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Abstract
The paper focuses on the selected plant lipid issues. Classification, nomenclature, and abundance of fatty acids was
discussed. Then, classification, composition, role, and organization of lipids were displayed. The involvement of lipids in
xantophyll cycle and glycerolipids synthesis (as the most abundant of all lipid classes) were also discussed. Moreover, in
order to better understand the biomembranes remodeling, the model (artificial) membranes, mimicking the naturally
occurring membranes are employed and the survey on their composition and application in different kind of research was
performed. High level of lipids remodeling in the plant membranes under different environmental conditions, e.g., nutrient
deficiency, temperature stress, salinity or drought was proved. The key advantage of lipid research was the conclusion that
lipids could serve as the markers of plant physiological condition and the detailed knowledge on lipids chemistry will allow
to modify their composition for industrial needs.
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Plants are constantly exposed to stress resulting from the
conditions in which they are growing. They have to adapt to
the external changes like humidity, salinity, or temperature.
In order to maintain the normal physiological function and
survive in the unfavorable environmental conditions, plants
have developed defense mechanisms. Among them are
alterations in the content of lipids, proteins or other mole-
cules. For example, some of the plants are sensitive to
temperature changes, e.g., Cucumis sativa L. [1] or Sola-
num lycopersicum L. [2], whereas others are less sensitive
to temperature fluctuations, e.g., Arabidopsis thaliana L. [3]
or Spinacia oleraceae L. These differences could be par-
tially explained by the quantitative and qualitative changes
in the lipid composition, which in turn triggers membrane
fluidity and its function. Therefore, it is worth to present the
selected lipid issues with the aim of explaining differences

in their content, specific role in plants and emphasizing their
impact in adverse conditions.

Classification of Fatty Acids in Plants

Nowadays, structure and role of about 400 different fatty
acids are known in the plant kingdom [4]. Some of them are
inevitable in the proper function of plant cells and some
have positive effects on human health (e.g., anti-
inflammatory [5–7], anticancer [8, 9], antibacterial [10],
and antiparasitic activity [11]) or are demanded in the dif-
ferent branches of industry, like food, pharmaceuticals, and
cosmetics production [12–14].

The plant membranes are composed mainly of lipids
which possess a hydrophilic, polar head attached to a gly-
cerol backbone and a hydrophobic tail built of two fatty
acids. Lipids form a hydrophobic barrier that separates cells
and organelles from the environment [15, 16]. The core
building block of fatty acids is a hydrocarbon chain with a
carboxyl group (-COOH) located on its terminal end. Based
on the chain length of fatty acids, they are classified as:
short-chain (aliphatic tails of up to 5 or even 7 carbons),
medium-chain (aliphatic tails of 6–8 up to 12–14 carbons),
long-chain (aliphatic tails of 13–18 up to 22 carbons), or
very long-chain fatty acids (aliphatic tails longer than 22
carbons; >C22) [17–21]. Most often, the number of carbon
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atoms in the plant tissues is between 14 and 24. Moreover,
the aliphatic chain can be saturated (saturated fatty acid,
SFA) or unsaturated (unsaturated fatty acid, UFA), where
all carbon–carbon linkages form single bonds, or some
carbons are matched by one or more double bonds,
respectively. In addition, UFA can be divided into mono-
unsaturated (monoenoic) fatty acids (MUFA) and poly-
unsaturated fatty acids (PUFA) with exactly one or at least
two double bonds, respectively [22, 23]. Fatty acids are the
building blocks of lipids.

