
RESEARCH ARTICLE

Identification of Genes Relevant to Pesticides
and Biology from Global Transcriptome Data
ofMonochamus alternatus Hope
(Coleoptera: Cerambycidae) Larvae
SongqingWu1,2,3☯, Xiaoli Zhu2,3☯, Zhaoxia Liu2,3☯, Ensi Shao2,3, Carballar-
Lejarazú Rebeca4, Yajie Guo1, Yueting Xiong1,2, Yani Mou1,2, Runxue Xu2, Xia Hu1,
Guanghong Liang1, Shuangquan Zou1, Xiong Guan2,3*, Feiping Zhang1*

1 College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of
China, 2 Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry
University, Fuzhou, 350002, People’s Republic of China, 3 Key Laboratory of Biopesticide and Chemical
Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s
Republic of China, 4 Department of Molecular Biology and Biochemistry, University of California Irvine,
Irvine, CA, 92697, United States of America

☯ These authors contributed equally to this work.
* fpzhang1@163.com (FPZ); guanxfafu@126.com (XG)

Abstract
Monochamus alternatus Hope is the main vector in China of the Pine Wilt Disease caused

by the pine wood nematode Bursaphelenchus xylophilus. Although chemical control is tradi-

tionally used to prevent pine wilt disease, new strategies based in biological control are

promising ways for the management of the disease. However, there is no deep sequence

analysis ofMonochamus alternatus Hope that describes the transcriptome and no informa-

tion is available about gene function of this insect vector. We used next generation

sequencing technology to sequence the whole fourth instar larva transcriptome ofMono-
chamus alternatus Hope and successfully built aMonochamus alternatus Hope transcrip-

tome database. In total, 105,612 unigenes were assigned for Gene Ontology (GO) terms,

information for 16,730 classified unigenes was obtained in the Clusters of Orthologous

Groups (COGs) database, and 13,024 unigenes matched with 224 predicted pathways in

the Kyoto Encyclopedia of Genes and Genome (KEGG). In addition, genes related to puta-

tive insecticide resistance-related genes, RNAi, the Bt receptor, intestinal digestive

enzymes, possible future insect control targets and immune-related molecules are

described. This study provides valuable basic information that can be used as a gateway to

develop new molecular tools forMonochamus alternatus Hope control strategies.
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Introduction
Pine Wilt Disease is a devastating disease in pine trees caused by the infection of Bursaphe-
lenchus xylophilus and it is commonly known as the cancer of pine trees [1]. Since the discovery
of B. xylophilus in Japanese black pines in the Sun Yat-sen Mausoleum in Nanjing City (Jiangsu
Province in China) in 1982, Pine Wilt Disease has occurred in a total of 275 county-level
administrative regions (excluding Hong Kong and Taiwan) of 17 provinces (autonomous
regions and municipalities), causing immense damage to forest resources and having impact in
China’s ecological environment [2]. In China, the principal vector for Pine Wilt Disease is the
beetleMonochamus alternatusHope (M. alternatus) larvae as carriers; after emergence, t larvae
use pine trees as food and oviposition sources, therefore they are considered the invasive stage
of the insect. Effective control ofM. alternatus plays an important role in the prophylaxis and
treatment of this disease [3].

At present, the principal strategies to controlM. alternatus include: trap trees, biological
control, silvicultural control and chemical prevention [3, 4]. Among these, the biological con-
trol presents unique advantages: (1) It is difficult for pests to become resistant as microorgan-
isms have adapted to the immune systems of insects during the process of concurrent
evolution. Therefore insect immunity to pathogenic microorganisms has been kept at a low
level; (2) It has high environmental security; microorganisms typically have strong specificity
for their targets and they are harmless to vertebrates, which protects the natural predators of
those hosts; (3) insects are an ideal medium for various types of pathogens; the proliferation of
insect pathogens in vivo can be spread by diseases and pests or the insect’s body; (4) It’s easy to
obtain strains that are strongly pathogenic using genetic engineering and transformation tech-
niques [5, 6]. Current biological control techniques forM. alternatus have progressed, includ-
ing the spreading of effective natural enemies, creation of black lights and trap-trees.
Application of the above techniques has successfully controlled Pine Wilt Disease at test loca-
tions [5]. Among the methods of natural enemies are the parasitoid beetles Dastarcus helophor-
oides and Sclerodermus spp. (Hymenoptera: Bethylidae), showing up to 90% of effectiveness [7,
8]. In general, biological control has brought new insights to controlM. alternatus forest infes-
tations. Therefore, microbial control ofM. alternatus has increasingly gained attention [4].
However, there is currently a lack of knowledge regardingMonochamus alternatus Hope tran-
scripts, gene expression and gene function in this insect vector.

