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Abstract: Hydrogen/deuterium (H/D) exchange combined with two-dimensional (2D) NMR spec-
troscopy has been widely used for studying the structure, stability, and dynamics of proteins. When
we apply the H/D-exchange method to investigate non-native states of proteins such as equilibrium
and kinetic folding intermediates, H/D-exchange quenching techniques are indispensable, because
the exchange reaction is usually too fast to follow by 2D NMR. In this article, we will describe the
dimethylsulfoxide (DMSO)-quenched H/D-exchange method and its applications in protein science.
In this method, the H/D-exchange buffer is replaced by an aprotic DMSO solution, which quenches
the exchange reaction. We have improved the DMSO-quenched method by using spin desalting
columns, which are used for medium exchange from the H/D-exchange buffer to the DMSO solution.
This improvement has allowed us to monitor the H/D exchange of proteins at a high concentration of
salts or denaturants. We describe methodological details of the improved DMSO-quenched method
and present a case study using the improved method on the H/D-exchange behavior of unfolded
human ubiquitin in 6 M guanidinium chloride.

Keywords: hydrogen/deuterium exchange; dimethylsulfoxide; nuclear magnetic resonance

1. Introduction

Hydrogen/deuterium (H/D) exchange is a powerful tool to investigate the struc-
ture, stability, dynamics, and interactions of proteins [1–4]. The advancements in two-
dimensional (2D) nuclear magnetic resonance (NMR) techniques have made it possible
to monitor the H/D-exchange kinetics of the individually identified peptide amide (NH)
protons of proteins at amino-acid residue resolution [5,6]. Recent H/D-exchange studies
also employ a mass spectrometric (MS) technique combined with rapid proteolysis and
HPLC separation, which allows us to obtain the exchange kinetics at a nearly single-residue
resolution [4,7,8]. In H/D-exchange experiments, the exchange reaction of each NH group
of a protein to ND takes place in D2O. The exchange kinetics of the NH proton are deter-
mined by a structural opening reaction of the NH group and the intrinsic exchange rate
constant, kint, of the NH proton, and are represented by:

NHcl
kop


kcl

NHop
kint−→ ND, (1)

Molecules 2022, 27, 3748. https://doi.org/10.3390/molecules27123748 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27123748
https://doi.org/10.3390/molecules27123748
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-3514-4672
https://orcid.org/0000-0001-8144-740X
https://orcid.org/0000-0002-3513-5701
https://orcid.org/0000-0001-7187-9612
https://doi.org/10.3390/molecules27123748
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27123748?type=check_update&version=2


Molecules 2022, 27, 3748 2 of 17

where NHcl and NHop denote the closed and open states of the NH group, ND indicates
the amide group after H/D exchange, and kop and kcl are the opening and closing rate con-
stants [1–4]. Under the steady-state condition, the observed H/D-exchange rate constant,
kobs, is thus given by:

kobs =

(
kop

kop + kcl + kint

)
·kint. (2)

The kint of each NH proton of a protein depends on solution conditions (pH, temperature,
and salt concentration), neighboring residues (i.e., the amino-acid sequence), and isotope
effects. Englander and his colleagues [9–12] accurately calibrated these effects on kint and
reported the calibration parameters, from which we can quantitatively estimate the kint
value of each NH proton of the protein.

The protection factor, P, which represents the degree of protection of the NH group
against H/D exchange is given by the ratio of kint to kobs as:

P =
kint

kobs
. (3)

The P value of native globular proteins is as large as 106–109, which corresponds to the
structural opening free energy of 8–13 kcal/mol. This free energy change is equivalent to the
free energy change of the global unfolding for each protein, indicating that the H/D-exchange
reactions of the most stable NH groups are brought about by global unfolding [13,14].

A native-state H/D-exchange method was developed by Bai et al. [15] in 1995, and
the H/D-exchange behavior at low concentrations of denaturants was characterized by
this method. Temperature or pressure perturbation was also used in the native-state H/D
exchange [16–18]. The method is effective for studying different kinds of protein dynamic
behavior, ranging from local fluctuations up to sub-global and whole-molecule global
unfolding reactions [15,19–21]. The method has been applied to a large number of proteins
(reviewed in [4,19–21]).