Nomenclature of Fatty Acids

According to the International Union of Pure and Applied
Chemistry (IUPAC) nomenclature of fatty acids, they can
be formed using three systems of rules known as the
shorthand formulas, the systematic names and the trivial
names. The triple nomenclature can be demonstrated on one
of the saturated fatty acids: C16:0—shorthand formula;
hexadecenoic acid—systematic one; palmitic acid—trivial
name. More complicated names can be constructed for the
MUFA and PUFA, where one or more double bounds in
acyl chain occur. In the case of the fatty acid possessing one
double bound, C16:1 (n-7), it can be denoted as cis-hex-
adec-9-enoic acid (systematic formula) or palmitoleic acid
(trivial name) [24]. For PUFA, two examples with different
numbers of double bonds in the molecule are shown below
in order to clarify the nomenclature. α-linolenic acid with
the cis double bond located at the third region in carbon
atom (n-3) marked from the end with methyl group is
described as the omega (ω)-3 with the general structure
CH3CH2(CH=CHCH2)nCOOH, where n shows the num-
bering of cis double bond from the methyl terminus
[24, 25]. In addition, the position of the double bond in the
carbon chain can be designated by delta (Δ) before the full
name of fatty acid, counting carbons from the carboxyl
group [26, 27]. Linoleic acid (C18:2) with 18 carbon chain
and two cis double bonds at C-9 and C12 from the carboxyl
acid group could be specified as: 18:2 cis-Δ9, cis-Δ12

octadecadienoic acid; cis, cis-9,12-octadecadienoic acid or
cis,cis-6,9-octadecadienoic acid. Sometimes PUFA are
designated without ω (C18:3), but it is unequivocal and can
be represented by a few different fatty acids: C18:3ω1,
C18:3ω3, C18:3ω6, or C18:3ω9 [22, 23, 28]. The sys-
tematic names of fatty acids are derived from the names of
the main straight chain by the substitution of suffix -e with
-oic, e.g., hydrocarbon chain of C18 saturated fatty acid is
octadecane and the acid is called octadecanoic acid (C18:0)
[22]. The exemplary formula of fatty acid was presented in
Fig. 1. Some trivial names of fatty acids origin from their
natural sources, like palmitic acid, which was detected as a
palm oil component; oleic acid (C18:1 cis-Δ9)—occurred in

olive oil [24] and myristic acid (tetradecanoic acid)—was
first identified in the Myristicaceae family [29].

Fatty Acids Composition in Plants

Some of the plant families are more often implemented into
the research on fatty acids. Among them are Fabaceae and
Asteraceae. To the Fabaceae belong, i.e., Arachis hypogaea
L. [30], Astragalus L. [31], Pisum sativum L. [32], and to
Asteraceae: Anthemis altissima L. [33], A. arvensis L. [34],
A. talyschensis L. [35], Chamaemelum nobile L. [36],
Tagetes patula L. [37]. Other families also have their
representatives in the experiments on lipids, e.g., Lauraceae
with Cinnamomum camphora and Umbellularia californica
[31], Vitaceae with Cissus populnea Guill. and Perr. [31],
Polygonaceae with Fagopyrum esculentum and Brassica-
ceae with Arabidopsis thaliana. Species listed above are
used in pharmacy and medicine, e.g., Astragalus (recom-
mended in immune disorders) [31] and A. altissima (possess
sedative, digestive and antimicrobial activity) [38–40];
nutrition, e.g., A. hypogaea, F. esculentum (applied in
human diet); industry, e.g., C. camphora and U. californica

Fig. 1 Exemplary formula of fatty acids. Fatty acids are numbered
from -COOH group (Δ) and from -CH3 group (ω). a Cis-oleic acid—
18:1—is with one double bound Δ9 (IUPAC: (9Z)-Octadec-9-enoic
acid), b palmitoleic acid—16:1—is with one double bound Δ9

(IUPAC: (9Z)-Hexadec-9-enoic acid), c linoleic acid—18:2—is with
two double bounds Δ9,12 (IUPAC: 9-cis,12-cis octadecadienoic acid),
d α-linolenic acid—18:3—is with tree double bounds Δ9,12,15 (IUPAC:
(9Z,12Z,15Z)-octadec-9,12,15-trienoic acid)
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(both used in biodiesel production, especially C12:0-14:0)
[17]; and the research, e.g., A. thaliana [41].

The summary of various plant families, species and plant
parts (such as the seeds, leaves, flowers, stem oils, and
roots) in Table 1 shows the considerable quantitative and
qualitative differences in the fatty acids composition. Below
are presented some specific examples concerning the seeds,
aerial parts, leaves, flowers, and leafy stems.

