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Schizophrenia is a chronic psychiatric disorder with a lifetime prevalence of about 1%
in the general population. Recent studies have shown that Neuregulin-1 (Nrg1) is a
candidate gene for schizophrenia. At least 15 alternative splicing of NRG1 isoforms all
contain an extracellular epidermal growth factor (EGF)-like domain, which is sufficient
for Nrg1 biological activity including the formation of myelin sheaths and the regulation
of synaptic plasticity. It is known that Nrg1 can be cleaved by β-secretase (BACE1) and
the resulting N-terminal fragment (Nrg1-ntf) binds to receptor tyrosine kinase ErbB4,
which activates Nrg1/ErbB4 signaling. While changes in Nrg1 expression levels in
schizophrenia still remain controversial, understanding the BACE1-cleaved Nrg1-ntf and
Nrg1/ErbB4 signaling in schizophrenia neuropathogenesis is essential and important.
In this review paper, we included three major parts: (1) Nrg1 structure and cleavage
pattern by BACE1; (2) BACE1-dependent Nrg1 cleavage associated with schizophrenia
in human studies; and (3) Animal studies of Nrg1 and BACE1 mutations with behavioral
observations. Our review will provide a better understanding of Nrg1 in schizophrenia
and a potential strategy for using BACE1 cleavage of Nrg1 as a unique biomarker for
diagnosis, as well as a new therapeutic target, of schizophrenia.

Keywords: schizophrenia, β-secretase (BACE1), neuregulin-1 (NRG1), erb-b2 receptor tyrosine kinase 4 (ErbB4),
signaling pathway

INTRODUCTION

Schizophrenia is a hereditary, disabling mental disorder that affects ∼1% of the general
population. The etiology of schizophrenia is complicated and is influenced by more than genetics
alone. Other factors such as neurotransmitter imbalance, abnormal neuronal development,
infection, and neuronal inflammation are also possible mechanisms (Schultz et al., 2007).

Abbreviations: AD, Alzheimer Disease; AKT, serine/threonine kinase 1; ALIC, anterior limb of the internal capsule; ASEM,
anti-saccade eye movements; BACE1, β-secretase; DISC1, disrupted in schizophrenia 1; EGF, epidermal growth factor; EMT,
eye movement test; ErbB4, erb-b2 receptor tyrosine kinase 4; Erk, extracellular regulated MAP kinase; ERP, event-related
potential; HAP, haplotype; Ig, immunoglobulin; nACC, nucleus accumbens; NMDA, N-methyl-D-aspartic acid; NRG1,
Neuregulin-1; NRG1-CRD, NRG1-intracellular domain; Nrg1-ctf, Nrg1 C-terminal fragment; Nrg1-ntf, Nrg1 N-terminal
fragment; NRG3, Neuregulin-3; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; PPI, pre-pulse inhibition; PSD95,
postsynaptic density protein 95; SPEM, smooth pursuit eye movements; TACE, tumor necrosis factor-α-converting enzyme;
UF, uncinate fasciculus; vHPC, ventral hippocampus.
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Schizophrenia is characterized by several major clinical
symptoms such as positive symptoms (hallucinations and
delusions), negative symptoms (emotional blunting, and social
withdrawal), and cognitive impairments (attention, performance,
and working memory). NRG1 was one of the 108 schizophrenia-
associated genes identified in 2014 (Schizophrenia Working
Group of the Psychiatric Genomics Consortium, 2014), and
it attracted much attention due to its role in regulation of
neuronal migration and myelination. NRG1 is widely distributed
in the frontal cortex, midbrain, and cerebellum (Rieff et al.,
1999; Liu et al., 2001; Stefansson et al., 2003), and significantly
associated with endophenotypes of schizophrenia via regulating
myelination (Chen et al., 2006), neuronal migration (Ghashghaei
et al., 2006), and function of neurotransmitter receptors (Liu
et al., 2001; Hahn et al., 2006). Nrg1 can be cleaved by the
proteolytic enzyme, BACE1. The BACE1-cleaved Nrg1-ntf plays
roles in brain function via activation of ErbB receptor signaling
pathways (Luo et al., 2011). Since most studies have compared
the total Nrg1 levels between schizophrenia and healthy controls,
it is critical to know whether the specific activity of BACE1 in
cleavage of Nrg1 plays an important role in schizophrenia. In this
review, we provide a summary and perspective on information
of BACE1 involvement in Nrg1 regulation in schizophrenia
according to recent clinical and preclinical discoveries, presented
in three sections: (1) Nrg1 structure and cleavage pattern by
BACE1; (2) BACE1-dependent Nrg1 cleavage associated with
schizophrenia in human studies; (3) Animal studies of Nrg1 and
BACE1 mutations with behavioral observations.

Neuregulin-1 Structure and Cleavage
Pattern by BACE1
The neuregulin family includes four proteins (Nrg1, Nrg2, Nrg3,
and Nrg4), encoded by their respective genes, which are widely
expressed in various tissues including brain, heart, and breast.
In general, Nrg1 can be divided into three major isoforms
from alternative splicing. Type I Nrg1 has alternative names
such as acetylcholine receptor inducing activity, differentiation
factor, or neuregulin. Type II Nrg1 is also called glial growth
factor, while type III Nrg1 is also known as sensory and
motor neuron-derived factor. There are common structures
between Nrg1 isoforms, such as Ig domains, EGF domains,
a transmembrane region and unequal length of intracellular
domain (Falls, 2003). Due to alternative splicing effect, Nrg1 is
also divided into type alpha and beta based on the difference
between the 5th and 6th cysteine amino acid in the EGF-like
domain, whereas the beta variant has higher affinity for its
downstream ErbB receptors (Wen et al., 1994; Burgess et al.,
1995) (Figure 1).