The H/D-exchange techniques have also been used effectively for studying non-native
states, including equilibrium unfolding intermediates and transient intermediates in kinetic
refolding reactions of proteins. The molten globule (MG) state, which has a substantial
amount of secondary structure but lacks the specific tertiary side-chain packing charac-
teristics of native proteins, is an equilibrium intermediate state under mildly denaturing
conditions for numerous globular proteins, many with more than ~100 residues [22–24]. In
the 1990s, the structural characterizations of the MG state by H/D-exchange 2D NMR were
carried out for a number of globular proteins, including apomyoglobin [25], cytochrome
c [26,27], α-lactalbumin [28–32], Ca2+-binding milk lysozyme [33,34], and other proteins [35–41].
The P values of slowly exchanging NH protons in the MG state range from 102 to 103,
which is more than three orders of magnitude smaller than the values in the native (N) state.
The H/D-exchange rate in the MG state and in other non-native unfolded states [42–52]
is usually too fast to follow by 2D NMR spectroscopy. Therefore, the H/D exchange was
quenched after the desired period of H/D exchange by rapid refolding, and the NMR
spectra were measured in the N state.

The use of a hydrogen-exchange method to detect and characterize a transient folding
intermediate of proteins was first reported by Schmid and Baldwin [53] in 1979. They used
a tritium-exchange technique and carried out a kinetic competition between folding and
hydrogen exchange to investigate the folding kinetics of ribonuclease A. Subsequently,
Roder and Wüthrich [54] proposed an extension of this technique by combined use of
rapid mixing and NMR analysis. In 1988, two seminal papers, one by Udgaonkar and
Baldwin [55] for ribonuclease A and the other by Roder et al. [56] for oxidized cytochrome
c, appeared and reported the structural characterization of kinetic folding intermediates by
hydrogen-exchange labeling and 2D NMR spectroscopy. In both studies, the NH groups of
proteins were first fully deuterated in the fully unfolded (U) state in D2O, and the nonpro-
tected amide ND groups in folding intermediates were proton-labeled in H2O by a short
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alkaline pH pulse (pulse-labeling hydrogen exchange), followed by quenching the D/H ex-
change by rapid refolding to the N state and NMR measurements in the N state. Since then,
the pulse-labeling or competition hydrogen-exchange studies combined with 2D NMR to
detect and characterize transient folding intermediates have been reported for many globu-
lar proteins, including barnase by the Fersht group [57,58], the lysozyme–α-lactalbumin
family proteins by the Chris Dobson group [59–63], apomyoglobin and apoleghemoglobin
by the Wright group [64–67], and other proteins by other groups [41,68–91]. The early
transient folding intermediates thus characterized are very similar in structure and stability
to the equilibrium MG state, indicating that the MG state is the equilibrium counterpart of
the kinetic folding intermediate formed early during refolding from the U state [23]. How-
ever, there are exceptions to this rule. The kinetic folding intermediate of the plant globin
apoleghemoglobin under the refolding condition is significantly different in structure from
its equilibrium MG state [66]. The early kinetic folding intermediate of ribonuclease H from
Escherichia coli (E. coli) has a well-folded region with a closely packed tertiary structure,
which is absent in its equilibrium MG state [92].