The same parts of the different plants can vary sig-
nificantly in the composition of fatty acids, e.g., in seeds.
The seeds of peanuts (A. hypogaea) contained the highest
amounts of oleic (C18:1) and linoleic (C18:2) acids reach-
ing 50% and 30%, respectively [30]. In the essential oil
from the aerial parts of A. arvensis, the palmitic acid
achieved ~21% [42], whereas 8.8% in the seeds with the
total PUFA/SFA ratio equal 7.17 [34]. In the seeds of C.
populnea, the most abundant among fatty acids were pal-
mitic (C16:0)—40%, oleic (C18:1n-9)—27%, stearic
(C18:0)—16.5%, and linoleic (C18:2n-6)—11.86% acids.
Oil from the C. papulnea seeds contained SFA, which
makes it appropriate for frying food because it is stable at
increasing temperatures and stay resistant to oxidation [43].
The highest relative content of fatty acids in the F. escu-
lentum seeds was determined for linoleic (C18:2n-6) (in the
range 35.54–47.57%), oleic (C18:1n-9) (in the range
20.96–40.76%), and palmitic (C16:0) (in the range
13.86–26.42%) acids and the range of their values was
dependent on the plant part (whole grain, hulls and bran). In
addition, other fatty acids were identified in smaller quan-
tities, i.e., lauric (C12:0), myristic (C14:0), palmitoleic
(C16:1), stearic (C18:0), α-linolenic (C18:3n-3), and ara-
chidic (C20:0) acids [44]. Moreover, α-linoleic acid is a
precursor of the phytohormone, jasmonic acid, which is
involved in the response of plants to the biotic and abiotic
stress conditions [30]. Furthermore, both in the transgenic
and non-transgenic seeds of A. thaliana the most abundant
fatty acids were 18:2 (~30%) and 18:3 (~19%) [30] and the
PUFA/SFA ratio was 4.05 [34].

The leaves of plants like C. camphora and U. californica
in the presence of thioesterases accumulated 52 and 40% of
C12:0 and C14:0, respectively, which protected plants
against the fatty acids modification and deprivation of the
membrane homeostasis. Triacylglycerols compose the fatty
acids, e.g., C12:0, C14:0, C16:0, but their proportion
depends on the expression or co-expression of thioesterases
in the plants. Fatty acids are very important during mod-
ification of the lipid profiles in the plant membranes because
their unbalance causes undesirable chlorosis and cell death
[17]. In A. talyschensis, the composition of fatty acids
depended on the plant part, thus SFA in the flowers was
1.3% and in the leaves—9.4% and UFA was 17.7% in the
flowers and 87.0% in the leaves—being not detected in the
stem. The proportion of PUFA/SFA in the flowers and Ta
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leaves was 13.62 and 9.25, respectively [35]. In addition,
both leafy stems and flowers of C. nobile contained fatty
acids: C16:0 (~18%), C18:1n-9 (~23%), C18:2n-6 (~29%),
C18:3n-3 (~18%), and the proportion of PUFA/SFA was
1.72 [36].

