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ABSTRACT
Plant mating system determines, to a great extent, the demographic and genetic
properties of populations, hence their potential for adaptive evolution. Variation in
plant mating system has been documented between phylogenetically related species
as well between populations of a species. A common evolutionary transition, from
outcrossing to selfing, is likely to occur under environmental spatial variation in the
service of pollinators. Here, we studied two phenotypically (in floral traits) and
genetically (in neutral molecular markers) differentiated populations of the annual,
insect-pollinated, plant Datura inoxia in Mexico, that differ in the service of
pollinators (Mapimí and Cañada Moreno). First, we determined the populations’
parameters of phenotypic in herkogamy, outcrossing and selfing rates with
microsatellite loci, and assessed between generation (adults and seedlings)
inbreeding, and inbreeding depression. Second, we compared the relationships
between parameters in each population. Results point strong differences between
populations: plants in Mapimí have, on average, approach herkogamy, higher
outcrossing rate (tm = 0.68), lower primary selfing rate (r = 0.35), and lower
inbreeding at equilibrium (Fe = 0.24) and higher inbreeding depression (d = 0.25),
than the populations of Cañada. Outcrossing seems to be favored in Mapimí while
selfing in Cañada. The relationship between r and Fe were negatively associated
with herkogamy in Mapimí; here, progenies derived from plants with no herkogamy
or reverse herkogamy had higher selfing rate and inbreeding coefficient than
plants with approach herkogamy. The difference Fe–F is positively related to primary
selfing rate (r) only in Cañada Moreno which suggests inbreeding depression in
selfing individuals and then genetic purging. In conclusion, mating system evolution
may occur differentially among maternal lineages within populations of Datura
inoxia, in which approach herkogamy favors higher outcrossing rates and low levels
of inbreeding and inbreeding depression, while no herkogamy or reverse herkogamy
lead to the evolution of the “selfing syndrome” following the purge of deleterious
alleles despite high inbreeding among individuals.
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INTRODUCTION
Plant mating systems affect the demographic dynamics and genetic structure of plant
populations, and thus their adaptive potential (Charlesworth & Charlesworth, 1979; Eckert
et al., 2009). Mating systems often vary widely among populations of self-compatible
species, from predominant or complete selfing to complete outcrossing. Intermediate
(or mixed) mating systems, that is, those that combine selfing and outcrossing strategies,
are also common in nature (Stebbins, 1957; Goodwillie, Kalisz & Eckert, 2005; Barrett,
2010).

The transition from outcrossing to selfing is one of the most frequent evolutionary
shifts in flowering plants (Stebbins, 1957; Barrett, 2010; Sicard & Lenhard, 2011). Evidence
of this phenomenon comes from phylogenetic studies (Goodwillie, 1999; Foxe et al., 2009),
investigating differences within and among species, and at different geographic scales
(Duncan & Rausher, 2013; Wright, Kalisz & Slotte, 2013).

Two main scenarios are thought to favor the evolution of selfing. One is the
transmission advantage of selfers relative to outcrossers (3:2 gametes), which would
promote the spread of selfing modifiers in a population unless prevented by natural
selection (Fisher, 1941). The second scenario considers that under ecological conditions
that are unfavorable for cross-pollination (i.e., rarity or absence of potential mates and/or
pollen vectors), natural selection would favor reproductive assurance through selfing
(Baker, 1955; Stebbins, 1957; Schoen & Lloyd, 1992; Schoen, Morgan & Bataillon, 1996).
Despite the potential transmission and reproductive advantages, selfing as a mating system
may also restrict gene flow within and among populations. Consequently, selfing might
increase levels of inbreeding and homozygosity, and ultimately the likelihood of inbreeding
depression (d) in populations (Charlesworth & Charlesworth, 1987; Charlesworth &
Wright, 2001; Takebayashi & Morrell, 2001). Therefore, the inbreeding coefficient (F) is
expected to correlate with historical level of selfing in a population. In the long term,
however, theoretical models and empirical evidence suggest that increasing levels of
inbreeding promote selection against inbred individuals by purging populations of
lethal or deleterious alleles, thus reducing genetic load (Husband & Schemske, 1996;
Takebayashi & Delph, 2000; Crnokrak & Barrett, 2002; Morran, Parmenter & Phillips,
2009). Hence, populations with a long history of inbreeding are expected to have lower
levels of inbreeding depression (Yahara, 1992)