In this article, we describe the dimethylsulfoxide (DMSO)-quenched H/D-exchange
method, in which the H/D-exchange reaction is quenched by the DMSO solution [93].
As shown above, the hydrogen-exchange reactions in the MG state, other non-native
states, and transient kinetic folding intermediates of proteins need to be quenched be-
fore measurements of 2D NMR spectra. The rapid refolding was used for quenching the
exchange reactions in the above studies, and hence, only NH protons stably protected
in the N state are available for analysis. The DMSO-quenched H/D-exchange method
is more versatile, because the exchange reactions of all NH groups, including nonpro-
tected NH groups in the N state, are effectively quenched in an aprotic solvent DMSO and
are available for the NMR analysis [93]. In the following, we will give a brief historical
summary of the DMSO-quenched H/D-exchange method in proteins. In addition, the
DMSO-quenched H/D-exchange method has recently been improved by the use of spin de-
salting columns [94]. This improvement has made it possible to apply the DMSO-quenched
method to the exchange reactions of proteins in the presence of a high concentration of
salt or denaturant. We thus describe the methodological details of the use of spin desalt-
ing columns in the DMSO-quenched H/D-exchange method and present a study on the
H/D-exchange behavior of unfolded ubiquitin in 6 M guanidinium chloride (GdmCl), in
which the spin desalting column was used in the DMSO-quenched H/D-exchange 2D
NMR experiments.

2. DMSO-Quenched H/D-Exchange Method

The DMSO-quenched H/D-exchange method was developed by Zhang et al. [93] in
1995. They investigated various solution conditions to minimize the H/D-exchange rate
of NH protons of proteins, and the presence of 95% (v/v) DMSO-d6 in a DMSO-d6/D2O
mixture at pH* 5–6 was the best condition, where the H/D-exchange rate was ~100 fold
slower than the minimum exchange rate in D2O. Here, pH* is the uncorrected pH-meter
reading, and the pH* was adjusted by dichloroacetic acid-d2 (DCA-d2), whose pKa is 5.72
in the DMSO/D2O mixture [93]. To use the DMSO-quenched H/D-exchange method to
investigate the H/D-exchange reaction of a protein, aliquots of the reaction mixture at
various exchange times are first quenched by rapid freezing in liquid nitrogen, and then
lyophilized. The lyophilized powder is dissolved in the quenching DMSO solution, and
the NMR spectra of the protein are measured. Because proteins are unfolded in the DMSO
solution, the NMR peaks may be distributed in a very narrow spectral region. However, the
use of isotope (15N and 13C)-enriched proteins and the triple-resonance multi-dimensional
NMR techniques [95] have made it feasible to identify most of the cross peaks in the 2D
1H–15N heteronuclear single-quantum coherence (HSQC) spectrum [96] of a small protein
and to follow the H/D-exchange kinetics of individually identified NH protons.
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2.1. Applications to Folding Intermediates and Amyloid Fibrils

Nishimura et al. [65,66,97] applied the DMSO-quenched H/D-exchange method to
elucidate the structure in the equilibrium and transient folding intermediates of apomyo-
globin and apoleghemoglobin; they used 99.4% DMSO instead of the 95% DMSO solution
as a quenching solvent, however. Using the DMSO-quenched H/D-exchange method, they
acquired data for the NH protons of 94 residues for the 153 residues of apomyoglobin,
as compared with the 52 residues probed by the conventional pulse-labeling hydrogen-
exchange method, in which the exchange was quenched by rapid refolding [97]. The
DMSO-quenched method could be applied only for pH-jump refolding experiments be-
cause it was difficult to dissolve the lyophilized protein in DMSO in the presence of residual
denaturant (urea or GdmCl) after denaturant-jump experiments [65,66]. Sakamoto et al. [98]
studied the H/D-exchange kinetics of disulfide-deficient lysozyme in glycerol solution by
the DMSO-quenched H/D-exchange method. They removed glycerol from the reaction
mixture by reversed-phase HPLC, and the fractionated portion was lyophilized before
dissolving in the DMSO solution.