Classification and Composition of Lipids in
Plants

In the plant membranes, three main classes of lipids appear,
i.e., glycerolipids, sphingolipids, and sterols (Fig. 2). The
most abundant are glycerolipids, which are divided into four
groups: phospholipids (PL), galactolipids (GL), triacylgly-
cerols (TAG), and sulfolipids (SL) [45, 46]. Phospholipids
containing phosphorus are major constituents of the mem-
branes and they have different head groups modified by
choline, ethanolamine, serine, or inositol and are described as
phosphatidylcholine (PC), phosphatidylethanolamine (PE),
phosphatidylserine (PS), and phosphatidylinositol (PI),
respectively. Phospholipids are also characterized by different
length and the degree of unsaturation of their fatty acyl chains.
Variations in their properties have an impact on the membrane
characteristics. This class of lipids is unevenly distributed
between the different membranes in the cell [24, 47–49]. By
contrast, in photosynthetic membranes of plants the major
constituents are the nonphosphorus galactolipids divided
mainly into two classes, monogalactosyldiacylglycerol
(MGDG) and digalactosyldiacylglycerol (DGDG). Moreover,
the nonphosphorous are also sulfolipids with sulfur-
containing lipid, sulfoquinovosyldiacylglycerol (SQDG)
[50]. Both MGDG and DGDG and SQDG are synthesized
exclusively in the chloroplasts [51–54]. Of the grana thyla-
koid membrane area, 20–30% is occupied by lipids, and the
most part by proteins or photosynthetic protein complexes
[55, 56]. The thylakoid membranes in higher plants contain
four glycerolipids: MGDG, DGDG, SQDG, and phosphati-
dylglycerol (PG) [57]. Of all chloroplast lipids, MGDG and
DGDG can reach 52% and 26%, respectively [58, 59]. The
exemplary composition of glycerolipids in the membranes of
spinach chloroplasts and their thylakoids are presented in
Table 2.

Plant sphingolipids are grouped into four classes: gly-
cosyl inositolphosphoceramides (GIPC), glucosylceramides
(GCer), ceramides (Cer), and free long-chain bases (LCB)
[60, 61]. They are built of a ceramide backbone composed
of a long-chain base and a long-chain fatty acid matched by
esterification. Both Cer and LCB can be phosphorylated and
de-phosphorylated and Cer, additionally, glucosylated [62].
The composition of LCBs is mainly formed from phyto-
sphingosine and its desaturated form, but others are also
known, e.g., sphinganine and sphingenine [63]. The quan-
tity of sphingolipids differs significantly depending on the
plant species and tissues, but mostly reaches up to 10%
of the total lipids in plants [64]. In the total amount of
sphingolipids in the leaves of Arabidopsis, the ratios of
GIPC:GCer:Cer:LCB were as follows 64:34:2:0.5%, prov-
ing that GIPC and GCer were the most prevailing [65]. In
the tonoplast, sphingolipids were detected in the range from
10 to 20% of the total membrane lipids [66, 67].

In plants, over 250 different sterols (phytosterols) have
been identified. Among them most frequently are detected
these belonging to 4-desmethylsterols, i.e., campesterol,
stigmasterol, and sitosterol [68, 69]. Phytosterols can appear
in the forms of free sterols, steryl esters, steryl glycosides,
and acylated sterol glycosides [69].

Lipids Organization in Membranes

Fatty acids composition (with the proportion of saturated and
unsaturated fatty acids) influences lipid composition (specific
proportions) and organization in plant membranes. For
example, the percentage content of lipids in the thylakoid
membranes of green plants is as follows: MGDG~50%,
DGDG~25–30%, SQDG~5–15%, PG~5–15% [70, 71]. The
most popular fatty acids in the skeleton of plant galactolipids
are 18:3/16:3 as 34:6 MGDG, 18:3/18:3 as 36:6 MGDG,
18:3/16:0 as 34:3 DGDG, and 18:3/18:3 DGDG in the
approximate proportion: 80%, 16%, 16%, 70%, respectively
[72]. The biological membranes have different composition
and contain the domains in their structure, called rafts, which
are enriched in sphingolipids and sterols with reduced level of
unsaturated fatty acids, esp. in phospholipids [73]. It means
that rafts are structures of lesser fluidity than non-raft areas.

Fig. 2 Classification of plant membrane lipids [142]

Table 2 Composition of lipids in the membranes of spinach
chloroplasts and their thylakoids