Herkogamy, the spatial segregation of sex organs within the flower, is considered a main
floral trait affecting selfing rates (Webb & Lloyd, 1986). In hermaphroditic flowers, the
likelihood of selfing is reduced when the stigma surpasses the length of the anthers
(i.e., approach herkogamy), because flower stigmas are prevented from receiving self-
pollen. In presence of pollinators, this also provides the opportunity for outcross pollen to
first reach the stigmas. In contrast, when the anthers and stigmas are placed at the same
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level (i.e., no—herkogamy) or the stigmas are below the anthers (i.e.,, reverse herkogamy),
selfing is likely to occur, with (facilitated) or without (autonomous) pollinators (Lloyd,
1992). At the population level, the relationship between herkogamy and selfing/
outcrossing rates may be an indicator of the historical reliability of pollination (Opedal,
2018). Within-population, this relationship may also be explained by other causal
mechanisms. For instance, stigma clogging may increase competition between self-
and cross-pollen in non-herkogamous flowers, favoring higher outcrossing rates in
herkogamous flowers, or just because self-pollen deposition during pollinator visits
creates a “shield” against interference from heterospecific pollen (Opedal, 2018). Also, a
positive correlation between approach herkogamy and floral traits related to pollinator
attraction, contributes to the maintenance of the relationship between herkogamous
flowers and an outcrossing strategy (Opedal, 2018). In other species herkogamy may
reduce the interference between sexual functions enhancing pollen export efficiency
(Lloyd & Webb, 1986; Barrett, 2002). Further, reverse or no herkogamy might increase
reproductive fitness (i.e., seed number) and thus be favored by selection, but it should also
positively correlate with selfing rate. Contrary, natural selection might favor/maintain
approach herkogamy thus increasing outcrossing rate (Motten & Stone, 2000; Elle & Hare,
2002; Herlihy & Eckert, 2007).

Herkogamy is a complex trait determined by genetic and ecological factors (Ashman &
Majetic, 2006; Opedal et al., 2017). Within populations, standing genetic variation in
herkogamy would depend on the history of selection of herkogamy on individual lineages,
and its adaptive value could depend upon selection pressures exerted by pollinators—
particularly when the abundance of pollinators fluctuates in time—or to other selective
factors. When associations among selfing rate (s), inbreeding coefficient (F) and
herkogamy are maintained over time, within-population covariance among these
variables may be established at the lineage level. Significant associations between high
outcrossing rate and approach herkogamy have been reported before (Takebayashi,
Wolf & Delph, 2006; De Vos et al., 2018; but see Chen et al., 2009; Brys & Jacquemyn, 2012;
Opedal, Armbruster & Pélabon, 2015; Toräng et al., 2017). However, few studies have
evaluated the association between herkogamy and outcrossing rate within-populations
(Epperson & Clegg, 1987; Motten & Antonovics, 1992; Carr & Fenster, 1994; Karron et al.,
1997; Brunet & Eckert, 1998; Takebayashi & Delph, 2000; Elle & Hare, 2002; Medrano,
Herrera & Barret, 2005; Herlihy & Eckert, 2007) and even fewer have considered
relationships among herkogamy, inbreeding coefficient and mating system.

Many annual, self-fertilizing, plant species evolve in stressful environments
(e.g., disturbed and/or arid habitats) where pollinator abundance is reduced and/or
unpredictable (Friedman & Rubin, 2015). Under variable pollination service, daily and
seasonal fluctuations present different opportunities for cross-or self-fertilization
maintaining variation on traits that affect the plants’ mating system, such as herkogamy
or the inbreeding history of each maternal lineage (Schoen & Lloyd, 1992; Schoen,
Morgan & Bataillon, 1996; Morgan & Wilson, 2005; Eckert, Samis & Dart, 2006;
Barrett, 2010; Shirk & Hamrick, 2014; Pannell, 2015). However, it is not clear how strong
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and how frequently the association between mating strategies, herkogamy and inbreeding
history of lineages occur within populations in short-lived species. Here, we assessed the
within-population mating system dynamics, with replication in two populations of the
annual plant Datura inoxia Mill. We focus on the within-population level and less on
among-population expectations in order to detect if individuals with more herkogamous
flowers show a history of less inbreeding associated to lower levels of selfing. Until now,
relative few studies (see review in Opedal, 2018) have assessed these associations within
(rather than among) populations.