Nrg1-induced cellular responses are mostly mediated by
binding to tyrosine kinase receptors in the ErbB family. The ErbB
family includes ErbB1, ErbB2, ErbB3, and ErbB4 receptors. Nrg1-
mediated ErbB2 receptor activation requires the participation of
ErbB3 or ErbB4 to form heterodimers (Bublil and Yarden, 2007).
ErbB3 on its own lacks tyrosine kinase activity, so the activation
of ErbB3 is dependent on heterodimer formation with other ErbB
receptors (Falls, 2003). Nrg1 performs most of its functions via

binding to both ErbB3 and ErbB4, while Nrg3 can only bind to
ErbB4 (Zhang et al., 1997).

Both human and animal studies have shown that BACE1-
cleaved Nrg1-ntf plays roles in brain function via activation
of ErbB receptor signaling pathways. BACE1 cleaves type I
and III Nrg1 at its position between the region of EF and
ME residues and releases soluble fragments of Nrg1. BACE1,
together with ADAM17 or ADAM10 which is also called TACE
was involved in successive release of the EGF-like domain of
NRG1 type III two membrane-bound structures, which has been
generated by an initial BACE1 dependent proteolytic cleavage
(Horiuchi et al., 2005). NRG3, another substrate of BACE, was
considered as a compensation for loss of NRG1 and cleaved
to produce EGF-domain through juxtacrine interactions with
ErbB4 receptor like NRG1-CRD on axon of neuron (Vullhorst
et al., 2017). These fragments bind to the ErbB4 receptor at
its EGF-like domain, thereby activating ErbB receptors involved
in Nrg1/ErbB signaling pathways that ultimately increase ERK
and AKT phosphorylation, which are necessary for cell survival,
synaptic development, glutamatergic transmission (Krivosheya
et al., 2008; Mei and Xiong, 2008), and remyelination (Hu et al.,
2006; Luo et al., 2011). The remain fragment of NRG1 cleavage is
called NRG1-CTF, which can be further processed by γ-secretase
to release the NRG1-ICD that participated to enhance synaptic
plasticity for the development of cortical neurons (Bao et al.,
2004; Chen et al., 2010). In addition, it is speculated that the
expression of NRG1-CTF might be regulated by antipsychotic
drugs, as the same effect on NRG1 precursor (Hashimoto et al.,
2004; Barakat et al., 2010) (Figure 2).

Nrg1/ErbB signaling pathways are important in the regulation
of the central nervous system, particularly in regulation of
neuronal migration, myelination and glutamatergic networks.
For example, during cortical development, neuronal Nrg1 reacts
with ErbB4 in glial cells to promote cerebral cortical neurons
and cerebellar granule cell migration (Schmid et al., 2003).
By blocking ErbB in glial cells, both radial glia formation
and neuronal migration, were impaired (Rio et al., 1997).
Another important function of Nrg1/ErbB signaling is helping
myelin formation. The dysfunctions of myelination have been
reported in the PNS of schizophrenic patients (Chavarria-Siles
et al., 2016; Stedehouder and Kushner, 2017). The activation
of Nrg1/ErbB has involved both formation of myelin and
development myelination via axonal signaling in Schwann cells,
such as Nrg1-type III which is interacting with ErbB2 and ErbB3
(Boerboom et al., 2017; Miyamoto et al., 2017). In addition,
Nrg1 is required for post-injury remyelination in later adulthood
(Stassart et al., 2013). Some reported indicated that Nrg1 can
regulate Schwann cell development to promote myelination
(Michailov et al., 2004; Nave and Salzer, 2006), as well as
affect oligodendrocyte proliferation or differentiation (Fernandez
et al., 2000; Flores et al., 2000). For example, the development
of oligodendrocytes was paused at the pre-oligodendroblast
stage in ErbB2-null mice, which indicated that Nrg1/ErbB
was an essential integrant in the final step of oligodendrocyte
differentiation (Park et al., 2001). Lastly, Nrg1/ErbB signaling can
directly affect glutamatergic systems by regulating the expression
and function of N-methyl-D-aspartate (NMDA) receptors with
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FIGURE 1 | Neuregulin-1 isoforms and membrane location. Nrg1 has six different forms, which distinguish mainly from their N-terminal peptide. All six isoforms own
an EGF-like domain and contain the Ig domain excluding type III Nrg1. There is a cysteine rich domain (CRD) embedded in the lipid bilayer in the type III Nrg1, which
leaves N-terminal side tethered on the membrane. As described, the other family member Nrg2, Nrg3, Nrg4 has the similar domain anchor once membrane.

brain region specificity. For example, in the prefrontal cortex,
Nrg1 may promote NMDA receptor type 1 subunit endocytosis
and inhibit NMDA receptor-mediated activity in prefrontal
cortical pyramidal neurons (Yarden and Sliwkowski, 2001). Nrg1
type β significantly increased levels of NMDA receptor type
2C subunit in the cerebellum (Harrison and Law, 2006), while
also reversing the long-term potentiation in the hippocampal
CA1 region through regulation of AMPA endocytosis (Kwon
et al., 2005). Importantly, Nrg1 and Nrg1/ErbB signaling regulate
several processes of neurodevelopment that play extremely
critical roles in schizophrenia neuropathology.

