carrying truncated NA

sequence named pPRNA1696178 (figure 1A). All transfer

plasmids were first analyzed by digestion profile using the

appropriated restriction enzymes and then sequenced using

Dynamic ET Dye Terminator Cycle Sequencing KIT (AMER-

SHAM) and a Megabace 1000 automatic sequencer (AMER-

SHAM). The sequence of 660 nucleotides which encodes for no

protein was cloned into the plasmid pPR1696178 and digested as

described above to construct the plasmid pPR169-SPC-178.

Influenza A/PR8/34 bidirectional transfer plasmids pHW2000-

HA, NA, M, NS, PB2, PB1, PA and NP were kindly provided by

Dr. Ron Fouchier (Erasmus of Rotterdam Institute, Netherlands)

[44].

Generation of recombinant viruses
Wild type PR8 were generated by eight plasmid driven reverse

genetics as described by de Wit [45]. Briefly, recombinant

influenza viruses harboring a truncated NA segment and carrying

the spacer sequence (herein named vNA-D) were generated as

described by de Goede and co-workers with modifications [45],

using the transfection reagent Fugene HD (ROCHE). Infectious

viral particles were recovered from cell culture supernatants and

they were cloned twice by limit dilution technique on MDCK

cells. Viral work stocks were prepared by infecting MDCK cells

cultivated in complete DMEM supplemented with 2 mg of

Trypsin-TPCK, 0.3% of bovine serum (BSA) and 500 mU/ml of

type III Vibrio cholerae neuraminidase (SIGMA). Viral stocks were

titrated on MDCK cell monolayers, in standard plaque assays

under agarose overlay.

Viral RNA extraction and RT-PCR analysis
Viral RNA (vRNA) extraction from cell-free supernatants of

infected MDCK cells and Reverse Transcriptase-PCR analysis

were performed as previously described [10]. Amplicons were

analyzed on 1% agarose gel and visualized by ethidium bromide

staining. RT-PCR products were purified using QiaEXII kit

(Qiagen). The presence of mutations was determined by sequenc-

ing using Dynamic ET Dye Terminator Cycle Sequencing KIT

(AMERSHAM) and a Megabace 1000 automatic sequencer

(AMERSHAM).

Measurement of type I and III interferons in cell culture
In order to evaluate the induction of interferon beta (IFN-b; a

type I IFN) and interferon lambda 28a (IFN-l2; a type III IFN)

genes by recombinant influenza virus, A549 cells were seeded in 6-

well plates (56105 cells/well). Twenty-four hours later cells were

infected with two M.O.I of PR8 or recombinant vNA-D or

incubated with the same culture media containing BSA, Trypsin

and Vibrio cholerae neuraminidase described above without virus

(VcNA treated control). At different time points, the cells were

harvested and total cellular RNAs were extracted with RNeasy kit

(QIAGEN), according to manufacturer recommendations and

RT-PCR reactions were performed as previously described [46].

Quantitative PCRs were done using a Lightcycler Real Time PCR

Machine (Applied Biosystems). Result analysis was performed

using SDS 2 software. All data were normalized by the respective

beta-actin levels and expressed as a ratio relative to non-infected

cells (VcNA treated control) cultured using the same conditions as

the infected ones (in vitro assays) or PBS inoculated (mock) mice (in

vivo assays). PCR primers used for human genes were previously

described [47].

Influenza challenge and immunizations
Mice (wild type, MyD88 -/- or RAG -/-) were anesthetized with

15 mg/kg of ketamine and 0.6 mg/kg of xylazine and inoculated

intranasally with PBS (mock), vNA-D or PR8 virus in 25 ml of

PBS. For survival, weight loss, lung histological and inflammatory

assessments wild type mice were inoculated using 105 PFU of

either recombinant or PR8 virus. For challenge and acquired

immune response one group prime immunized using 103 PFU of

recombinant vNA-D was included. For infection of immunocom-

promised mice (RAG -/- or MyD88 -/-) or wild type control

(C57BL/6 mice), the animals were inoculated with either 56103

PFU of PR8 or 56104 PFU of vNA-D. The weight of inoculated

animals was assessed at indicated time points. Survival of

inoculated animals was followed over 10–30 days.