We used next generation sequencing technology to sequence the whole fourth instar larvae
transcriptome ofM. alternatus and successfully built aM. alternatus Hope transcriptome data-
base. In addition, our data describe genes related to putative insecticide resistance, intestinal
digestive enzymes, possible future insect control targets and immune-related molecules. This
study provides valuable basic information that can be used as a key point to develop new
molecular tools forM. alternatus Hope control strategies.

Results and Discussion

Sequencing and de novo assembly
Illumina sequencing produced 46, 761 and 743 clean reads for the larvae samples, which is
equivalent to an accumulated length of 11, 777, 133 and 130 bp (Table 1).

The average of raw reads length was 252 bp. First, the sequencing reads were broken into K-
mers using Trinity software [9]; the small fragments were assembled into 11,433,166 contigs
with a mean length of 41.63 bp. The length of the contigs mainly ranged from 0 to 3000 bp, rep-
resenting 99.61% of the reads, although some contigs were longer than 3000 bp. Size distribution
of the contigs is shown in S1 Fig. Finally, using the method of De Bruijn graphing and
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sequencing read information, we identified 107,259 transcripts with a mean length of 941.77 bp,
transcripts ranged in length from ~200–3000 bp, identifying 49,615 transcripts with a length
larger than 500 bp. We obtained 73,090 unigenes with a mean length of 693.24 bp. The lengths
of 25,718 and 13,668 unigenes were larger than 500 bp and 1000 bp, respectively, while 64.82%
of the unigenes had lengths between 0 to 500 bp (Fig 1). This result indicates that the length dis-
tribution of the transcripts and unigenes were represented in majority by short sequences with
relatively little redundancy, which is similar to transcriptome analysis reported for other insect
species using the same technology [10–14]. Importantly the longer sequences contribute only
for 7.09% of theM. alternatus transcriptome, the majority of transcripts and unigenes were still
less than 500 bp after assembly; this is probably due to the capacity of shorter sequences and low
coverage of the transcriptome [5, 15]. A large number of assembled sequential data could pro-
vide a more deeply transcriptome information for future research, allowing rapid characteriza-
tion for most of the transcripts and a reference for the genes of interest [15].

Annotation of predicted proteins
All assembled unigenes were used as an input for NR, Swiss-Prot, Gene Oontology (GO), Clus-
ters of Orthologous Groups (COG), KOG and KEGG databases. BLAST and HMMER parame-
ter E-values were set at 10−5 and 10−10 respectively, we were able to obtain annotated
information for 36,828 unigenes, representing 50.38% of the unigenes. The rest of the unigene
sequences (49.62%) had no significant matches in the existing databases. Unigenes comparison
with the NR database produced 34,702 hits, the distribution of E-values demonstrated that

Table 1. Sequence statistics of the Illumina sequencing assembly.

Reads Contig Transcript Unigene

Number of sequences 94,545,777 11,433,166 107,259 73,090

Mean length (bp) 252 42 942 693

Total length (bp) 23,805,690,981 475,935,825 101,013,380 50,668,837

doi:10.1371/journal.pone.0147855.t001

Fig 1. Unigenes length distribution. The y-axis number has been converted into logarithmic scale.

doi:10.1371/journal.pone.0147855.g001
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26.91% of the mapped sequences have strong homology (smaller than 1.0E-49) with an anno-
tated sequence, and 62.70% of the homolog sequences ranged from 1.0E-5 to 1.0E-49 (Fig 2A).
Based on the best species match, we found thatM. alternatus sequences have 30.59% and
8.89% matches with sequences from the Tribolium castaneum and Dendroctonus ponderosae,
both belonging to Coleopteran order, while only<6% matched to other insects (Fig 2B).
Therefore,M. alternatus have the closest evolutionary distance with T. castaneum.