DMSO effectively dissolves amyloid fibrils in vivo and in vitro [99–101]. Therefore,
since the early 2000s, the DMSO-quenched H/D-exchange method has been widely used
in studies on the H/D-exchange kinetics of amyloid fibrils [102–124] and other protein
aggregates, including protein supermolecular complexes [125,126]. These studies have
demonstrated the presence of a hydrogen-bonded (H-bonded) core highly resistant to
H/D exchange in the amyloid fibrils and the other protein complexes. In the amyloid
experiments, insoluble amyloid fibrils were first suspended in D2O to carry out the H/D-
exchange reaction for the desired exchange periods, followed by separation of fibrils by
centrifugation and lyophilization. The lyophilized fibrils were dissolved and dissociated
into monomers in the DMSO solution, and the unfolded monomeric form was subjected
to 2D NMR analysis. To characterize transient kinetic intermediates during the formation
of amyloid fibrils, Carulla et al. [127] and Konuma et al. [90] combined the pulse-labeling
hydrogen-exchange strategy and the DMSO-quenched method. After a short labeling pH
pulse, aliquots of the reaction mixture were frozen and lyophilized, followed by dissolution
in the DMSO solution for the subsequent 2D NMR or MS analysis. These studies gave
us information about the molecular mechanisms of amyloid formation. Although the
DMSO solution based on the standard protocol is composed of 95% DMSO-d6 at pH* 5–6
adjusted by DCA-d2, slightly modified compositions, e.g., dry DMSO-d6 [103,125] and
DMSO-d6/trifluoroacetic acid-d1 (0.01–1%) mixture [107,110,114–117,119,122,126,128,129]
were also used as an H/D-exchange quenching solution. Several excellent review articles
on the DMSO-quenched H/D-exchange method have been published and cover more
details about the method [130–134].

2.2. Use of Spin Desalting Columns

We improved the DMSO-quenched H/D-exchange NMR method by the use of spin
desalting columns for medium exchange from the H/D-exchange buffer to the DMSO
solution [94]. As shown above, the conventional DMSO-quenched H/D-exchange exper-
iments had used lyophilization for the medium exchange. Therefore, it was difficult to
carry out the DMSO-quenched experiments at a high concentration of salt or denaturant
(urea or GdmCl), because the presence of residual salt or denaturant after lyophilization
interferes with the 2D NMR analysis of proteins dissolved in DMSO. This is a drawback of
the conventional DMSO-quenched method, and it prevents us from using the method to
characterize the H/D-exchange behaviors of proteins in the intermediate or unfolded state
in denaturant and native proteins under physiological conditions at 0.15 M NaCl (or KCl).

To prepare the quenching DMSO solution, we adjusted the pH* of the 94.5% (v/v)
DMSO-d6/5% (v/v) D2O/0.5% (v/v) DCA-d2 solution to between 5 and 6 by adding 10 M
NaOD. The addition of NaOD was accompanied by crystalline sodium dichloroacetate-d1,
which was dissolved by stirring with an increase in pH*. Before starting the H/D-exchange
reaction of a sample protein, we first prepared a 10-fold concentrated stock solution of
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the protein in H2O. The H/D-exchange reaction was started by a 10-fold dilution of the
stock solution with a D2O buffer. At appropriate time points in the H/D-exchange, we
collected 1.0 mL aliquots of the reaction solution, which had been pre-dispensed into 2 mL
polypropylene cryo-tubes in advance, and froze them by immersing the cryo-tubes in
liquid nitrogen to stop the reaction. The frozen aliquots were kept at −85 ◦C to −80 ◦C
until the medium exchange by a spin desalting column and the subsequent 2D NMR
measurements. The frozen aliquots were thawed at an appropriate temperature, at or
below room temperature, just before the medium exchange. The dead time of the H/D-
exchange measurement depends on how the experiment is conducted. If the experiment is
carried out with the cooperation of two experimenters, one quenching the reaction mixture
quickly in liquid nitrogen and the other recording the reaction time of the H/D exchange,
it is rather easy to realize the dead time of 30 s (see Figure 3).

Figure 1 shows a schematic of the medium exchange procedure from the D2O buffer
of the H/D-exchange reaction mixture to the DMSO solution with the use of spin desalting
columns [94]. We used 5 mL columns (ZebaTM Spin Desalting Column 89891, Thermo
Fisher Scientific K.K., Tokyo, Japan) and 15 mL polypropylene centrifuge tubes as collection
tubes. The procedure consists of the following five steps:

1. Remove the bottom plug of a spin desalting column, and place the column in a
collection tube.

2. Centrifuge for 2 min at 1000× g to pack the column bed and remove storage buffer.
3. Apply 2.5 mL of the DMSO solution to the column, centrifuge for 2–3 min at 1000× g,

and discard the flow through. Repeat this process two to three times, but centrifuge
for 3 min in the second and third runs, because the DMSO solution is more viscous
than water.