To evaluate influenza multiplication in mouse lungs, the

animals were euthanized at defined time points after infection

and lung homogenates were prepared in 3 ml of PBS. Viral loads

in lungs were assessed by standard titration under agarose overlay

on MDCK cells.

Harvest of bronchoalveolar lavage fluid (BALF) and lung
myeloperoxidase (MPO) and N-acetylglucosaminidase
(NAG) measurement

At the indicated time points after infection, mice were

euthanized with an overdose of ketamine/xylazine solution.

Subsequently, BAL was harvested by washing the lungs twice

with two 1mL aliquots of PBS [47]. After centrifugation, the pellet

was used for total and differential leukocytes counts of stained

slides. The supernatant (BAL) was used for cytokines, chemokines,

total protein and nitrite measurements. After BALF harvesting

lungs were perfused with 5 ml of PBS to remove circulating blood

and frozen. A hundred mg of tissue was homogenized in PBS with

anti-proteases to perform ELISA, MPO and NAG assays, as

previously described [48].

Measurement of cytokines in mice BALF, serum and
tissues

At the indicated time points, PR8 virus, vNA-D and PBS (mock)

inoculated mice were anesthetized and blood was collected from

brachial plexus. After death, BALF samples were harvested as

described above. The levels of the cytokines IL-6, IL-10, IL-12p70,

IFN-c, TNF-a and MCP-1 in serum were assessed by BD CBA
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Mouse Inflammation Kit (Becton Dickinson) according to

manufacturer’s instructions. The levels of CCL2, CCL11, CXCL1

and CXCL9 in BALF, and the lung levels of IL-1b, IL-4, IL-6, IL-

10, IFN-c, TNF-a were assessed by ELISA according to

manufacturer’s instructions (R&D systems, Minneapolis) as

previously described [49]. The induction of IFN-b and muIFN-

l2/3 genes was measured by qRT-PCR, after lung tissue total

RNA extraction and reverse transcription using primers specific

for murine samples.

Assessment of protein and Nitrite levels in BALF
Total protein levels were measured in BALF using the Bio-Rad

Protein Assay kit, using a BSA standard curve, according to

manufacturer’s instructions [38]. The product of Nitric Oxide

oxidation, nitrite, was measured by adding 100 mL of BALF and

100 mL of Griess reagent (1% sulfanilamide and 0.1% naphthy-

lethylenediamide in 5% phosphoric acid) and comparing to the

absorbance at 550 nm to a standard curve of sodium nitrite [50].

Histopathological analysis
Histopathological changes induced by infection in the lungs of

mice inoculated with either PR8 virus or vNA-D were analyzed by

a pathologist blind to the experiment, using lungs of PBS

inoculated mice as control. Lung left lobes were fixed in formalin

and further dehydrated gradually in ethanol, embedded in paraffin

and cut into 4-mm sections. Slides preparations containing the

processed tissue were stained with H&E and examined under light

microscopy and scored by the pathologist. The score system was

performed as previously described [50]. Briefly, airway, vascular

and parenchyma inflammation, neutrophilic and mononuclear

infiltration and epithelial injury were assessed in 27 points of score.

Photomicrography was performed using an optical microscope

with a MotiCam Digital camera with a built-in 3.0 MegaPixel

sensor.

Detection of anti-influenza antibodies
Blood and BAL of mice infected with recombinant vNA-D or

PR8 virus were collected at pre-determined time points after

inoculation. Serial dilutions of serum samples were used to

determine flu-specific antibodies titers by ELISA using PR8 virus

as antigen. Briefly, 96-well ELISA plates (NUNC Maxisorp) were

coated with 0.5 mg of detergent-disrupted purified PR8 virus per

well in 0.2 M Na-carbonate buffer, pH 9.6 (overnight at 4uC).