MATERIALS AND METHODS
Study species and sampled populations
Datura inoxia (Solanaceae) is a summer annual, self-compatible plant that inhabits
arid and semi-arid lands in Mexico and Southern USA (i.e., The Chihuahuan desert)
(Barclay, 1959; Lockwood, 1973). High daily fluctuation of ambient temperature is a
characteristic of these ecosystems. The onset of flowering of D. inoxia is in July and
lasts through September, similar to other Datura species (Bronstein et al., 2009). Datura
inoxia produces large, funnel-shaped, and nectar producing hermaphroditic flowers that
open at dusk and remain receptive for only one night. During the flowering period,
individuals can display from a few up to tens of flowers each night. Flower traits related
to mating system such as herkogamy and flower size, vary widely within and among
populations (Jiménez-Lobato & Núñez-Farfán, 2012). Further, comparisons between
genetic differentiation at neutral loci (FST) and phenotypic differentiation (QST) in floral
traits suggest adaptive evolution under diverging selection (Jiménez-Lobato & Núñez-
Farfán, 2012). Flowers are commonly visited by honeybees, which collect pollen, and
hawkmoths (Manduca sexta, M. quinquemaculata and Hyles lineata) which forage for
nectar (Barclay, 1959; Lockwood, 1973;Grant, 1983;McCall et al., 2018; V. Jiménez-Lobato,
personal observation).

Two populations of D. inoxia were selected to assess the relationships between
herkogamy, selfing rate, and inbreeding. A previous report (Jiménez-Lobato & Núñez-
Farfán, 2012) indicated substantial within-population variation in herkogamy and
flower size. The Cañada de Moreno population (CM) is located in the State of
Querétaro (21� 17′ 43″ N; 100� 31′ 00″ W) in the Mexican Bajío at 1,933 m a.s.l.
During the flowering period of D. inoxia (July–September), this locality has an average
temperature of 18.8 �C, with a daily range from 7.4 �C to 30.8 �C, and a three-month
total precipitation of 314 mm. The Mapimí population (Map) is located at 1,157 m a.s.l.
in the Mexican Plateau in the States of Coahuila and Durango (26� 41′ 11″ N; 103� 44′ 49″
W). This is a more xeric environment, with a quarterly average temperature of 22.8 �C
(range: 12.6–32.9 �C) and a total three-month precipitation of 253 mm (Meteorological
Service of Mexico: http://smn.cna.gob.mx/). Collection of seed material for
experimental analyses was made under the permission SGPA-DGGFS-712-1596-17
(Subsecretaría de Gestión para la Protección Ambiental, Secretaría de Medio ambiente
y Recursos Naturales, Mexico).
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Variation in the level of herkogamy within and among populations
Thirty reproductive plants were randomly selected and tagged for sampling in a 1 ha area
within each population. For each individual plant, 4–6 open flowers were randomly
selected to measure herkogamy. Herkogamy was calculated as the difference between
pistil and stamen length. Approach herkogamy was defined as the pistil surpassing the
stamens in length (henceforth “positive herkogamy”), whereas reverse herkogamy was the
opposite trend (henceforth “negative herkogamy”). Absence of herkogamy occurred when
pistil and stamens had equal lengths.

Mating system parameters
To estimate mating system parameters from each marked plant in the field, five mature
fruits derived from natural pollination were collected, labelled and bagged. In the
laboratory, seeds of each fruit were separated and germinated in a greenhouse, and
seeds of each fruit within each family (maternal plant) were sown in separate pots.
Germination per fruit per family was recorded for 30 days. To obtain an average estimate
of germination rate per fruit, we recorded the final number of seeds germinated in
each pot. Germination percentage was ≥90% (se = 3.18) for all plants. Once seedlings
emerged, we collected leaf tissue from young plants, bagged, labelled, and stored in an
ultra-freezer at −97 �C. Finally, we analyzed mating system parameters in 20 seedlings
from each of 30 maternal families per population (N = 600).

DNA was extracted from seedlings following the Miniprep protocol (Doyle & Doyle,
1987). Five microsatellite nuclear loci developed for D. stramonium (Andraca, 2009)
were amplified for each seedling. Further, we standardized one additional microsatellite
locus for D. inoxia (F8: Rw: 5′ -GGACAACATCTTTGCGACCC- 3′), in order to obtain
a total of six polymorphic microsatellite loci per individual plant. Primers were labelled
with PET, VIC, 6-FAM, and NED dyes (Applied Biosystems, Foster City, CA, USA)
(see Supplemental Information: PCR protocols).