GO assignments
GO database is an internationally standardized gene function classification system, which pro-
vides a suitably updated standard vocabulary to describe the functional attributes of genes and
gene products in an organism [16]. Transcript sequences were used as an input in the GO data-
base; using BlastX a total of 105,612 unigenes were assigned to GO terms (Fig 3, S1 Table).
According to the standard GO terms and 60 subcategories, differential gene expression and all
unigenes fromM. alternatus larva were statistically classified into three main GO categories:

Fig 2. Characteristics of the homology search of Illumina sequences against the NR database. (A) E-
value distribution of the BLAST hits for each unique sequence with a cut-off E-value of 1.0E-5. (B) Species
distribution of the BLASTX results. The first hit of each sequence was used for further in silico analysis.

doi:10.1371/journal.pone.0147855.g002
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biological process, cellular component, and molecular function. Biological process represented
the majority of GO annotations (52,883, 50.07%), followed by cellular component (29,970,
28.38%) and molecular function (22,759, 21.55%). The metabolic process (20.48%) and cellular
process (18.55%) were predominant within the biological process category, indicating that the
analyzed tissue has a high degree of metabolic activity; with the following subcategories: single-
organism process (15.34%), biological regulation (8.05%), developmental process (5.59%),
response to stimulus (5.49%), localization (5.38%), multicellular organismal process (5.12%),
cellular component organization or biogenesis (4.26%) and signaling (3.16%). Biological pro-
cesses contain most major cellular processes, from transportation and cell formation to tran-
scription, translation and supersession. According to the classification of the cellular
components, cell part (21.55%), cell (21.39%), and organelle (14.85%) are the most representa-
tive subcategories. Most of the annotated unigenes from the cellular component category, cor-
respond to plastids and mitochondria. We also identified genes involved in the synthesis of
secondary metabolites, and were grouped into catalytic activity (41.61%), binding (39.45%),
transporter activity (5.63%), structural molecule activity (2.86%), molecular transducer activity
(2.76%), receptor activity (2.43%) and nucleic acid binding transcription factor activity
(2.02%), etc. A previous study reported similar classifications related to metabolic processes for
Tomicus yunnanensis transcriptome [15]. GO annotations describe the contour features of the
overall gene expression ofM. alternatus, and revealed expressed genes encoding diverse struc-
tural, stress and regulatory proteins.

COG classification
In total, information for 16,730 classified unigenes was obtained in the COG database (Fig 4).
COG classifications were divided into 25 functional categories. Among these categories, general
function prediction (19.90%) was the largest group, followed by translation, ribosomal structure
and biogenesis (10.19%), posttranslational modification, protein turnover, chaperones (8.29%)
and transcription (7.57%). Secondary metabolites biosynthesis, transport and catabolism repre-
sented 2.71%, given the relative importance of secondary metabolic activity for insect resistance.

Fig 3. Distribution of second level GO ofMonochamus alternatusHope transcriptome. Distribution of GO categories assigned to theMonochamus
alternatusHope transcriptome. Unigenes were annotated in three categories: cellular components, molecular functions, and biological process. Right y-axis
indicates the number of genes in a category; left y-axis indicates the genes percentage in a specific.

doi:10.1371/journal.pone.0147855.g003
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To some extent, COG classifications further reveal the potential specific reactions and the func-
tional participation in molecular processes for genes expressed inM. alternatus.

KEGG analysis
The KEGG Pathway database, is a collection of graphical maps representing different cellular
processes, to systematically analyze metabolic pathways and functions of gene products in a
cell [17]. To identify the represented biological pathways inM. alternatus, 34,302 annotated
unigenes were analyzed using KEGG database. The results indicated that 13,024 unigenes
matched with 224 KEGG pathways. These pathways are summarized in S2 Table. The top 10
pathways were Protein processing in endoplasmic reticulum (503 members), Ribosome (486
members), Spliceosome (444 members), RNA transport (415 members), Purine metabolism
(410 members), Pyrimidine metabolism (321 members), Ribosome biogenesis in eukaryotes
(312 members), Endocytosis (305 members), Oxidative phosphorylation (302 members) and
Ubiquitin mediated proteolysis (288 members). These annotations provide powerful informa-
tion for our research related specific biological processes and pathways ofM. alternatus.