Composition of lipids MGDG DGDG PC PG SL

Outer membrane of chloroplast 17 29 32 10 6

Inner membrane of chloroplast 49 30 6 8 5

Thylakoids 52 26 4.5 9.5 6.5

The proportion of the lipids was calculated as the weight of the
percentage of fatty acids [59]
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Lipids perform many functions (Table 3). Among others,
they influence performance, regulation, and physical prop-
erties of the membranes [74, 75], serve in the distribution,
organization, and functioning of bilayer spanning proteins
[76], are involved in compartmentalization of cells and
organells and are integral components of the photosynthetic
protein complexes of the electron transport chain [55].
Lipids can also form other structures, e.g., plastoglobules
and stromules in the chloroplasts. Plastoglobules are lipid
droplets enclosed in lipid monolayer, which is connected to
the stroma leaflet of the thylakoid membrane. They can be
found in high number in etioplasts and in plastids of
senescent leaves. Stromules are tubular extensions of both
chloroplast envelopes into the cytosol and filled with
stroma, but deprived of thylakoids. The number of plas-
toglobules and stromules increases during environmental
stresses [77, 78].

Lipids composition undergoes remodeling in the face of
various physiological [30, 73, 79–82], and environmental
conditions [83–85]. Moreover, the artificial membranes are
composed and applied to broaden our understanding of
nature. The model membranes mimicking the natural ones
are dedicated to determining the network organization and
reorganization of the molecules, structural and functional
interactions and mechanisms in a simplified composition
combined of a few different lipids (mostly two to five)
(Table 4). Models of the artificially formed membranes are
involved in the research on the molecular membrane
architecture and structure [59, 86–88] based on the fluor-
escence [88] and microscopic techniques [87], including
photosynthetic performance [89], xanthophyll cycle

analysis [87, 90, 91], and free radicals connection with the
environmental stress in plants [92]. For example, the mix-
ture of two lipids, MGDG:DGDG in 2:1 ratio can be

Table 3 Lipids role in plants and their importance for humans [27, 40, 145, 146]

Role and importance of lipids

Plants Humans

The main structural components of biological membranes Nutrients (improve the quantity and quality of oils for food
and feed)

Provide fluidity and flexibility in the membranes Medical/pharmaceutical application in health disorders

Serve as permeable and selective barriers to the external environment of cells
(membrane trafficking)

Cosmetics (storage oils that accumulate in seeds used, e.g., soaps
and cosmetics)

Modulate the physical properties of membranes (their surface charges,
curvature, or clustering of proteins)

Chemicals (storage oils used e.g., in paints and detergents)

Provide the integrity of cells and organelles (a hydrophobic barrier for the
membrane)

Petrochemical industry (storage oils used as renewables for the
production of biodiesel)

Key components in the establishment of organelle identity and dynamic

Components of enzyme system (e.g., xanthophyll cycle)

Mediators of interactions with numerous membrane-associated proteins (e.g.,
photosynthetic proteins)

Signal molecules regulating cell metabolism

Major regulators of many fundamental cellular processes (cell division, cell
growth, and gene expression)

Energy storage compounds

Table 4 Proportion of lipids in the model membranes

Components proportion References

MGDG:DGDG
2:1

[59, 86, 87]

MGDG:DGDG
1:2

[88]

MGDG:DGDG
30:70

[87, 91]

PC:MGDG
30.1:12.9

[90]

MGDG:DGDG:SQDG:PG
50:28:9:13
47:27:12:14

[89]

MGDG:DGDG:SQDG:EPG
40:30:15:15

[147]

PC:PE:PI:PG:PA
44:22:18:11:6

[92]

DGDG:MGDG:SL
73:24:2

[87]

POPG:DGDG
1:1

[88]

MGDG monogalactosyldiacylglycerol, DGDG digalactosyldiacylgly-
cerol, PC phosphatidylcholine, SQDG sulfoquinovosyldiacylglycerol,
POPG 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, EPG Egg
phosphatidylglycerol; PA phosphatidic acid, SL sulfoquinovosyldigly-
ceride, PI phosphatidylinositol, PE phosphatidylethanolamine, PG
phosphatidylglycerol
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applied as the model of plant lipids in thylakoids for the
LHCII (light-harvesting complex) measurements [86].