Multilocus outcrossing (tm) and selfing (s = 1 − tm) rates, primary selfing rate (r) and
inbreeding coefficient (F) were estimated for each maternal family for each population.
Mating system parameters (tm and s) at the family level were estimated with MLTR 3.2
(Ritland, 2002) using the Expectation-Maximization method, which allows missing
data and undetected null alleles (Ritland & Jain, 1981). Standard errors and standard
deviations were estimated by bootstrapping, with 1,000 replicates and re-sampling
individuals at the family level. The frequency of null alleles per locus, per population, was
assessed using Micro-Checker v.2.2.3 (Cock et al., 2004). One locus (G8) did not amplify
for any of the plants from CM, so analyses were carried out with five loci in that
population, and six loci in Map. Selfing rates (s) obtained from molecular markers, after
fertilization and germination, might not be completely independent from inbreeding
depression and thus may underestimate its true value (Lande, Schemske & Schultz, 1994).
Primary selfing rate (r) is a better predictor of mating system because it assesses separately
the magnitude of inbreeding depression. Hence, r refers to the proportion of selfed
progeny at the time of fertilization (Lande, Schemske & Schultz, 1994). The primary
selfing rate (r) was calculated for each maternal family as: r = s/[1 − d + sd], where s is the
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selfing rate obtained from microsatellite loci, and d is the cumulative inbreeding
depression obtained for each population (see below).

The inbreeding coefficient (F) may include components of inbreeding other than just
self- or cross- fertilization, such as biparental inbreeding or population substructure.
Here, we used F as a proxy of the inbreeding history of each maternal family (i.e., adult
cohort) (Latta & Ritland, 1994). Inbreeding coefficient (F) values were inferred for each
lineage from the microsatellite loci amplified previously, with GenePop v.4.2 (Rousset &
Raymond, 1995; Rousset, 2008). To investigate whether inbreeding depression was
associated with the selfing rate and herkogamy, we calculated inbreeding coefficients at
equilibrium (Fe) (i.e., progeny cohort) for each lineage, assuming that adult F and tm are
constant among generations (Ritland, 1990). We then related these differences with selfing
rate and herkogamy. Since Fe increases in relation to F due to self-fertilization, larger
differences between F and Fe at each maternal lineage should indicate the presence of
higher inbreeding depression. Once selection against inbred progeny has occurred, Fe
and F will be equal (Ritland, 1990; Shirk & Hamrick, 2014). This approach yields an
estimation of potentially late-acting inbreeding depression in each lineage. Fe was
calculated as Fe = (1 − tm)/(1 + tm), where tm is the outcrossing rate calculated from MLTR
for each maternal family (Allard, Jain & Workman, 1968; Ritland, 1990).

Inbreeding depression
To estimate inbreeding depression (d), we collected 150 fruits from different individual
plants in each population. These plants did not include the maternal families previously
analyzed. From each fruit, we sowed ten seeds on separate pots under greenhouse
conditions. Average (±S.E.) environmental variables in the greenhouse (March–
September), measured by HOBO sensors (Onset Computer Corporation, Bourne, MA,
USA) were: temperature 27.10 ± 0.06 �C; relative humidity 42.93% ± 0.09% and light
intensity 3,133.59 ± 18.73 Lux (Camargo, 2009). When seeds germinated, one seedling per
fruit was randomly chosen and grown under controlled conditions until flowering.
For each population, 100 individuals were randomly chosen to act as pollen receptors
(mothers) and 50 individuals as pollen donors (fathers). Two manual pollination
treatments were applied to each maternal plant: (1) cross-pollination (o), where two
flowers were emasculated before anthesis and hand-pollinated with pollen from one donor
randomly chosen from the same population; (2) self-pollination treatment (s), where
two flowers of each receptor plant were fertilized with self-pollen. After pollination,
flowers in both treatments were bagged individually with a fine nylon mesh. Since
many mother plants did not produce the four flowers needed for pollination treatment
application, the final sample included mother plants that produced at least one fruit
per treatment (CM: N = 77; Map: N = 41). Two fitness components per pollination
treatment were evaluated in each population: seed-set mean (i.e., number of seeds/ number
of ovules) and seed mass. Seed mass was obtained from a random sample of 30 seeds
per fruit using an analytical balance (Adventurer OHAUS). Allocating more resources to
seeds can increase quality of seeds, increasing the likelihood of successful seedlings’
establishment and mothers’ fitness (Stanton & Young, 1994; Byers & Waller, 1999).
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In D. inoxia, as in D. stramonium, under greenhouse experiments conditions, inbreeding
depression on seed mass has been detected even when maternal plants have been fertilized
with a single pollen donor (Sosenski, 2004; Jiménez-Lobato, 2013). Likely seed mass
may influence germination rate and seedling establishment in Datura species.