NRG3, a paralog of NRG1, was also reported its risk variants
associated with clinical symptoms and cognitive function (Kao
et al., 2010; Diez et al., 2014). Moreover, genetic modified mice of
Nrg3 also exhibit behaviors consistent with psychotic disorders
(Hayes et al., 2016). Nrg3 is a critical mediator in the assembly of
cortical inhibitory circuits and balance of ex-inhibition, which is
hypothesized as pathophysiology schizophrenia (Bartolini et al.,
2017). As the closest NRG1 homolog, NRG2 is involved in
increasing susceptibility to schizophrenia from human study
through interaction with other NRG and ERBB (Benzel et al.,
2007). Nrg2 has also been involved in the modulation of
schizophrenia-liked behaviors in animal studies (Yan et al.,
2017). In addition, in vitro studies showed that Nrg2 plays
roles in dopamine system regulation, bidirectional mediation
of GABAergic synaptogenesis and maturation of glutamatergic
synapse in network integration of newborn neurons (Oh et al.,
2015; Yan et al., 2017). Comparing other members of NRG family,
there are no direct evidence of Nrg4 linked to schizophrenia.
The function of Nrg4 has been mainly reported in modulating
of energy metabolism and the development of obesity-associated
disorders (Wang et al., 2014; Jiang et al., 2016).

Human Studies: BACE1-Dependent
NRG1 Cleavage in Schizophrenia
As a member of the neuregulin family, NRG1 is a key molecule
involved in normal brain development. Limited human studies
on NRG1 in schizophrenia have shown that the structure
and biological process of NRG1 is associated with disease
susceptibility as well the clinical phenotypes. In this section, we
will focus on the function of BACE1-dependent NRG1 cleavage
in schizophrenia clinical studies.

NRG1 Proteolysis in Schizophrenia
BACE1 has at least 15 well-known physiological substrates, as
numerous novel substrates were identified by means of different
screens (Kuhn et al., 2012; Zhou et al., 2012). Activity of
BACE1 has cell-, tissue-, and substrate-specificity. Early studies
of postmortem schizophrenia brains showed no differences of
BACE1 protein levels in Brodmann’s area (BA) 6 compared to
control subjects (Dean et al., 2008). It is suggested that only
measuring BACE1 protein levels in the brain might not be
sufficient to show BACE1-specific activity in cleaving NRG1 in
schizophrenia. Later, the same research group reported a positive
correlation between the levels of BACE1 and full-length NRG1
precursor in the BA6 brain region of healthy control group.
This positive relationship between BACE1 and NRG1 was not
observed in the schizophrenic group; however, a reduction of
the NRG1-CTF was observed in this brain region (Barakat et al.,
2010). Using human postmortem brain tissue, an independent
research group further found brain region-specific changes of
NRG1 cleavage in schizophrenic patients with a great increase
in the ratio of NRG1-NTF to full length NRG1 in the BA9
region (Marballi et al., 2012). However, to our knowledge, there
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FIGURE 2 | Neuregulins proteolytic cleavage pattern by BACE1. The
enzymatic mapping shows that the cleavage of Nrg1 is mediated by BACE1
at between Glu-Phe and Met-Glu. Then, type I Nrg1 releases its N-terminal
fragment to the extracellular space, in which the Nrg1-ntf binds to ErbB4
receptor on nearby cells. Whereas type III Nrg1 was cleave by BACE1
remaining tethered on the lipid bilayer via its hydrophobic Cys-rich domain.
The second may cut may occur by either BACE1 or ADAM10/17 cleavage
and release the EGF-domain that signal through ErbB4 in adjacent glial cells.
Nrg3 was also cleaved by BACE1, producing the EGF-domain to activity its
downstream pathway. The Nrg1-CTF was cleaved by γ-secretase in the
cytosolic space, producing C-terminal peptide Nrg1-ICD that may regulate
neuron development.

is no study of BACE1-dependent NRG1 cleavage activity in living
patients with schizophrenia.

Genetic Studies of NRG1 in Schizophrenia
In contrast, the genetic studies of NRG1 in schizophrenia have
been extensively investigated. While most human genetic studies
indicated that variants of NRG1 might increase risk to psychiatric
disorders including schizophrenia, there are still reports from
various studies with controversial results.

NRG1 was discovered as a prime candidate gene for
schizophrenia by Stefansson et al. (2002) who used Systematic
linkage disequilibrium (LD) mapping of 8p12–21 in an Icelandic
study. Since then, other reports from different countries have
been published, such as studies from Japan (Fukui et al.,
2006), China (Yang et al., 2003), Scotland (Thomson et al.,
2007), India (Kukshal et al., 2013), Italy (Squassina et al.,
2010), Denmark (Ingason et al., 2006), Pakistan (Naz et al.,
2011), Finland (Turunen et al., 2007), and Sweden (Alaerts
et al., 2009). However, different haplotypes of NRG1 were
found from various studies. For instance, in the Icelandic
population, SNP haplotype in the 5′ region of NRG1 (HAPICE:
SNP8NRG221533, SNP8NRG241930, SNP8NRG243177) was
identified with linkage of schizophrenia risk (Stefansson et al.,