Putative insecticide resistance-related genes
1. Cytochrome P450 (P450). Research over the past 10 years has provided clear evidence

that in insects, P450 is involved in a number of physiological functions, such as hormone
metabolism [18–20], adaptability of parasitic plants [21, 22] and resistance to insecticides [23,
24]. Approximately 222 types of P450-related unigenes were identified inM. alternatus tran-
scriptome (S3 Table). We identified 103 P450-related sequences with a length bigger than 600
bp (46.40% of the global pests in the database); approximately half of the unigene sequences
were long sequences (600 bp). In addition, the length of 30 P450-related sequences was larger
than 1800 bp (13.51%) (Table 2). P450 genes identified from theM. alternatus transcriptome
was comparable in number to those from T. yunnanensis transcriptome, although the final
number of genes still needs to be verified via gene cloning [15]. Ai Junwen et al. classified the

Fig 4. COG function classification ofMonochamus alternatusHope transcriptome. All putative proteins
were analyzed using the COG database. COG classifications were divided into 25 functional categories;
16,730 classified unigenes were assigned to 25 COG classifications.

doi:10.1371/journal.pone.0147855.g004
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P450 enzyme system into four large families: CYP2, CYP3, CYP4 and mitochondrial P450,
based on the phylogenetic analysis of Drosophila and silkworm P450 gene homology [25].

Previous studies have reported that 17 P450 genes from CYP3 and CYP4 families are associ-
ated with plant toxins and pesticide resistance [25,26]. Based in phylogenic analyses; we found
evidence that CYP1, CYP3, CYP4 and mitochondrial families are present inM. alternatus tran-
scriptome. We also identified CYP1A1, which belongs to the CYP1 family, and CYP3A4,
CYP3A5 and CYP3A7, which belong to the CYP3 family. Interestingly, the P450 genes identi-
fied inM. alternatus differ from those reported in T. castaneum and other insect systems.

Recent studies have shown that P450 has an increased expression in insecticide resistant
insects; moreover, there is also evidence for P450 gene duplication and amplification in four
types of insects in vivo [27]. However, there is no experimental data to support the importance
and biological role of P450 complex related to insecticide resistance inM. alternatus.

2. Glutathione S-transferase (GST). GSTs specifically catalyze glutathione thiol and inter-
act with other electrophilic groups [28, 29]; GST is one of the main detoxification enzymes in

Table 2. Putative P450 genes identified inMonochamus alternatusHope.

#Gene ID Length TFPKM E_value Identity
(%)

Annotation

c40573.graph_c0 1814 1.16 0 69.31 PREDICTED: similar to cytochrome P450 CYP6BK17 [Tribolium castaneum]

c40753.graph_c0 1816.61 4.14 4.47E-179 56.8 cytochrome P450 [Leptinotarsa decemlineata]

c30543.graph_c0 1820 62.62 0 67.41 cytochrome P450 CYP4g56 [Dendroctonus ponderosae]

c31302.graph_c0 1838 6.33 4.52E-140 54.2 PREDICTED: similar to Cytochrome P450 315a1, mitochondrial precursor (CYPCCCXVA1)
(Protein shadow) [Tribolium castaneum]

c42017.graph_c0 1863.46 94.8 0 58.7 cytochrome P450 [Leptinotarsa decemlineata]

c40340.graph_c0 1890 6.08 4.37E-146 53.67 cytochrome P450-like protein [Tribolium castaneum]

c41067.graph_c0 1893.65 52.99 7.25E-173 57.23 cytochrome P450 [Leptinotarsa decemlineata]

c41279.graph_c0 1927.2 5.72 2.73E-143 53.14 cytochrome P450-like protein [Tribolium castaneum]

c36280.graph_c0 1929 0.98 2.88E-177 58.92 hypothetical protein YQE_06277, partial [Dendroctonus ponderosae]

c31219.graph_c0 1933 450.22 0 86.12 cytochrome P450 [Leptinotarsa decemlineata]

c36851.graph_c0 1934.48 10.03 4.08E-153 49.5 PREDICTED: similar to antennae-rich cytochrome P450 [Tribolium castaneum]

c41193.graph_c0 1938.57 3.47 0 77.51 PREDICTED: similar to Cyp49a1 [Tribolium castaneum]

c33148.graph_c0 1948.26 7.19 1.00E-108 45.96 PREDICTED: cytochrome P450 4c3-like [Metaseiulus occidentalis]

c40989.graph_c0 1969 2.07 9.89E-157 50.39 cytochrome P450 6BQ7 [Tribolium castaneum]

c32887.graph_c0 1976 2.59 8.79E-121 40.76 cytochrome P450 monooxygenase [Panonychus citri]

c40370.graph_c0 1980.74 108.63 1.61E-170 53.98 cytochrome P450 9Z4 [Tribolium castaneum]

c37941.graph_c0 1993.46 28.81 3.61E-154 53.13 cytochrome P450 [Leptinotarsa decemlineata]