Cumulative inbreeding depression coefficient (d) was calculated for each population
as: d ¼ 1� �ws

�wo
; where �ws and �wo are the mean fitness of progenies derived from self-

or cross-pollination, respectively. Average fitness of self- and out-cross progenies was
calculated as the product of seed-set and seed mass (Schemske & Lande, 1985), and it was
used to estimate the primary selfing rate (r) at each maternal lineage. This approach yields
an estimate of early-acting inbreeding depression

Statistical analyses
Statistical analyses were implemented in R software version 4.0.2 (R Development Core
Team, 2020). To estimate phenotypic variation in herkogamy within each population,
we quantified the variance components within and between individuals. Using the nlme
package (Pinheiro et al., 2017), we fitted a linear mixed model for each population where
maternal family and plants nested within families were considered as random factors.

Statistical differences in primary selfing rates (r), inbreeding in adult cohort (F),
inbreeding at equilibrium (Fe) and an estimate of inbreeding depression (Fe–F) between
populations were tested by Analysis of Covariance in multcomp package (Hothorn,
Bretz & Westfall, 2008). Population was considered as fixed factor and herkogamy as the
quantitative variable.

Multilocus outcrossing (tm) and primary selfing rates (r) were strongly negatively
correlated (CM: estimate = −1.00, p = 0.000, d.f. = 25; Map: estimate = −0.969, p = 0.000,
d.f. = 27), hence we present here only the analyses for primary selfing rates (r). Since r
is a proportion, its relationship with herkogamy was analyzed with a beta regression
using the betareg package (Cribari-Neto & Zeileis, 2010; Douma & Weedon, 2019).
This regression has been proposed for modeling continuous data limited to a specific
interval (0, 1) (Ferrari & Cribari-Neto, 2004). We tested for cloglog, logit and log link
functions and based on Akaike’s criterion we selected the model that best fit to the
data. Estimates of b and [ were obtained by maximum likelihood estimation. F, Fe and
their differences were associated to herkogamy with a generalized linear model with
Gaussian error distribution (Crawly, 2013). It must be noted that Fe is a theoretical
prediction based on the selfing rate (r), and these quantities are therefore correlated by
construction. Likewise, their correlation with other variables would be very similar. Thus,
to avoid redundancy, we present the correlations of selfing rate with other variables.

RESULTS
Variation in herkogamy and mating system parameters within and
among populations
At CM plants were, on average, non-herkogamous (mean = −4.72; sd = 5.5 mm;
range = 17.48 mm, from −13.83 to +3.65 mm). In this population 20 out of 27 individual
plants (74%) had reverse or no herkogamy and seven (26%) exhibited approach
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herkogamy (Fig. 1A). Herkogamy varied proportionally more among plants at Map than at
CM (N = 29) but the average was positive (Mean = 2.57 mm; sd = 11.15 mm;
range = 44.8mm, from −20 to +24.8 mm) (Fig. 1B).

The proportion of variance among individual plants in herkogamy was higher in Map
(77.32%) than in CM (50.62%), indicating higher intra-individual variation in the latter
population (Map: 22.68%; CM: 49.38%).

Analysis of Covariances indicate that primary selfing rates (r), inbreeding at equilibrium
(Fe) and inbreeding depression (Fe–F) (Table S1) differed between populations and are
affected by herkogamy. Inbreeding in adult cohort (F) was not different between
populations and was unaffected by herkogamy (Table S1).

Mating system estimation and inbreeding coefficient (F)
The multilocus outcrossing rate (tm) was, on average, higher in Map than in CM (0.682 vs.
0.294) although high variation in this parameter was detected among lineages in each
population (Map, 0.022–1; CM, 0–1). The distribution of tm is skewed toward low values in

Figure 1 Herkogamy value average of individual plants ofDatura inoxia: (A) Cañada de Moreno and
(B) Mapimí. Error bars indicate one standard deviation. Full-size DOI: 10.7717/peerj.10698/fig-1
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CM (ca. 60% of mother plants), but towards high values in Map (50% of the families
with tm > 0.8) (Figs. 2A and 2B, respectively). Primary selfing rate (r) was two-fold higher
in CM than in Map (0.716 vs. 0.353), varying from r = 0 to 1 and from r = 0 to 0.978,
respectively.