2002), while in the Scottish population, a significant association
between NRG1 (HAPICE) and schizophrenia was detected by
PCR (Stefansson et al., 2003). In Japan, researchers failed to
replicate the association between NRG1 and schizophrenia in a
large Japanese population, while no association between NRG1
and schizophrenia was also reported in a large Danish sample
(Ingason et al., 2006; Ikeda et al., 2008). In addition, a novel
haplotype of the NRG1 gene was found to confer risk of
schizophrenia susceptibility in Chinese Han, but not in the
Icelandic/Scottish population (Li et al., 2004). This suggests
that stratification and phenotypic heterogeneity may have
constrained detection of genetic associations. Other variations
or haplotypes located in NRG1 were also associated with
schizophrenia using different SNPs tagging, analysis methods,
sample size, and populations. Using association analysis method,
one study showed variants in NRG1 (rs2919381) and ERBB4
might contribute to susceptibility to schizophrenia in Japanese
population (Shiota et al., 2008). Evidence for NRG3 (rs1937970
and rs677221) as a susceptibility gene for schizophrenia was
identified in Chinese Han population (Wang Y.C. et al., 2008).
Using LD method, the haplotype 221121 ofNRG1 and its six SNPs
were associated to schizophrenia in Indian population (Kukshal
et al., 2013). In a study of Northern Swedish Isolated Population,
five SNPs located in the second intron of NRG1 were found
with schizophrenia association also by LD method (Alaerts et al.,
2009). Variants of NRG1 can be detected genetic association with
schizophrenia in different periods and features of patients, which
can further confirm these risks to disease.

NRG1 and Schizophrenia Clinical Categories
Schizophrenia symptoms are typically classified under four
broad categories: positive symptoms, negative symptoms,
disorganization, and cognitive dysfunction (van Os and Kapur,
2009). NRG1 is considered as a risk gene for schizophrenia,
and variants of it are associated with schizophrenia clinical
symptoms. Bakker et al. (2004) divided schizophrenic patients
into two groups based on their chronic idiopathic negative
symptoms as deficit group (negative symptoms) and non-deficit
group by the Schedule for the Deficit Syndrome (Carpenter
et al., 1988). They found NRG1 (SNP8NRG221533) was
related to the non-deficit schizophrenia subtype only in
Caucasian population (Bakker et al., 2004). Later, a study
tested three SNPs (SNP8NRG 221132, SNP8NRG241930,
and SNP8NRG 243177) in Hungarian population and found
only SNP8NRG241930 was related to cognitive and hostility
factors by PANSS in non-deficit schizophrenia (Rethelyi et al.,
2010). Another case-control study in Caucasian population
showed several haplotypic variants of NRG1 (SNP8NRG221533
SNP8NRG241930 SNP8NRG243177 MS478B14-848 MS420M9-
1395) had “protective” effects on age of onset and positive
symptoms of schizophrenia (Papiol et al., 2011), which is
consistent with the findings in other investigations (Kim et al.,
2006; Alaerts et al., 2009). Recently, in a study of Iranian
population, Yoosefee et al. (2016) found the G allele of rs2439272
might be significant association with negative symptoms
especially in male participants and increased risk of developing
schizophrenia.
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NRG1 and Neurophysiological Endophenotypes of
Schizophrenia
Endophenotypes are thought to be more stable and homogenous
than clinical syndromes. Neurophysiological endophenotypes of
schizophrenia are characterized by a series of biological and
behavioral traits, such as changes in cognitive function, PPI, EMT,
ERP and neuroimaging (Braff and Light, 2005). For example,
deficits of the inhibition function in patients with schizophrenia
were suggested by many studies (Turetsky et al., 2007). The
impaired inhibition function can be expressed as changes of
PPI, ASEM, SPEM, P50 auditory evoked potential suppression,
P300 event-related brain potential, and more. Here, we will
discuss the relationship between NRG1 gene and a few specific
endophenotypes of schizophrenia.

NRG1 and PPI
Pre-pulse inhibition is a neurological phenomenon that has been
widely used for detecting inhibitory sensory motor gating of the
startle reflex, and it is recognized as one of the schizophrenic
endophenotypes (Cadenhead et al., 2000; Kumari et al., 2005).
There have been several clinical studies that suggest a relationship
between NRG1 gene and PPI. One study demonstrated the
lowest level of PPI in Caucasians and African Americans
schizophrenia subjects who also carried the homozygous A allele
(NRG1 rs3924999) (Hong et al., 2008). Another study showed
that carrying NRG1 risk genotype variations (SNP8NRG241930,
rs6994992, rs2439272 rs10503929 and rs3924999) was related
to reduced PPI in healthy subjects (Roussos et al., 2011).
These reports suggest that individuals with NRG1 phenotype
might be associated with attenuation of PPI, regardless of if
they are healthy populations or patients with schizophrenia.
While the underlying mechanisms involving NRG1 genotype
in PPI are unknown, studies implicated that Nrg1 regulates
NMDA receptors in specific brain regions that could induce PPI
reduction and contribute to schizophrenia-like symptoms (Javitt
and Lindsley, 2001; Gu et al., 2005; Hahn et al., 2006). Thus,
glutamate signaling may be a potential target for the relationship
between NRG1 and PPI.

NRG1 and ERP
The brain’s gating function refers to the capacity to filter
out duplicated or redundant stimuli (Freedman et al., 1996).
ERP, the measurement of brain response to a specific sensory,
cognitive, or motor event, is a schizophrenic endophenotype.
Using electroencephalography, several waveforms have been
found to be related to ERP, such as N100, P50, and P300 (Hall
et al., 2007). While P300 reflects attentive resource allocation
to the relevant stimulation, P50 sensory gating reflects the
filtering process to irrelevant stimulus in the early stage of brain
attentive function (Polich and Kok, 1995; Wan et al., 2008).
Studies of patients with schizophrenia demonstrated that NRG1-
induced AKT phosphorylation is associated with P50 suppression
observed in first-episode patients with schizophrenia. This
finding suggests that the PI3K/AKT system may be involved
in the impaired sensory gating observed in schizophrenia (Keri
et al., 2010). In concert with this finding, a study of acoustic
startle response and P50 in patients with schizophrenia showed