Based on the type of the lipid phase produced by lipids in
the aqueous systems, we differentiate the nonbilayer- and
bilayer-forming lipids. Nonbilayer-forming lipids form the
ordered solid phases and bilayer-forming ones—liquid-
disordered phases [93] (Fig. 3). The nonbilayer-forming
lipids possessing small polar head groups like MGDG and
PE with elevated content of PUFAs form inverted micelles
or tubular structures due to their cone-like shape and form
an inverted hexagonal (HII) phase when dispersed in the
aqueous solutions. The important functions of MGDG are
to promote membrane stacking, stabilizing the inner mem-
brane leaflet in grana disc [88] and conservation of photo-
synthetic energy [94]. Furthermore, the proportion of the
thylakoid nonbilayer lipids are crucial, because the higher
content of the MGDG is responsible for the membrane
permeability and thermal stability of PSII [71].

The bilayer-forming lipids with large head groups, such
as DGDG, SQDG, PC, PG, and the decreased content of
long-chain PUFAs exhibit a cylindrical shape and form the
lamellar Lα phase [72, 93–96]. However, the increased ratio
of DGDG to MGDG enhanced the stability of the thylakoid
membrane [72]. Protein arrays are related with the phase
transition of MGDG from a bilayer to a nonbilayer HII

phase which was observed in the stress conditions, e.g.,
cold, low light [97], osmotic stress, and in fatty-acid
mutants [98]. An association between lipids and protein
organization is explained by the lateral membrane pressure
hypothesis [99] known as ‘force from lipids’ (FFL) prin-
ciple [100].

Lipids in Xanthophyll Cycle

The plants have developed the unique photoprotection
mechanism, which prevents the excess absorption of light
energy and consequently protects the photosynthetic appa-
ratus from the oxidative damage. This process is called
xanthophyll cycle [101]. In the xanthophyll cycle, the
conversion of violaxanthin into zeaxanthin is done by vio-
laxanthin deepoxidase (VDE) under high light [102–104].

VDE localizes to the thylakoid lumen and is regulated by
lumen pH [90, 105] and by binding to MGDG. It means that
the MGDG molecules can serve as the docking sites for the
xanthophyll cycle enzymes. In chloroplasts, HII can be
established by MGDG, but in vitro VDE can also be sti-
mulated by binding to PE [106]. The xanthophyll cycle
pigments are located in the hydrophobic region of mem-
brane with an easy access to the HII phase [93, 107].

The studies concerning the location of the xanthophyll
cycle in the transient membrane domain combined with
LHCII, MGDG, VDE allowed to prove that MGDG have a
crucial function in the stabilization of the structure of the
LHCII protein in prevention its aggregation in PSII [71].

Synthesis of Glycerolipids in Plants

In plants, the most abundant class of lipids are glycer-
olipids, therefore first, their synthesis based on two path-
ways, then a brief view of the synthesis of PL, GL, TAG,
and SL are presented.

Fatty acids are incorporated into glycerolipids in two
different ways called the prokaryotic (plastidial) and the
eukaryotic (cooperative) pathways located in the chloroplast
and ER, respectively (Fig. 4) [15, 16, 108, 109]. The pro-
karyotic pathway is involved in PG synthesis in all plants,
but in the glycerolipid synthesis only in 16:3 plants (which
means 16 acyl carbons and 3 double bonds) in the sn-2
position of MGDG molecule [110]. Moreover, 16:3 plants
are those which produce up to half of the MGDG in the
plastidial pathway [111]. The eukaryotic pathway is
involved in the glycerolipid synthesis in all plants, but
mostly in 18:3 plants (which means 18 acyl carbons and 3
double bonds) in the sn-2 position of MGDG molecule
[110]. Irregardless pathway type, biosynthesis of membrane
lipids starts from the formation of PAs, which are utilized to
produce plastidic lipids or phospholipids. Phosphatidic acid
produced in the chloroplasts can be converted to dia-
cylglycerol (DAG), which then serves as a precursor for
plastidic lipid synthesis [45, 110, 112, 113]. PA is an
intermediate molecule in the lipid synthesis and can be
converted to and from PC and DAG because of the low
energy requirements to remove them from membranes. PC
could be a substrate for MGDG synthesis and DAG can be

Fig. 3 Division of lipids based on the type of the lipid phase produced
in aqueous systems Fig. 4 Prokaryotic and eukaryotic pathways [45, 110, 113]
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synthesized de novo with fatty acids, then removed from
other lipids or derived from TAG turnover [111].