Inbreeding coefficient in the adult cohort (F) was negative in the two populations and
highly variable (CM: F = −0.193, range −1 to 0.75; Map: F = −0.085, range −0.553 to 1).
Inbreeding coefficient at equilibrium (Fe) was higher in CM than Map (Fe = 0.626 vs.
0.238) and highly variable in both populations (from 0 to 1). The difference between the F
of the adult cohort and the Fe of the progeny cohort was much higher in CM than in
Map (Fe–F = 0.819 vs. 0.323). The estimated magnitude of cumulative inbreeding
depression, measured on greenhouse conditions, was higher in Map than in CM (d = 0.25
vs. d = 0.09).

Relationships between herkogamy and mating system parameters
Correlations between primary selfing rate (r), inbreeding coefficient (F), inbreeding
coefficient at equilibrium (Fe) and herkogamy were only significant in the Map population
(Table 1; Figs. 3 and 4). Primary selfing rate (r) (and hence Fe) were negatively associated
with herkogamy only in Map population (Table 1; Figs. 3A and 3B), indicating that
individuals with reverse herkogamy or without herkogamy had progenies with higher
selfing rate and inbreeding coefficient than plants with approach herkogamy. The best beta
regression model between r and herkogamy was fitted with the log link function according
to the Akaike’s criterion (Table S2). In addition, the breeding history of each maternal
lineage (F) was associated with selfing (r) in the Map population only (Figs. 4A and 4B),
but not with herkogamy in either of the two populations (F vs. herkogamy)

Figure 2 Histogram and boxplot graphs of outcrossing rate (t) for two populations of Datura inoxia
in Mexico: (A) Cañada de Moreno and (B) Mapimí. Boxplots show quartiles and the median value for
each population. Full-size DOI: 10.7717/peerj.10698/fig-2
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(Table 1; Figs. 3C and 3D). The Fe – F difference was positively correlated with primary
selfing rate (r) only in CM (Table 1; Figs. 4C and 4D). We did not find any indication of a
significant correlation between Fe–F and herkogamy (Table 1; Figs. 3E and 3F).
As expected, progenies’ inbreeding coefficient (Fe) was positively correlated with primary
selfing rates (r) in both populations (results not shown).

DISCUSSION
In annual, short-lived, plant species, the evolution of plant mating system in association
with flower traits, such as herkogamy, depends on the constancy of natural selection within
populations according to the opportunity for cross- and self-fertilization every year
(Shirk & Hamrick, 2014). Because herkogamy is a direct modifier of the efficiency of self-
and cross-pollination, it is likely to coevolve with the plants’ mating system, and the
different within-population lineages would be expected to vary in their history of
inbreeding. Here, we evaluated the association of herkogamy, mating system and
inbreeding history at a lineage level within two populations of Datura inoxia, an
annual/short lived species distributed in arid and semiarid environments in Mexico and
southern USA.

We found that herkogamy, selfing rates and inbreeding coefficients, as well as
associations among them, varied considerably between and within populations. In line
with expectations the Map population, where plants show pronounced approach
herkogamy, had higher average outcrossing rate and lower inbreeding coefficient of
progenies than individual plants that exhibited absence of and/or reverse herkogamy.
These results are in line with the hypothesis of adaptive herkogamy as a mechanism that

Table 1 Correlation between primary selfing rate (r), inbreeding coefficient (adult cohort: F),
inbreeding coefficient at equilibrium (progeny cohort: Fe), the difference between Fe and F (Fe–F)
and herkogamy in two populations. Parameter estimates (above diagonal) and their standard error
(below diagonal). Significant values are shown in bold type. Statistical models used in each test are
described in the Materials and Methods section.