4. Apply 1.0 mL of the H/D-exchange sample solution to the column, and centrifuge
for 2 min at 20 ◦C. The application volume should not exceed 1.0 mL, because the
application of more than 1.0 mL results in leakage of the H/D-exchange sample
solution into the collection tube.

5. Recover the desalted protein sample in the DMSO solution; the protein sample can
now be applied to 2D NMR analysis.
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Figure 1. A schematic procedure of the medium exchange by a spin desalting column.

We used 2D 1H–15N HSQC spectra for the NMR analysis, and hence the sample
protein was 15N-labeled, and the assignment of the HSQC cross peaks was carried out by
three-dimensional (3D) HN(CA)NNH, HNCA, HN(CO)CA, HNCO, CBCA(CO)NH, and
HNCAHA experiments using 13C/15N-double-labeled proteins. We applied the improved
DMSO-quenched 2D NMR method to investigate the H/D-exchange behavior of the E. coli
co-chaperonin GroES at pH* 6.5 (or 7.5) and 25 ◦C [135] and unfolded ubiquitin at pH*
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3.2 and 15.0 ◦C in 6 M GdmCl [136], In the following, we will describe the study on the
H/D-exchange behavior of unfolded ubiquitin as a case study.

3. A Case Study: Unfolded Ubiquitin in 6 M GdmCl

The characterization of residual structures persistent in unfolded proteins in concen-
trated denaturant (6 M GdmCl or 8 M urea) is an important issue in studies of protein
folding. The problem of protein folding has been described with reference to the Levinthal
paradox, in which the initial unfolded state is assumed to be a random coil, and hence, there
may exist an astronomically large number of conformations, inaccessible in a reasonable
time by a random search, at the beginning of the folding reactions [137–139]. Solving the
Levinthal paradox is a fundamental problem in folding studies [140–146]. The presence of
the residual structure, if any, in the unfolded state thus invalidates the Levinthal paradox,
because such residual structure may form a folding initiation site and guide the subsequent
folding reactions. We therefore studied the H/D-exchange behavior of unfolded human
ubiquitin in 6 M GdmCl by the DMSO-quenched H/D-exchange 2D NMR method with
the use of spin desalting columns [136]. Although the persistence of residual structures in
unfolded proteins in concentrated denaturant has been reported for several different pro-
teins [50,147–153], the present method enabled us to estimate the P values of individually
identified NH protons, including nonprotected NH protons in the N state [136].

Ubiquitin is a 76-residue α/β protein, composed of a mixed parallel–anti-parallel β-sheet
packing against a middle α-helix to form the hydrophobic core (Figure 2) [154]. Ubiquitin
is a typical model protein for protein folding studies, and thus its folding reactions have
been studied by a variety of biophysical techniques, including stopped-flow [155–158] and
continuous-flow [159] kinetic refolding experiments, pulse-labeling hydrogen-exchange ex-
periments combined with 2D NMR spectroscopy [72,160] and electrospray ionization mass
spectrometry [161], mutational φ-value analysis [162,163], and other techniques [164–166].
These results may be compared with the present results of the H/D-exchange behavior of
unfolded ubiquitin in 6 M GdmCl.
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Figure 2. The 3D structure of native ubiquitin (PDB code: 1UBQ). The residues are colored according
to the P values of the NH protons, and the red gradient indicates the scale of the P value. The proline
residues and the residues that could not be used as probes due to severe broadening or overlapping
are shown in black. Adapted with permission from Ref. [136]. Copyright 2020 Biophysical Society.