c39854.graph_c0 2006.71 796.85 0 64.19 cytochrome P450 9Z4 [Tribolium castaneum]

c30479.graph_c0 2050 14.46 1.07E-177 60.12 cytochrome P450 CYP314A1 [Tribolium castaneum]

c40839.graph_c0 2080 0.59 2.97E-159 53.91 cytochrome P450 6BQ7 [Tribolium castaneum]

c32624.graph_c0 2097.79 8.71 5.61E-93 54.24 hypothetical protein TcasGA2_TC006764 [Tribolium castaneum]

c41739.graph_c1 2128.53 108.31 6.44E-173 53.73 cytochrome P450 [Leptinotarsa decemlineata]

c37224.graph_c0 2131 15.25 1.13E-153 51.11 PREDICTED: similar to antennae-rich cytochrome P450 [Tribolium castaneum]

c40116.graph_c0 2135 0.35 2.85E-173 56.86 cytochrome P450 [Leptinotarsa decemlineata]

c38458.graph_c0 2434 36.65 3.33E-173 55.34 cytochrome P450 [Leptinotarsa decemlineata]

c29697.graph_c0 2490.42 5.88 0 64.56 cytochrome P450, putative [Ixodes scapularis]

c42120.graph_c0 2513.73 25.61 2.28E-147 50.1 cytochrome P450 CYP6CR2 [Dendroctonus ponderosae]

c40510.graph_c0 2515.24 10.43 4.67E-100 41.25 PREDICTED: similar to cytochrome P450 monooxygenase [Tribolium castaneum]

c39155.graph_c0 2599.72 266.53 0 84.85 PREDICTED: similar to nadph cytochrome P450 [Tribolium castaneum]

c40802.graph_c0 2692.71 0.6 7.00E-146 56.42 cytochrome P450 353A1 [Tribolium castaneum]

doi:10.1371/journal.pone.0147855.t002
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insecticide metabolism. GST high levels of expression are related to insecticide resistance
mechanisms in insects [27]. We identified 96 GST unigenes inM. alternatus transcriptome.
The length of 19 GST-related sequences was greater than 1000 bp (19.79%) (Table 3). GSTs are
divided into three major categories according to their cellular location: cytosolic, microsomal,
and mitochondrial [30]. Cytosolic matrix GSTs in insects are further divided into at least six
classes (delta, epsilon, omega, sigma, theta, and zeta) based on sequence homology of the N-
terminus, substrate specificity, immunoreactivity, and sensitivity to different inhibitors [31–
33]. Delta and epsilon classes are unique in insects [34]. We found delta, omega, and theta
types of GST inM. alternatus transcriptome, however we could not identify any gene from the
epsilon class. Previous studies have reported the identification of sigma, delta and theta GST
classes in Nasonia vitripennis; epsilon, sigma, omega, and delta in T. castaneum; and one delta
unigene in T. yunnanensis [35, 36]. The GST genes identified inM. alternatus transcriptome
can contribute to a greater understanding of the relationship between GSTs and insecticide
resistance in insects.

Insecticide receptors and resistance-related genes
In addition to the identified genes described above, we identified 384 unigenes that represent
potential pesticide receptors and insecticide resistance-related genes; including FigCys-loop
ligand-gated ion channel (Cys-loop LGIC), carboxylesterase, superoxide dismutase, acetyl-
CoA carboxylase, acetylcholinesterase, c-aminobutyric, acid (GABA) receptors, nicotinic

Table 3. Putative identified GST genes inMonochamus alternatusHope.

#Gene ID Length
(bp)

FPKM E_value Identity
(%)

Annotation

c10463.graph_c0 1125.51 3 2.16E-06 30.98 unnamed protein product, partial [Leishmania mexicana MHOM/GT/2001/U1103]

c8990.graph_c0 1175.51 2.25 6.02E-15 31.75 predicted protein [Nematostella vectensis]

c44708.graph_c0 1277.51 1.85 1.99E-67 44.01 elongation factor 1-gamma [Cryptosporidium hominis TU502]

c36023.graph_c0 1307.03 4.98 1.15E-47 44.93 glutathione transferase delta-like Yv4019D08 [Sarcoptes scabiei type hominis]

c27703.graph_c0 1919.09 18.56 3.85E-
106

49.22 failed axon connections, putative [Ixodes scapularis]

c21401.graph_c0 1080.51 6.46 7.11E-84 51.77 PREDICTED: similar to metaxin 1 [Tribolium castaneum]