Cañada de Moreno r Herkogamy F Fe Fe-F

r – 0.023 0.307 0.982*** 0.739**

Herkogamy 0.016 – −0.001 0.014 0.015

F 0.234 0.014 – na na

Fe 0.044 0.012 na – na

Fe-F 0.239 0.016 na na –

Mapimí

r – −0.029* 0.572** 0.854*** 0.283

Herkogamy 0.012 – −0.006 −0.009* −0.004

F 0.154 0.005 – na na

Fe 0.042 0.004 na – na

Fe-F 0.158 0.005 na na –

Notes:
* P < 0.05 indicate significant association between variables.
** P ≤ 0.005 indicate significant association between variables.
*** P < 0.0005 indicate significant association between variables.
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prevents selfing in populations and avoid inbreeding between individuals (Web & Lloyd
1986; Lloyd, 1992). The relationship between selfing/outcrossing rate and herkogamy
has been found in other species of Datura such as D. stramonium (Motten & Antonovics,
1992; Motten & Stone, 2000) and D. wrightii (Elle & Hare, 2002) as well as in other
species like Gilia achilleifolia (Takebayashi & Morrell, 2001), Clarkia temblorensis
(Holtsford & Ellstrand, 2006), Mimulus ringens (Karron et al., 1997), Nicotiana glauca
(Schueller, 2004), Aquilegia canadensis (Herlihy & Eckert, 2007), Gesneria citrina (Chen
et al., 2009) and Dalechampia scandens (Opedal et al., 2016).

Figure 3 Relationship between primary selfing rate (r) (A and B), inbreeding coefficient in adult
plants (F) (C and D), and inbreeding coefficients at equilibrium (Fe) (progeny cohort; E and F),
in relation to herkogamy in plants of Datura inoxia from Cañada Moreno and Mapimí,
respectively. A significant relationship was detected only for r vs. herkogamy in the Mapimí popula-
tion. Full-size DOI: 10.7717/peerj.10698/fig-3
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In the adult cohort of D. inoxia,we did not detect a significant association between the
inbreeding coefficient and herkogamy. This result suggests that the inbreeding history of
each lineage does not depend on herkogamy alone, and that purging of more inbred
individuals and/or biparental inbreeding may also come into play (Charlesworth &
Charlesworth, 1987). Reports of low survival rate of inbred individuals at early life,
that is, high inbreeding depression, suggests reductions of genetic load in adult plants
(Medrano, Herrera & Barret, 2005; Abdelaziz et al., 2014). In fact, in partially selfing
populations it has been observed that F in progeny cohorts increase in relation to F of the
parental population, and later decrease again in the adult stage (Ritland, 1990; Eguiarte
et al., 1993). If the purge of inbred individuals occurs at Mapimí, the relationship
between selfing rate in relation to flower herkogamy would be related to the differential
contribution of lineages to the next generation, yielding evidence of natural selection on
herkogamy (Medrano, Herrera & Barret, 2005).

Although we do not know the causes of the relationship between herkogamy and
mating system found in this study, fluctuation of environmental factors, especially
pollinator abundance, as it happens at Mapimí, can contribute to the maintenance of
variation in herkogamy within populations. Variation in herkogamy is linked with plants’
reproductive assurance when pollinators are scarce, or with high outcrossing rates

Figure 4 Correlation between inbreeding coefficient (F) (A and B) and the difference between
inbreeding coefficient at equilibrium (Fe) and F (Fe–F) (C and D), in relation to primary selfing
rate (r) in plants of Datura inoxia from Cañada Moreno and Mapimí, respectively. Model fitting is
provided for two significant relationships (B and C), Fitted model is depicted only for the significant
correlations (B and C). Full-size DOI: 10.7717/peerj.10698/fig-4
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when abundant (Kalisz, Vogler & Hanley, 2004; Goodwillie, Kalisz & Eckert, 2005; Chen
et al., 2009). Since outcrossing rates in Mapimí are related to herkogamy, episodes of
differential (or even contrasting) selection on herkogamy among lineages over time may
have favored either outcrossing (approach herkogamy) or selfing (no herkogamy and/or
reverse herkogamy). Further, phenotypic/genetic variance in herkogamy could facilitate
the maintenance of the mixed mating system of D. inoxia in Mapimí. The among
individual plants variance component in herkogamy strongly suggests genetic differences
between plants, beyond within-individual variance (i.e., heritability > 0). In this sense,
our results may provide evidence the herkogamy is a functional trait linked to the
reliability of pollinator service in the different populations (Moeller, 2006; Opedal, 2018).