To analyze the H/D-exchange kinetics of individually identified NH protons of ubiq-
uitin, we first made their spectral assignments in the DMSO solution [136]. Using a
combination of 3D spectral measurements, we successfully assigned all the peaks observed
in the HSQC spectrum. We then investigated the H/D-exchange kinetics of all the individ-
ual NH groups. Excluding NH groups whose residues could not be used as probes due to
severe broadening or overlapping, we successfully followed the H/D-exchange kinetics of
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60 NH protons [136]. These 60 NH protons include not only the protons stably protected
in the native structure but also nonprotected NH protons. The observed kinetic exchange
curve, given by the volume, Y(t), of cross peaks in 2D NMR spectra as a function of the
H/D-exchange time, t, was a single exponential fitted to the equation:

Y(t) = ∆Y·e−kobst + Y(∞), (4)

where ∆Y and Y(∞) are the kinetic amplitude and the final value of the peak volume,
respectively. Figure 3 shows the kinetic progress curves of the Val5, Asn25, Gln40, and
Glu51 NH protons measured by the DMSO-quenched method. The protection factor P was
calculated by Equation (3) for the 60 NH protons, resulting in the protection profile shown
in Figure 4, in which the P value is plotted as a function of the residue number.
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Figure 3. The H/D-exchange curves for Val5 (V5) (A), Asn25 (N25) (B), Gln40 (Q40) (C), and Glu51
(E51) (D) of human ubiquitin in 6 M GdmCl at pH* 3.3 and 15 ◦C. The solid lines are the theoretical
curves best fitted to a single-exponential function (Equation (4)). A broken line in each panel indicates
the theoretically estimated peak volume after the complete exchange (i.e., Y(∞) in Equation (4)),
and an asterisk “*” in each panel, located between (1–2) × 108 of the peak volume, indicates the
experimentally observed value after heating the sample at 50 ◦C for 30 min. Because the reaction
mixtures contained 10% H2O, the final peak volumes did not reach zero. The kobs values for the four
residues are: (A) (8.7± 0.8)× 10−3 min−1; (B) (10.5± 1.2)× 10−2 min−1; (C) (4.6± 0.4)× 10−2 min−1;
(D) (1.2 ± 0.1) × 10−2 min−1. The first and last time points are at 0.62 and 300.09 min, respectively,
for all panels. Adapted with permission from Ref. [136]. Copyright 2020 Biophysical Society.
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Figure 4. The H/D-exchange protection profile of unfolded ubiquitin in 6 M GdmCl, represented by
P as a function of the residue number (pH* 3.3 and 15 ◦C). The dashed lines indicate the P values
of 2 and 3. The amino-acid residues with P values larger than 2 and 3 are indicated in pink and
red, respectively, and the other residues in black. The locations of the secondary structures in native
ubiquitin (PDB code: 1UBQ) are shown by arrows (β-strands) and open rectangles (helices). The
kobs values for the majority of NH protons were obtained by three independent H/D-exchange
experiments, and the percent standard error estimate of kobs was ~8%, indicating that the P value of
2.0 can be written as P = 2.0 ± 0.16 (see [136] for the complete list of the standard error estimates of
kobs values). Adapted with permission from Ref. [136]. Copyright 2020 Biophysical Society.

From Figure 4, a majority of the NH protons have a P value below 2 and larger than or
equal to 0.8, indicating that these peptide NH protons are almost fully exposed to solvent
water in 6 M GdmCl. This is consistent with the previous reports that ubiquitin in concentrated
denaturant (6 M GdmCl or 8 M urea) at acidic pH is almost fully unfolded [155,167–170].
However, the 10 NH protons of Asn25, Ala28, Lys33, Gln40, Arg42, Gln49, Glu51, Asp52,
Glu64, and Ser65 were significantly protected with a P value larger than 3, and the ad-
ditional 14 NH protons of Lys6, Thr7, Lys11, Val17, Glu18, Thr22, Lys27, Lys29, Asp32,
Glu34, Leu43, Tyr59, Lys63, and Arg72 showed P values between 2 and 3. These results
thus clearly indicate the presence of residual structures in unfolded ubiquitin. Because the
protein was unfolded in 6 M GdmCl, it is most likely that these residues were protected by
the formation of an H-bond with a certain acceptor group.