The prokaryotic pathway synthesizes four classes of
glycerolipids: three glycolipid classes, i.e., MGDG, DGDG,
trigalactosyldiacylglycerol (TGDG), and one sulfolipid
class, SQDG. In the plant cell, 95% of fatty acids are pro-
duced by the plastidial fatty-acid synthase (FAS) belonging
to the type I FAS [114]. First, coenzyme A (CoA) is con-
verted into malonyl-CoA by acetyl-CoA carboxylase
(ACCase) dependent on light [15]. Next, malonate is
transferred to acyl carrier protein (ACP) by malonyl-CoA:
ACP malonyltransferase (MCMT). Then, the activity of 3-
ketoacyl-ACP synthase 3, 1, and 2 (KAS III, I, and II,
respectively) give the main products of fatty-acid de novo
synthesis: 16:0-ACP and 18:1Δ9-cis-ACP. Fatty-acid
desaturation continues at high rate in the dark period [82].

By contrast, the eukaryotic pathway produces six phos-
pholipid classes, i.e., phosphatidic acid (PA), PC, PE, PG,
PI, and PS [115]. The eukaryotic pathway of 16:0/18:0
DAG moieties can produce around 20% of total DGDG.
During the life cycle of plants, an active lipid exchange
between the chloroplast and ER occurs via the import of the
DAG moiety of PCs from the ER to the chloroplast
envelope where it contributes to the DAG pool used to
synthesize plastidic lipids [45, 110, 112, 113].

Phosphatidylgycerol is synthesized in plastids, ER, and
mitochondria and in chloroplasts it is predominantly synthesized
via the prokaryotic pathway. Phosphatidylcholine, PE, and PI are
synthesized in the ER membrane. Triacylglycerol is mainly
synthesized in the ER and chloroplastic envelope membranes
and accumulates within the membrane bilayer and subsequently
forms lipid droplets in the cytosol [116, 117].

Moreover, some plant species show various proportions
between pro- and eukaryotic pathways [15]. For example, in
Arabidopsis leaves in controlled conditions, ~50% of the
chloroplastic glycolipids (MGDG, DGDG, and SQDG) are
derived from the eukaryotic pathway, in which glycer-
olipids synthesized in the ER membrane are transferred to
chloroplasts and converted into glycolipids [16, 118–120].
Other plants produce only one lipid, PG, in the prokaryotic
pathway [15] and as the result of evolution [121], this
pathway diminished in 18:3 plants [15]. Due to the insuf-
ficient information on prokaryotic pathway in 16:3 plants
[110], the research of this pathway will provide data
allowing to better understand the physiological significance
of the lipid evolution in plants.

The phospholipid biosynthesis can be divided into the
assembly of the phosphatidic acid (PA), formation free or
activated DAG, which may be the sources for the bio-
synthesis of the cellular glycerolipids [122], and formation
of the head group to form the whole glycerolipid molecule
[47]. Both, PE and PC are synthesized in plants in two main
steps. The first one is the conversion of serine to

ethanolamine catalyzed by serine decarboxylase and the
next one is the attachment of phosphocholine or phos-
phoethanolamine to the DAG backbone, catalyzed by
aminoalcohol aminophosphotransferase [47]. Free fatty
acids are exported from chloroplasts [123, 124].

The first step of galactolipid synthesis is the transfer of
galactose from uridine diphosphate (UDP)-galactose (UDP-
Gal) onto DAG in the presence of MGDG synthases. The
second step is the transfer a galactose from UDP-Gal onto
MGDG accompanied by digalactosyldiacylglycerol syn-
thases. Both are localized to the outer envelope. Moreover,
in order to introduce double bonds in MGDG and DGDG,
different plastidial desaturases are synthesized in the inner
[52, 53, 115, 125, 126] and outer envelope [114].