On the other hand, the mating system of the population of Cañada de Moreno is
predominantly selfing, and no association between selfing rates, herkogamy and
inbreeding coefficients in the adult cohort were detected at this locality. Nevertheless,
like the Mapimí population, there is a positive relationship between selfing rate and the
Fe–F difference. These results suggest inbreeding depression in selfing individuals
followed by genetic purging (Ritland, 1990). The latter explanation is supported by the
contrasting average values of inbreeding depression found in the two populations of
D. inoxia, being lower in CM than in Map. Theoretical models and experimental
results have demonstrated that mutations that cause strong inbreeding depression can
be purged from one generation to the next (Willis, 1999; Charlesworth & Willis, 2009), but
mutations that cause mild inbreeding depression and are rare can be maintained in
populations for multiple generations (Lande, Schemske & Schultz, 1994; Charlesworth &
Willis, 2009). The expression of mutations with mild deleterious effects among inbred
individuals of D. inoxia can help to explain the differences in inbreeding coefficients
between progeny and adult generations and its relationship with selfing rate.

The magnitude of inbreeding depression has been shown to be higher in more stressful
than benign environments (i.e., field vs. greenhouse conditions) (Crnokrak & Roff,
1999; Armbruster & Reed, 2005; Cheptou & Donohue, 2011; Fox & Reed, 2011). Both
inbred and outcross individuals may perform better under benign environments, and
inbreeding depression expresses only as limit and/stressful conditions (Angeloni, Ouborg &
Leimu, 2011). Further, it has been predicted that selection against deleterious mutations
occurs mainly during the early life history stages and lowers towards later life cycle stages
(Angeloni, Ouborg & Leimu, 2011). In this study the assessment of early inbreeding
depression under greenhouse conditions could have underestimated the magnitude it can
reach in natural, stressful conditions, inhabited by Datura inoxia. Yet, since we did
detect early-acting inbreeding depression, results seem to be in agreement with expected
trends: CM population, a predominantly selfing population, expresses low value of
inbreeding depression than Map, possibly due to a faster purge of deleterious alleles.

Phenotypic variance in herkogamy results from genetic, developmental and
environmental factors (Herlihy & Eckert, 2007; Vallejo-Marín & Barrett, 2009; Camargo
et al., 2017). However, the evolution of mating system, linked to floral traits like
herkogamy, requires additive genetic variance. Additive genetic variance of corolla length
and herkogamy has been detected in populations of the annual Datura stramonium
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(Motten & Stone, 2000; Juárez-Ramírez, 2008; Camargo et al., 2017). Further, a quantitative
survey of evolvability of herkogamy measured as mean-scaled additive variance, points
out the high evolutionary potential of herkogamy compared to male and female sexual
organs or flower size (Opedal et al., 2017). Our results, derived from the partition of
phenotypic variance in herkogamy among individual plants and random variation (within
individual variation or residual term), indicate a large amount of proportional variance
between individuals in each population, but notably more so in Mapimí (77.32%) than
in Cañada de Moreno (50.62 %). Thus, there is a strong indication that individual
variation in average herkogamy in D. inoxia in Mapimí is genetically based and potentially
adaptive (see Jiménez-Lobato & Núñez-Farfán, 2012). High within-individual variation
could be adaptive if, on average, high intra-individual variation is linked to higher fitness
(Herrera, 2009; Camargo et al., 2017). Otherwise, high intra-individual variation can be
maintained in environments that are highly unpredictable in pollinator’s service
along time. In the Cañada de Moreno population, the high within-plant variation in
herkogamy could limit selection on it, constraining an adaptive response in this population
(Falconer & MacKay, 1996; Lynch & Walsh, 1998).

Within-individual variation in plant traits, particularly in flower characters, can be
developmental in origin or elicited in response to environmental variability (Herrera, 2009;
Camargo et al., 2017). The stability of development or homeostasis has been associated
with different levels of heterozygosity, so that heterozygous individuals better buffer
environmental variation (Lerner, 1954). However, there is not clear consensus on this
hypothesis; some evidence points to the potential effect of inbreeding, with the fixation
of deleterious alleles and genetic drift influencing individuals’ level of developmental
stability (Clarke, 1993). To what extent inbreeding and deleterious mutations are
responsible for intra-individual flower trait variation in the CM population is not known
yet, but evidence suggests some developmental variation in flower size and herkogamy, as
shown in one highly inbred population of D. stramonium, is linked to environmental
variation (Camargo et al., 2017)

CONCLUSIONS
Associations between herkogamy, mating system and inbreeding history at a lineage
level are expected to occur within populations of self-compatible, hermaphroditic plant
species. In D. inoxia, as in other species of Datura, approach herkogamy is associated with
higher outcrossing rates and low levels of inbreeding in progeny. The results of this study
show that populations of D. inoxia are diverging in mating system characteristics with
important genetic implications.
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