When the H/D-exchange protection is brought about by the formation of the H-bond
with a specific acceptor group, we can estimate the fraction of H-bonding (f Hbond) for the
protected NH groups. Because only the non-H-bonded form of the NH proton is available
for H/D exchange, (1 − f Hbond) is equal to kobs/kint (= 1/P). Therefore, it follows that:

fHbond = 1− 1
P

(5)

When NH protons have P values larger than 3 and 2, the f Hbond values are larger than
0.67 and 0.50, respectively, from Equation (5). The free energy of the H-bond breakage
(0.0–0.41 kcal/mol) estimated from the f Hbond values is thus negligibly small as compared
with the unfolding free energy (7.5 kcal/mol) of ubiquitin [155]. Nevertheless, the f Hbond
values larger than 0.5 should be significant when we consider the kinetic folding mecha-
nisms of the protein, and some of these weakly protected residues may play an important
role in the formation of folding initiation sites at an initial stage of kinetic refolding of the
protein from the GdmCl-induced unfolded state.

To understand the relationships between the residual structure in unfolded ubiquitin
and the H-bonds formed in native ubiquitin, the H-bonding network in the native structure
is shown in Figure 5. From Figures 4 and 5, the NH protons of Asn25, Lys27, Ala28, Lys29,
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Asp32, Lys33, and Glu34, which are all significantly protected with a P value larger than 2,
are involved in the middle α-helix (Ile23–E34) in native ubiquitin, and each NH proton of
these residues forms an α-helical H-bond with the peptide CO group of the four amino-acid
residues earlier, except for Asn25 (Figure 5B). The Asn25 NH proton forms a more local
H-bond with the side-chain Oγ atom of Thr22, which acts as an N-cap residue of the
helix in native ubiquitin. These results thus clearly demonstrate the presence of a residual
structure in this α-helix of ubiquitin in 6 M GdmCl at pH* 3.3 and 15 ◦C, and Thr22 may
also function as a helix stop signal by forming the N-cap conformation as in the native
ubiquitin structure [171]. The NH groups of Thr7 and Val17, which form H-bonds with the
CO groups of Lys11 and Met1, respectively, in the N-terminal β-hairpin, also have P values
larger than 2 in the U state (Figure 5C), suggesting that the N-terminal β-hairpin may also
be partially preserved in unfolded ubiquitin. The other NH groups having a P value larger
than 2 in the N-terminal β-hairpin include those of Lys6 and Lys11. Although the NH
proton of Lys11 does not form a backbone H-bond in native ubiquitin, it forms a local
backbone to the side-chain H-bond with the Oγ of Thr7, and hence such a local backbone
to the side-chain H-bond may be at least partially preserved in unfolded ubiquitin and
may stabilize the residual structure of the N-terminal β-hairpin (Figure 5C). Previous
NMR studies on HN–NN residual dipolar couplings, chemical shifts, 3JHNHA couplings,
relaxation rates, and h3JNC′ couplings have also shown that the native-like first β-hairpin
conformation was populated to at most 25% in unfolded ubiquitin in 8 M urea [172–175].
From these results, we conclude that there are native-like residual structures in the middle
helix and the N-terminal β-hairpin in unfolded ubiquitin in 6 M GdmCl and that these
residual structures may play an important role at an initial stage of kinetic refolding from
the unfolded state.
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Figure 5. The H-bonding network observed in native ubiquitin (PDB code: 1UBQ). (A) A whole view,
and (B–E) closer views of (B) the middle α-helix, (C) the N-terminal β-hairpin, (D) the one-turn 310

helix (Pro38–Gln40), and (E) the Type II β-turn (Gln62–Ser65) and the one-turn 310 helix (Ser57–Tyr59)
are shown. The H-bonds of the NH protons of Thr7, Val17, Lys27, Ala28, Lys29, Asp32, Lys33, Glu34,
Gln40, Tyr59, and Ser65 with the CO groups of their counterparts are shown as green lines. The
local H-bonds formed by the NH protons of Lys11, Asn25, and Glu51 with the side-chain atoms
of Thr7, Thr22, and Tyr59, respectively, are shown as brown lines. The red gradient indicates the
same P value scale as shown in Figure 2. Adapted with permission from Ref. [136]. Copyright 2020
Biophysical Society.