greater S2 response amplitude and deficit of P50 suppression
in patients with schizophrenia than in controls. However, no
correlations between PPI and P50 suppression were found in
either patients with schizophrenia or control groups (Storozheva
et al., 2016), suggesting different mechanisms underlie specific
schizophrenia endophenotypes. Regarding investigation of the
relationship between NRG1 gene and ERP in schizophrenia,
a study found a significant linkage between SNP8NRG221533
and P300 latency, showing individuals carrying more C alleles
had greater P300 latency delay (Bramon et al., 2008). However,
there was no significant association between NRG1 SNPs
(SNP8NRG221533, SNP8NRG241930, and SNP8NRG243177)
and P50 suppression observed in a large schizophrenia
endophenotype study (Shaikh et al., 2011). A recent meta-
analytic review concluded that P50 suppression, P300 amplitude,
and P300 latency may serve as viable endophenotypes for
schizophrenia (Earls et al., 2016). Therefore, whether NRG1 is
related to specific schizophrenic endophenotypes might need
further investigations.

NRG1 and eye movement deficits
Eye movement deficits, particularly in SPEM and ASEM, are
important endophenotypes in patients with schizophrenia
(Meyhofer et al., 2015; Wan et al., 2017). While a number of
studies demonstrated 50–80% of patients with schizophrenia
have impaired SPEM compared to 8% of healthy individuals
(Lencer et al., 2003; Ettinger et al., 2004), few studies have
investigated genetic association of eye movement deficits
with NRG1. A study of NRG1 genotypes with eye movement
deficits in 113 patients with schizophrenia and 106 age-
matched healthy controls found no relationship between NRG1
genotype (SNP8NRG222662, SNP8NRG243177) and ASEM or
SPEM task performance (Haraldsson et al., 2010). Consistent
with Haraldsson’s study, two studies in Korea also found
no associations between NRG1 (rs35753505G, rs4623364G;
rs6994992T rs3924999A) and ASEM or SPEM abnormality
(Pasaje et al., 2011; Kim et al., 2012). However, the result
in healthy subjects showed interaction between NRG1 and
eye movement deficits. One study found SNP8NRG243177
in healthy young males was related to SPEM by using the
root-mean-square error method (Smyrnis et al., 2011),
while another study showed a significant effect of NRG1
rs3924999 genotype on ASEM amplitude gain, but not
to SPEM or other variables of ASEM, in 114 healthy
Caucasian subjects (Schmechtig et al., 2010), suggesting
NRG1 genotypes may affect visuospatial sensorimotor
transformations in general and could be a potential mechanism
underlying impaired eye movements in patients with
schizophrenia.

NRG1 and neuropathology
Some of the major schizophrenia pathological characters are
brain atrophy (Harvey et al., 1993; Lim et al., 1996), reduction
of whole brain volumes (Gaser et al., 2004), and abnormality
in density as well as integrity in diverse brain areas (Burns
et al., 2003; Kubicki et al., 2003; Sun et al., 2003; Wang et al.,
2004). As NRG1 plays critical roles in myelination, there is an
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increase in an attention to theNRG1 gene variant association with
neuropathology in patients with schizophrenia.

A reduction of white matter density and integrity in the
ALIC and prefrontal subgyrus in NRG1 (SNP8NRG243177)
carriers was first reported in 2008 (McIntosh et al., 2008),
while the SNP8NRG221533 genotype of NRG1 was reported as
affecting medial frontal white matter microstructure (Winterer
et al., 2008). Later, studies on SNP8NRG221533 in schizophrenia
showed that the NRG1 variation was related to decreased
anterior cingulum fractional anisotropy (Wang et al., 2009),
lower volume of internal capsule (Cannon et al., 2012), and
reduced volume of left UF (Voineskos et al., 2013). In addition to
white matter, studies also explored the effect of NRG1 variation
on gray matter volume. For example, two studies suggested that
NRG1 (rs35753505) was significantly associated with gray matter
volume reduction (Knickmeyer et al., 2014; Thirunavukkarasu
et al., 2014), while another investigation found a significant
association between SNP8NRG222662 (rs4623364) and reduced

volume of left superior temporal gyrus cortex (Tosato et al.,
2012). However, whether NRG1 genetic variations directly
cause brain structural and functional changes in schizophrenia
remains unclear and further studies in schizophrenic patients
with neuroimaging in combination with other disease-specific
biomarkers would be helpful.

In summary, human studies demonstrated that NRG1 as a
schizophrenia-linked candidate gene plays an important role in
the pathological process of schizophrenia through its effect on
brain function. Together, findings provide evidence to support an
important role of NRG1 in neurodevelopment and susceptibility
to schizophrenia (Table 1).

Preclinical Research: Nrg1 and BACE1
Gene Modified Animal Models
While human studies have demonstrated that NRG1 plays
critical roles in schizophrenia, preclinical research using gene
knockout or mutant mice have provided some valuable evidence

TABLE 1 | Effect of NRG1 on schizophrenia in human studies.