Bound antibody was detected with anti-mouse total IgG (H+L;

Amersham) and IgA antibodies (SouthernBiotech) carrying the

Horseradish Peroxidase and revealed by the addition of TMB

peroxidase substrate (KPL) as indicated by the supplier.

Serum was used for hemagglutinin inhibition (HI) assay, and to

this aim, serial dilutions (2 fold) of mice sera were incubated with 4

hemagglutinin units (HU)/25 ml of PR8 virus and 1% turkey red

blood cells. HI titers were determined as the highest serum dilution

able to completely inhibit hemagglutination.

ELISPOT
Spleens of immunized mice were obtained two weeks after the

inoculation with PR8 virus or vNA-D (103 or 105 PFU) or two

weeks after the challenge with 105 PFU of PR8. Single cell

suspensions from mice spleens were prepared as previously

described [51,52]. Spleen cells were adjusted to 1 6 106 cells

per well in cell culture medium. For stimulation, a final

concentration of 10 mg/ml of nucleoprotein (NP) of PR8

ASNENMETM peptide (NP; amino acids 366-374; for H-2Kb)

was added. ELISPOT assay were performed essentially as

previously described [53]. The spots were counted on Immuno-

Spot S5 Core Analyzer (CTL).

Statistical analysis
Statistical significance for ELISA and ELISPOT assays were

evaluated using Mann-Whitney test (non-parametric data). The

survival distributions were analyzed by log-rank test. Inflammatory

profile in lungs and BAL were evaluated by one-way ANOVA,

with post-test Newman-Keuls. We performed the ESD method

(extreme studentized deviate; or Grubbs’ test), to determine

whether one of the values in the list is a significant outlier from the

rest. The software GraphPad Prism 5 was used to analyze data and

make graphs.

Supporting Information

Figure S1 Inflammatory profile in BAL following infec-
tion with PR8 or vNA-D virus. C57BL/6 mice were

inoculated with PBS (mock) or infected intranasally with105

PFU PR8 or vNA-D. Mice were euthanized (n = 6–8 in each

group) 1, 4 and 7 dpi and bronchoalveolar lavage was performed.

Each cell type was counted (BAL) and the respective chemokine

measured in BALF by ELISA. Neutrophils and CXCL1 (A),

macrophages/monocytes and CCL2/MCP-1 (B), lymphocytes

and MIG/CXCL9 (C), eosinophils and Eotaxin/CCL11 (D) levels

were determined. Data are presented as mean 6SEM. *, ** and

*** for p,0.05, p,0.01 and p,0.001, respectively, when

compared to mock or indicated groups (one-way ANOVA,

Newman-Keuls).

(RAR)

Figure S2 Measurement of cytokines in BALF. C57BL/6

mice were inoculated with PBS (mock) or infected intranasally

with 105 PFU of influenza PR8 or vNA-D. Mice were euthanized

1, 4 and 7 dpi (n = 5). The levels of the cytokines IFN-c (A), MCP-

1 (B), IL-6 (C) and TNF-a (D) were assessed in BALF samples by

BD CBA Mouse Inflammation Kit (Becton Dickinson) according

to the manufacturer’s instructions. Data were evaluated by Mann-

Whitney test *, ** and *** for p,0.05, p,0.01 and p,0.001

respectively.

(RAR)

Figure S3 Evaluation of PR8 virus titer in the lungs of
vaccinated mice after challenge. C57BL/6 mice were

inoculated intranasally (25 ml of inoculum) with 103 PFU of /

PR8, 103 or 105 PFU of vNA-D, or PBS (mock; n = 5–7 in each

group). Twenty-one days after the prime-inoculation the animals

were challenged with a lethal dose of 105 PFU of PR8. Mice were

euthanized 4 dpi and virus titers were quantified in the lungs. Data

were evaluated by Mann-Whitney test *, ** and *** for p,0.05,

p,0.01 and p,0.001 respectively.

(RAR)
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