c29135.graph_c0 3037.97 2.24 2.39E-
102

54.39 PREDICTED: lachesin-like [Metaseiulus occidentalis]

c41606.graph_c0 2305.51 4.56 0 60.52 glutathione S-transferase C-terminal domain-containing protein [Tribolium castaneum]

c39852.graph_c0 3260.51 8.74 0 62.51 PREDICTED: similar to AAEL014709-PA [Tribolium castaneum]

c41863.graph_c0 1835.51 0.67 6.55E-
150

66.07 hypothetical protein YQE_09889, partial [Dendroctonus ponderosae]

c33923.graph_c0 1133.51 109.27 9.20E-98 67.9 unknown [Dendroctonus ponderosae]

c35423.graph_c0 1148.51 48.56 3.94E-96 68.46 unknown [Dendroctonus ponderosae]

c30871.graph_c0 1594.51 10.77 1.21E-88 69.49 glutathione transferase mu class Yv5001D03 [Sarcoptes scabiei type hominis]

c10168.graph_c0 1176.51 55.03 7.72E-87 71.5 glutathione-S-transferase theta, GST, putative [Pediculus humanus corporis]

c39366.graph_c0 1552.51 10.74 3.40E-
120

79.54 PREDICTED: similar to metaxin 2 [Tribolium castaneum]

c10006.graph_c1 1441.51 2940.6 0 82.28 PREDICTED: similar to Elongation factor 1-gamma (EF-1-gamma) (eEF-1B gamma)
[Tribolium castaneum]

c35156.graph_c0 2321.46 37.05 2.41E-
102

82.95 PREDICTED: similar to AGAP008106-PA [Tribolium castaneum]

c33364.graph_c0 2144.51 273.41 0 84.07 PREDICTED: similar to failed axon connections protein [Tribolium castaneum]

c40777.graph_c0 1429.64 32.41 0 86.15 PREDICTED: similar to SVOP protein [Tribolium castaneum]

doi:10.1371/journal.pone.0147855.t003
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acetylcholine receptors, sodium channels, chloride channels and ryanodine receptors (Fig 5).
Further study of these genes could uncover potential insecticide receptors and provide the
bases to test whether these genes play functional roles in insecticide resistance.

RNA interference-genes
RNA interference (RNAi) is an important pathway that is used in many organisims to regulate
gene expression [37]. RNAi pathways have been indentified in Drosophila melanogaster [38–
40], T. castaneum [41–46] and Bombyx mori [47–49].

Forty-two unigenes related to RNAi pathways were identified (Fig 6); we identified two
SID-1, 34 scavenger receptors, Figone RNA-dependent RNA polymerase, and five vacuolar H+

ATPase unigenes inM. alternatus transcriptome. These components have previously been
reported as part of the RNAi uptake mechanisms in insects [50]. Interestingly, we did not iden-
tify any RSD-3 unigenes in the transcriptome, although its participation in RNAi pathways.
Among the identified genes, 26 unigenes were larger than 600 bp (61.90%) and 23 were more
than 1 kb (54.76%). Moreover, two SID-1-related unigenes were both represented by longer
sequences in the transcriptome, at c38753.graph_c0 (2731.42 bp) and c41338.graph_c0
(3066.51 bp), respectively.

SID-1 is a multispan transmembrane protein that is crucial for systemic RNAi pathways in
Caenorhabditis elegans, it delivers dsRNAs to cells [50]. However, SID-1 has not been described
in D.melanogaster, indicating that the existence or absence of sid-1 gene could play an impor-
tant part in determining whether systemic RNAi is present in the biome [51]. Although a sid-1
ortholog has also been found in the cotton aphid Aphis gossypii [52], further research is still
needed to provide evidence for the molecular basis of systemic RNAi inM. alternatus.

Scavenger receptors can recognize extensive polyanionic ligands, and they play key roles
mediating phagocytosis of pathogens in Drosophila [50]. Among the 34 identified unigenes

Fig 5. Number of unigenes related to pesticide receptors and resistance-related genes. x-axis indicates
the number of unigenes, y-axis indicates the specific unigenes related to pesticide receptors and resistance-
related genes. Seven hundred and fifty-nine insecticide receptors and resistance-related unigenes were
identified inM. alternatus transcriptome.

doi:10.1371/journal.pone.0147855.g005
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related to scavenger receptors, nine of them had lengths above 1 kb, while the rest ranged from
100 bp to 1 kb. However, we were not able to identify important relevant sequences homolo-
gous sequences to the scavenger receptors of mammals [53, 54], but we were able to identify
them by homology to the flesh fly and C. elegans.