Features Results Reference

Protein expression in
the brain

N-terminal The level of NRG1-NTF was increased in BA9 of
schizophrenia

Marballi et al., 2012

C-terminal The level of NRG1-CTF was decreased in BA6 of
schizophrenia

Barakat et al., 2010

Full length The level of full-length NRG1 was lower in BA9 of
schizophrenia; No changes in BA6 of schizophrenia

Barakat et al., 2010; Marballi et al.,
2012

Genetic association HAPICE SNP8NRG221533, SNP8NRG241930, SNP8NRG243177
was reported positive association in Scottish population,
negative association in Japanese population, Danish
population, Chinese population

Stefansson et al., 2003; Li et al., 2004;
Ingason et al., 2006; Ikeda et al., 2008

Novel haplotypes and SNPs The haplotype 221121 (rs35753505-rs6994992-
rs1354336-rs10093107-rs3924999-rs11780123) in India
population; Rs7017348, rs6468061, rs7014221,
rs7014410, rs17601950 in northern Swedish Isolated
population; Rs2919381 in Japanese population;
HAPChina 1, HAPChina 2 and HAPChina 3 in Chinese
population

Li et al., 2004; Shiota et al., 2008;
Alaerts et al., 2009; Kukshal et al., 2013

Clinical Categories Non-Deficit SNP8NRG241930 in Hungary population;
SNP8NRG221533 in Caucasian population

Bakker et al., 2004; Rethelyi et al., 2010

Protective effect SNP8NRG221533, SNP8NRG241930, SNP8NRG243177,
MS478B14-848, MS420M9-1395 in Caucasian population

Papiol et al., 2011

Negative symptom Rs2439272 in Iranian population Yoosefee et al., 2016

Endophenotypes PPI SNP8NRG241930, rs6994992, rs2439272 rs10503929
and rs3924999 in Greek healthy males; Rs3924999 in
Caucasians and African Americans

Hong et al., 2008; Roussos et al., 2011

ERP SNP8NRG221533 in Maudsley Family Bramon et al., 2008

EMT SNP8NRG243177 related to SPEM in healthy young males;
Rs3924999 related to ASEM in healthy Caucasian

Schmechtig et al., 2010; Smyrnis et al.,
2011

Neuroimaging White matter: SNP8NRG243177 related to reduction white
matter in ALIC and prefrontal subgyrus; SNP8NRG221533
related to medial frontal white matter microstructure;
decreased anterior cingulum fractional anisotropy; lower
volume of internal capsule; lower volume of left UF Gray
matter: Rs35753505 related to gray matter volume
reduction; SNP8NRG222662 related to lower volumes of
left superior temporal gyrus cortex

McIntosh et al., 2008; Winterer et al.,
2008; Wang et al., 2009; Cannon et al.,
2012; Tosato et al., 2012; Voineskos
et al., 2013; Knickmeyer et al., 2014;
Thirunavukkarasu et al., 2014

BA, Brodmann’s Area; HAP, Haplotypes; SNP, Single Nucleotide Polymorphism; PPI, Pre-Pulse Inhibition; ERP, Event-Related Potential; EMT, Eye Movement Test; SPEM,
Smooth Pursuit Eye Movements; ASEM, Anti-Saccade Eye Movements; ALIC, Anterior Limb of the Internal Capsule; UF, Uncinate Fasciculus.
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TABLE 2 | The effect of Nrgl and Bacel mutation on schizophrenia-like genotypes in mice.

Genotyping Feature of mice Behaviors Pathology Reference

TM-Nrg1+/− Transmembrane region deletion
in heterozygous mice

Impaired PPI, increased
spontaneous activity

Fewer NMD A receptor level ;
Disturbance glutamatergic and
dopaminergic
neurotransmission in different
ages

Stefansson et al., 2002;
Newell et al., 2013

Ig-Nrg1+/− Mutation in Nrg1
immunoglobulin-like domain in
heterozygous mice

Reduced activity in open field,
running wheel and T-maze,
decreased latent inhibition with
clozapine treatment

Rimer et al., 2005

Overexpressing Nrg1-type I Nrg1-type I overexpressed in
11-month-old mice

Impaired spatial working
memory

Altered hippocampal oscillatory,
lower carbachol-induced
epileptiform activity

Deakin et al., 2012

Overexpressing Nrg1-type III Nrg1-type III overexpressed in
mice

Sensorimotor gating deficits;
Altered salient memories

Disrupted from vHPC to nACC
circuit projections; Disrupted
cortical-amygdala neural
circuits

Nason et al., 2011; Jiang
et al., 2013

Overexpressing Nrg1-I
VINSE-tTA

Selectively Nrg1-W
overexpressed in a neuronal
specific manner mice

Impaired sensorimotor,
discrimination memory and
social behaviors

Abnormal synaptic, imbalance
ex-inhibitory in PFC

Papaleo et al., 2016

Overexpressing Nrg1-ntfβ N-terminal fragment
overexpressed in mice

Reduced spontaneous
alternations, impaired
contextual fear conditioning

Deceased NMDA receptors Luo et al., 2014

Bacel−/− Bace1 gene knock out mice Impaired PPI, working memory
and social recognition;
Spontaneous hyperactivity

Accumulation of intact Nrgl;
Impaired process of
myelination; Disturbed
NRGl/ErbB4 signaling pathway;
Disturbed NRG1/AKT signaling
pathway

Hu et al., 2006, 2008;
Willem et al., 2006;
Savonenko et al., 2008;
Seshadri et al., 2010

TM, Transmembrane; Ig, Immunoglobulin; vHPC, Ventral Hippocampus; nACC, Nucleus Accumbens; PFC, Prefrontal Cortex.

TABLE 3 | Effects of antipsychotic drugs on expression of Nrg1 and ErbB4 signaling.

Subjects Drugs Dosage Treatment duration Nrg1/ErbB4 Reference

Human studies PBL cells Clozapine/
Haloperidol

2 µM/500 nM 3 weeks Up/No changes Chana et al., 2009

Onset patients Risperidone/
Quetiapine

(533.33±71.45)mg/
day/(544.62±63.85)
mg/day

4 weeks Up/Up Zhang et al., 2008

Animal studies Rat Haloperidol/
Risperidone/
Clozapine

1 mg/kg i.p./1
mg/kg i.p./
10 mg/kg i.p.