Synthesis of TAGs can be driven by different pathways.
The most straightforward seems to be the pathway in which
the acyltransferases were required for successive acylation
of medium-chain fatty acid in the sn-2 and sn-3 position of
TAGs. Then, diacylglycerol acyltransferase (DGAT)
incorporated, e.g., PC molecules, onto the membrane
[17, 19, 127–130]. TAGs can also be synthesized by PC
involvement by application of its entire DAG molecule or
acyl-CoA may be used as an acyl donor [15]. TAG is
formed from the conversion of the DAG and in reaction of
acylation, DAG can be converted to TAG [108].

Biosynthesis of SQDG comprises three enzymatic steps.
Uridine triphosphate (UTP) and glucose-1-phosphate under
action of the unique stroma-localized UDP-Glc pyropho-
sphorylase UGP3 produced UDP-glucose (UDP-Glc) [131].
Then, UDP-Glc and sulfite are converted into UDP-
sulfoquinovose in the presence of stroma-localized UDP-
sulfoquinovose synthase (SQD1) [132]. Next, sulfoquino-
vose is transferred to DAG and catalyzed by SQD2 loca-
lized in the inner envelope [99].

Understanding of lipids metabolism is essential to study
their regulatory role in the plant growth and development.

Fatty Acids and Lipids Composition under
Adverse Conditions

Fatty acids and lipids are examined in the research on the
reconstitution of membrane system and the effects of stress
conditions. The disturbed balance of the membrane caused
reorganization of the lipid bilayer [126]. The influence of
adverse environment, e.g., nutrient deficiency (especially
nitrogen and phosphate), temperature stress (heat, cold, and
freezing), salinity and drought on membrane lipid compo-
sition was expansively proved (Table 5). Fatty acids and
lipids composition were dependent on the length of time
incubation in adverse conditions [41] or the level of the
unfavorable agents [133]. The observed trends can vary
from an increase in the total amount of each lipid class
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[134] to the elevation [85, 135] or decrease [136] of the
specific fatty acids.

There is a direct linkage between the variations in
membrane fluidity and the changes in membrane thickness
[137]. The content of UFA in lipid membranes increases
with decreasing temperature, but constitutively higher levels
of UFA do not lead to drought tolerance [138]. Moreover,
higher quantity of PUFA in the seeds may result in their
earlier maturity [138]. In the membranes, lipids are required
for photosynthetic thermostability during elevation of tem-
perature [139, 140]. The right temperature is necessary to
protect and stabilize the photosystems, allowing the plant to
maintain a functional and efficient photosynthetic machin-
ery [141]. Temperature elevation reduces the membrane
thickness by hydrophobic interaction in the membrane [76].
Oppositely, upon lowering the environmental temperature
lipid bilayers become more ordered and as a consequence
they become thicker [137].

On the basis of Table 5, it seems that lipids may serve as
the biomarkers susceptible for various environmental
stresses. Therefore, our understanding of plant lipid bio-
synthesis and chemistry is essential for manipulation in
lipids via biotechnology and implementing the results in
different industrial sectors beneficial for humans, e.g.,
pharmacy, cosmetics, chemistry, nutrition (Table 2), e.g.,
Arabidopsis genes can be employed for decreasing the
undesirable fatty acids in Nicotana tabacum [134].

Conclusions

The biosynthesis and lipid composition (the ratio of satu-
rated to unsaturated acids) of biomembranes play a key role
in the functioning of plants. During their growth, plants
adapted to the adverse conditions through the reorganization
of lipid membranes resulting from the change in the fatty-
acid content and, consequently, the formation of lipids.

High level of lipids remodeling in plant membranes
under different adverse conditions (e.g., nutrient deficiency,
temperature stress, salinity, or drought) was proved. The
elevation of UFA results in the membrane resistance to high
temperatures, which allows plants to better adjust to the
environmental changes. The crucial benefit resulting from
the lipids research is that they could serve as the markers of
plant physiological status. Moreover, better understanding
of the biomembranes remodeling and lipids chemistry
allows to generate changes desirable for different sectors of
industry like pharmacy or agriculture and food science.
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