Finally, we identified five vacuolar H+ ATPase unigenes and one RNA-dependent RNA
polymerase-1 unigene. Previous studies have found that vacuolar H+ ATPase-deficient S2 Dro-
sophila cells accumulate dsRNA in endocytic vesicles and showing an endocytosis-based mech-
anism as a way to disrupt vacuolar H+ ATPase in the S2 cells to induce RNAi silencing [55].

The study of SID-1, scavenger receptors, vacuolar H+ ATPase, RSD-3 and RNA-dependent
RNA polymerase genes can deepen our understanding of the biology of defense against para-
sitic endogenous nucleic acids and exogenous pathogen nucleic acids and provides a basis for
the expression of regulatory protein coding genes [56, 57].

Potential Bacillus thuringensis (Bt) receptors
Receptor molecules related to B. thuringensis Cry toxin mechanisms, have been characterized
in the the insect midgut; they have been widely studied, most notably: aminopeptidase (APN),
alkaline phosphatase (ALP) and cadherin [58, 59]. We identified a total of 448 Bt receptor uni-
genes inM. alternatus transcriptome, including: ALP, APN, cadherin and the ABC transporter,
which are currently the four described Bt insect receptor molecules (Fig 7).

APN [60–62] and cadherin [63] are considered the most important type of receptors within
the putative insect Cry receptors.M. alternatus transcriptome revealed 38 APN unigenes and
116 cadherin unigenes, representing both approximately 8% of the total number of related Bti-
receptor unigenes. APNs belong to the zinc-binding metalloprotease/peptidase enzymes and
are anchored to the midgut membrane through GPI anchors [64]. Crava et al. clustered APNs
into seven classes based on phylogenetic analyses of lepidopteran, Hughes found that in intesti-
nal tissue, APN1 class was the most highly expressed within a complex mix of APN expression
data [65, 66]. Cadherins are mainly localized in adherens junctions and are involved in cell
adhesion [59]; they have been found anchoring midgut epithelial cells ofManduca sexta and

Fig 6. Number of unigenes related to RNAi. x-axis indicates the corresponding number of unigenes and y-
axis indicates the specific unigenes related to RNAi. Forty-two unigenes coding for RNAi identified in the
database, 26 of them were larger than 600 bp (61.90%) and 23 were more than 1 kb (54.76%).

doi:10.1371/journal.pone.0147855.g006
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Lymantria dispar larvae. We found that the number of identified cadherin unigenes contrib-
uted in nearly 26% of the total number of Bt receptor molecules inM. alternatus, second only
to ABC transporters (278, ~62%). It has previously been reported that APN and cadherin-like
(CAD-like) midgut proteins in lepidotera can interact with Cry1 toxins. In Diptera, homolo-
gous APN, CAD-like, and alkaline phosphatase proteins of mosquitoes are also considered as
Cry11 and Cry4 receptor proteins. In the longicorn of coleopterous, a cadherin-like protein
acts as Cry3Aa receptor; finally, gene silencing has confirmed that APN and CAD-like proteins
are the most representative Cry receptors [67]. In insects, ALPs are a major group of Cry-bind-
ing proteins; their roles as receptor molecules have extensively studied in Lepidoptera, Coleop-
tera and Diptera larvae [68–71]. Data suggest that the interaction between Cry1Ac and ALP
affects the midgut protease activity during the incubation period inHeliothis virescens andM.
sexta larvae [62, 68].Monochanus alternatus transcriptome revealed 16 ALP unigenes, which
contribute to only ~3% of the Bt receptor-related unigenes. Using RNAi silencing of APN and
ALP genes inM. sexta larvae, Flores-Escobar et al. found that for Cry1Ab toxicity, binding to
ALP was more important than APN, however for Cry1Ac, APN was more important, these
results suggest that Cry binding receptors have specific affinity for different Cry toxins [72].

In addition to ANP, ALP and cadherins,M. alternatus transcriptome revealed 278 ABC
transporter-related unigenes, contributing for 62.05% of the total number of Bt receptor-
related unigenes. The ABC family in insects is related to multi-drug resistance [73]. Recently,
ATP-binding cassette transporter subfamily C member 2 (ABCC2) was identified as a Cry1
toxin receptor in B.mori larvae [74], with a consistent role in the mechanism of Cry1 toxin
resistance [75, 76].