In support of this conclusion, a pulsed H/D-exchange study with rapid mixing meth-
ods and 2D NMR analysis by Briggs and Roder [72] has shown that the NH protons in
the α-helix and the β-hairpin of the fast-folding species (ca. 80%) of unfolded ubiquitin
become protected in an initial 8 ms folding phase from the GdmCl-induced unfolded state
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of ubiquitin. Went and Jackson [163] performed a comprehensive φ-value analysis on the
structure of the transition state ensemble of the ubiquitin folding and showed that medium
and highφ values were found only in the N-terminal β-hairpin and the middle helix, which
was also consistent with the above conclusion. The α-helical residual structure as detected
by the unfolded-state H/D-exchange NMR spectroscopy in a concentrated denaturant
solution was also observed in cytochrome c in 6 M urea [91], suggesting that the present
observation of the residual structure may not be a rare example.

Three locally stabilized H-bonds, which form two one-turn 310 helices (Gln40–Pro37
and Tyr59–Leu56) and a type II β-turn (Ser65–Gln62) in native ubiquitin, are also partially
preserved in 6 M GdmCl. The NH proton of Gln40, which has a P value of 5.5 (f Hbond = 0.81),
forms H-bonds with the CO groups of Pro37 and Pro38 (Figure 5D). The NH proton of
Tyr59, having a P value of 2.5 (f Hbond = 0.60), forms an H-bond with the CO group of Leu56.
The NH proton of Ser65, having a P value of 3.5 (f Hbond = 0.71), forms an H-bond with the
CO group of Gln62 (Figure 5E). Therefore, these locally stabilized H-bonds may not be fully
disrupted even in 6 M GdmCl. However, it is not yet clear whether these local H-bonding
interactions are important for the kinetic folding mechanisms of ubiquitin, because there is
a dearth of experimental data concerning the effects of these local H-bonds on the kinetics
of the ubiquitin folding.

The NH protons of the three residues of Arg42, Glu64, and Arg72 form native H-bonds
with the backbone CO groups of Val70, Gln2, and Gln40, respectively [154], and have
P values of 2.7 to 6.5 in unfolded ubiquitin (Figure 4). However, these are nonlocal H-bonds
formed between residues at least 28 residues apart from each other, and such nonlocal
H-bonds in native ubiquitin may not be stably formed in the U state in 6 M GdmCl. These
NH protons may thus be protected by non-native H-bonding interactions. In fact, certain
other NH protons, including those of Leu43, Gln49, Asp52, and Lys63, which have P values
of 2.1 to 7.5 (Figure 4), are protected by non-native H-bonding interactions in 6 M GdmCl,
because these NH protons do in fact lack backbone H-bonds in the native structure. The
majority of residues with a P value larger than 3 are either charged or contain a side-chain
amide or guanidinium group (Arg42, Gln49, Glu51, and Glu64). It is thus also possible that
the protection might be afforded by the H-bonding between the backbone NH and its own
side-chain atoms.

4. Conclusions

1. We described the DMSO-quenched H/D-exchange 2D NMR spectroscopy and its
applications in protein science. The DMSO-quenched method is superior to the
conventionally used refolding-quenched method, because the former allows us to
monitor the H/D-exchange kinetics of not only the protected NH protons but also the
nonprotected NH protons in the N state.

2. We described the improvement of the DMSO-quenched H/D-exchange method by
the use of spin desalting columns and gave the methodological details of the use of
spin desalting columns.

3. We presented a case study in which we characterized the H/D-exchange kinetics of
60 peptide NH protons in unfolded ubiquitin in 6 M GdmCl by the improved DMSO-
quenched method. The residual structures were preserved in the middle α-helix and
the N-terminal β-hairpin in unfolded ubiquitin with a protection factor P larger than
2 (i.e., a fraction of H-bonding f Hbond of larger than 0.5), and these residual structures
may play an important role in the folding process as nucleation sites and guide the
subsequent folding reactions to the N state.
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