4 weeks Up/Up/Down Wang Y.C. et al.,
2008

Monkey Haloperidol 0.125–
0.25 mg/mL/day

8 weeks No changes Shibuya et al., 2010

Mice Haloperidol 2 mg/kg/day 12 weeks Down Hahn et al., 2006

Rat Aripiprazole/
Olanzapine/
Haloperidol

UN 12 weeks Down/Down/Down Pan et al., 2011

Up, Up Regulation; Down, Down Regulation; PBL, Peripheral Blood Lymphocytes; UN, Unknown.

of association between Bace1 and Bace1-Nrg1 cleavage and
schizophrenia by behavioral studies as well as pharmacological
investigations.

Mice with Mutated Nrg1 Develop Schizophrenia-Like
Behaviors
During the last decades, several types of Nrg1 transgenic
mice have been developed to explore the effect of Nrg1
on behaviors, as well as the underlying mechanisms. One

of which is a mouse model of heterozygous transmembrane
domain Nrg1 mutant (TM-Nrg1+/−). The TM-Nrg1+/− mice
develop dysfunctional NMDA receptors in the forebrain,
impaired PPI, and increased spontaneous activity that clozapine
treatment was able to reverse (Stefansson et al., 2002). Another
feature of TM-Nrg1+/− mice was age- and brain region-
related alternations of NMDA and D2 receptor levels which
cause selective disturbance of glutamatergic and dopaminergic
neurotransmission in the animals (Newell et al., 2013). A mouse
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model with a different mutation of Nrg1, a heterozygous
mutation in Nrg1 immunoglobulin-like domain (Ig-Nrg1+/−),
displayed schizophrenia-like behaviors, particularly suppression
of open field, running wheel, and T-maze. The Ig-Nrg1 +/−

mice were more sensitive to clozapine treatment (Rimer et al.,
2005). Additionally, animal models of overexpression with
different Nrg1 isoforms also developed schizophrenia-liked
behaviors. For example, 11-month-old mice with overexpression
of Nrg1-type I showed impaired hippocampal-dependent spatial
working memory and oscillations (Deakin et al., 2012),
while Nrg1-type III-overexpressed transgenic mice developed
sensorimotor gating deficits with changes in the activity of
circuit projections from the vHPC to the nACC (Nason et al.,
2011). Disrupted cortical-amygdala neural circuits have also been
observed in similar transgenic mice, leading to altered processing
of salient memories (Jiang et al., 2013). A novel transgenic
mouse model of overexpressed Nrg1-type IV (Nrg1-IV/NSE-tTA)
also exhibited impaired sensorimotor function, discrimination
memory, and social behaviors. The Nrg1-IV/NSE-tTA mice also
expressed disrupted dendritic development, synaptic pathology,
and excitatory-inhibitory imbalance in the prefrontal cortex,
which may be mediated by ErbB4 and the downstream
signal target, PIK3-p110δ (Papaleo et al., 2016). Interestingly,
overexpression of secreted Nrg1 by Bace1 cleavage (Nrg1-ntfβ) in
mice was sufficient to cause schizophrenia-like phenotypes. The
abnormal behaviors were Nrg1-ntfβ-specific since turning off the
Nrg1-ntfβ expression genetically can reverse the schizophrenia-
like behaviors in the mouse model (Luo et al., 2014). Lines of
evidence suggested that gain-off function mutations in Nrg1
are also risk factors for schizophrenia. According to these
Nrg1 genetic models, it is possible that dysfunction of NRG1
or NRG1/ErbB4 signaling may affect neural development and
synaptic plasticity by disturbance of glutamatergic or GABAergic
systems implicated in schizophrenia. We therefore summarized
that schizophrenia-like behaviors are related to various Nrg1
mutations (Table 2).

Mutation of Bace1 Mice Show Schizophrenia-Like
Behaviors
As a transmembrane protease, BACE1 is important for several
disease-related substrates, including beta amyloid peptide
production in AD and NRG1 in schizophrenia (Wang et al.,
2013). In addition to BACE1 cleavage of a series of types
of Nrg, including Nrg1-type I, Nrg1-type III, and Nrg3,
BACE1 also cleaves the β2 subunit of voltage-gated sodium
channels (Nav1, β2) (Corbett et al., 2013) that participate
in regulation of neuronal development and maintenance of
normal brain function. Studies of Bace1−/− mice showed
reduction of myelination, deficits in cognitive performance,
and impaired emotional activity (Harrison et al., 2003;
Hu et al., 2006). Moreover, the Bace1−/− mice showed
seizure-like genotype with increased expression of Nav1β2 in
hippocampal areas, which is related to hyperactivity and elevated
excitability of hippocampal neurons (Hu et al., 2010). Together,
results suggest the possible relationship between BACE1 and
dysfunctions of the brain such as schizophrenia, epileptic
seizures, and AD.

FIGURE 3 | Schematic of BACE1-dependent NRG1/ErbB4 signaling pathway
involving in the pathogenies of schizophrenia. Neuregulins (type I, type III Nrg1
and Nrg3) are cleaved by BACE1 and release their EGF-domain into in the
extracellular space, through binding the ErbB4 receptors to activate
downstream signaling pathway. The NRG1/ErbB4 signaling in neurons can
exert an effect on NMDA receptors interacting with PSD-95, which lead to the
phosphorylation of PI3K-AKT and ERK molecules. Abnormal NRG1/ErbB4
signaling pathway may contribute to impaired myelination and synaptic
function. Meanwhile, intracellular fragment of Nrg1 and ErbB4 are cut off by
γ-secretase complex, producing the peptide into the nuclear to regulate
neuron development.

Whether there are any specific effects of Bace1 cleavage of
Nrg1 on animal behavior is still in question. Several studies
of Bace1 knockout mice have found reduction of Nrg1-type
I and type III β1 levels, elevated full length Nrg1, and
diminished activation of Akt in the brain (Willem et al., 2006),
along with a delayed process of myelination and reduced
myelin thickness (Hu et al., 2006, 2008). This suggests that
BACE1-dependent cleavage of Nrg1 may regulate myelination
and myelin sheath thickness by mediating phosphorylation
of Akt. As myelin and oligodendrocyte function could affect
neuronal connectivity, the dysfunction of myelination may
well be related to the neuropathogenesis of schizophrenia
(Nave and Ehrenreich, 2014). Additionally, the Bace1−/−

mice treated with a glutamatergic psychostimulant showed
impaired PPI, working memory, and social recognition, as well
as spontaneous hyperactivity as schizophrenia-like behaviors.
Decreased spine density in hippocampal pyramidal neurons was
also observed in Bace1−/− mice via NRG1/ErbB4 signal pathway
regulation (Savonenko et al., 2008), suggesting that disturbed
NRG1/ErbB4 signaling pathways in the Bace1−/− mouse model
may contribute to the pathophysiology of schizophrenia. There
was a decreased DISC1 expression reported inNrg1−/− knockout
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mice, as well as in Bace1−/− mice, which might be linked to
impaired NRG1/AKT signal pathway (Seshadri et al., 2010). As
described above, animal studies suggest that BACE1 might be
involved in the pathology of schizophrenia via cleaving substrates
to stimulate the downstream signal pathway (Table 2).

Nrg1 and Antipsychotic Treatment
The mechanism of antipsychotics is complicated, and includes
binding with DA, 5-HT, H1, M1, and α receptors. In addition,
some antipsychotics are selective for specific symptoms. For
instance, risperidone works better on positive symptoms while
others like aripiprazole can improve the severity of negative
symptoms (Komossa et al., 2011; Maher and Theodore, 2012).
While many studies focus on the effect of antipsychotic treatment
on the alteration of NRG1 gene expression in animal models,
there are few human reports in this field due to the ethical issues
and method limitation.

A clinical study in Chinese Han patients indicated that
exposure to risperidone and quetiapine for 4 weeks could
increase the NRG1 expression of peripheral blood lymphocytes
of first episode schizophrenia (Zhang et al., 2008). Another study
showed that clozapine treatment elevated NRG1 expression in
human fetal brain aggregates, which was not yet observed in
a haloperidol-treated group (Chana et al., 2009). These human
studies suggest that different antipsychotic treatments may cause
differential effects on expression of NRG1. Results from animal
studies also indicate that the duration of antipsychotics also
contributed to various changes of Nrg1. The levels of Nrg1 and
ErbB4 receptors in rat prefrontal cortex and hippocampus were
increased by treatment with haloperidol for 4 weeks (Wang X.D.
et al., 2008), while an 8-week haloperidol treatment showed no
effect on Nrg1 levels in mice (Shibuya et al., 2010). Furthermore,
a 12-week haloperidol treatment experiment reduced the ErbB4
activation (Hahn et al., 2006), as well as expression of Nrg1
and ErbB4, in the brains of mice (Pan et al., 2011). Overall,
these studies suggest that not only type of antipsychotics, but
also duration of antipsychotic treatment, may be a crucial factor
to change Nrg1 expression, while also considering the brain
region-specific effects of antipsychotics (Table 3).

BACE1 inhibitor as a therapeutic strategy to improve cognitive
in AD has been challenging. Both safety and efficacy are
questionable. In vitro, inhibition of BACE1 can cause adverse
side effects during synaptic developmental stages (Kamikubo
et al., 2017). However, there are almost no reports on psychotic
symptoms from BACE1 inhibitor clinical trials rather than
improved cognitive function in AD patients (Kennedy et al., 2016;
Timmers et al., 2017). We speculated that the current available
BACE1 inhibitors might be made for targeting on APP which

has different cleavage site than other substrates as NRG1. Further
investigations on substrate-dependent BACE1 cleavage activity
are needed.

In the future, exploring the dynamic changes of BACE1-
dependent NRG1 cleavage process in biological samples
from schizophrenic patients would be important. It will
provide new insights into how BACE1-dependent NRG1
proteolytic processing could contribute to the pathophysiology
of schizophrenia, and help to discover the underlying biomarker
of schizophrenia, which is essential for early diagnosis of the
disorder disease and effective medical treatment.

CONCLUDING REMARKS

Neuregulin, especially Nrg1, plays a major role as the
psychological substrate of BACE1. Numerous lines of evidence
support the hypothesis that Nrg1 can contribute to the
pathophysiology of schizophrenia. Both, human and animal
research, suggest that BACE1-dependent Nrg1 cleavage and
NRG1/ErbB4 signaling may play specific roles in schizophrenia,
as summarized in Figure 3. Several BACE1 inhibitors have
entered into phase I studies, and at least one of these inhibitors
has advanced to phase III human trails. Due to various BACE1
substrates, it is helpful to investigate their role and further
illustrate the function of Nrg1 downstream signaling pathways
in schizophrenia. It is important for understanding the biological
mechanism of BACE1 together with its substrates Nrg1, and
further exploring effective and specific inhibitor drugs for
schizophrenia, not interfering other biological progress, which
could provide possible therapeutic strategies for this psychiatry
disorder. In future studies, it will be important to investigate
BACE1, Nrg1-related molecular pathways, and neural circuits in
endophenotypes resembling features of schizophrenia.
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