Intestinal digestive enzymes
Midgut proteases play an important role in activating Cry toxins, producing the toxin’s core
3D structure in the insect midgut [77] and the type and abundance of insect proteases are
important for toxin specificity [78]. Changes in the content and activity of proteases can lead

Fig 7. Number of unigenes related to Bt receptors. x-axis indicates the corresponding number of unigenes
and y-axis indicates the specific unigenes related to Bt receptors. Four hundred and forty-eight Bt receptor
unigenes were confirmed in theMonochamus alternatusHope transcriptome through in silico comparisons.

doi:10.1371/journal.pone.0147855.g007
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to resistance [78]. Frederick S. Walters et al. found that mCry3A toxicity to corn rootworm lar-
vae was attributed to a chymotrypsin/cathepsin G site, which enhances cleavage and subse-
quent binding of the activated toxin to midgut cells [79].

In Lepidoptera and Diptera, serine proteases are the main type of intestinal protease [80,
81]; meanwhile in Coleoptera, cysteine and aspartic proteases are the principal class of diges-
tive enzymes. Cathepsin G serine protease has been considered as the principal enzyme
because its activity is a key step towards Cry toxicity. It has been demonstrated that cathepsin
activity can be Cry toxin specific, for example, Acyrthosiphon pisummainly expresses cathep-
sin L and cathepsin B types [82], but different serine proteases have activity for Cry4A and
Cry4B in sensitive Diptera. [80]. Moreover, cathepsins B, L and serine peptidases such as tryp-
sins and chymotrypsins are the major enzyme components in the larval midgut of tenebrionid
beetles [83]. In general, the digestive protease activity of Coleopteran insects depends mainly
on cysteine proteases [84, 85]. We found 394 protease-related unigenes inM. alternatus tran-
scriptome (Fig 8). Among these unigenes, serine proteases were the most represented group
(232, 58.88%), followed by cysteine proteases (79, 20.05%), metalloproteases (77, 19.54%) and
aspartic acid proteases (61.52%). Threonine proteases and glutamic acid proteases were not
found in our data. Interestingly, we found 212 serine proteases genes (Fig 8). Only 82 serine
protease genes had lengths above 1 kb. The unigenes with lengths less than 1 kb were repre-
sented by 95 trypsin and 28 chymotrypsin genes. Serine proteases are the main protein diges-
tive enzymes, accounting for 95% of the digestive activity in Lepidoptera [86]. In insects,
genes encoding serine proteases (SP) and serine protease homologs (SPH) comprise a large
family of proteins involved in digestion, immune defense, development and other process
[87]. Cysteine proteases play an important role as virulence factors in Entamoeba histolytica.
Furthermore, from invasive trophozoites to parasites in dormant infective cyst stages, cysteine
proteases have an important role in parasite morphology [88]. It has been reported that Colo-
rado potato beetle (CPB) midgut membrane metalloproteases participate in the proteolytic
processing of Cry3Aa toxin [89]. C. Rausell et al. found that Brush border membrane vesicles
(BBMV)-associated metalloproteases can cut Cry3Aa toxin specificity, thus significantly
reducing the activity of pore formation [90]. In vertebrates, the four main aspartic proteases

Fig 8. Number of unigenes related to intestinal digestive enzymes. x-axis indicates the corresponding
number of unigenes and y-axis indicates the specific unigenes related to intestinal digestive enzymes. Three
hundred and ninety-four protease-related unigenes were identified inM. alternatus Hope transcriptome. (I)
Number of specific unigenes related to serine proteases in intestinal digestive enzymes. The icon
indicates specific unigenes. The number in brackets indicates the corresponding number of unigenes.

doi:10.1371/journal.pone.0147855.g008
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are pepsins, cathepsin D, cathepsin E and renins [91–93], these enzymes mainly degrade
endogenous proteins. Our data confirmed the abundance of protease-related unigenes inM.
alternatus transcriptome, which has significant implications for future research regarding the
mechanism of action of Cry toxin inM. alternatus. The information provided by insect tran-
scriptomes can contribute in understanding of digestive enzyme functions, in addition to gen-
erate new tools to improve the activity of proteases.

Possible future insect control targets
In addition to the diverse type of genes described above (Fig 9), we also identified candidate
unigenes as targets for future insect control strategies, such as cathepsin B, cysteine peptidases,
neuropeptides and serine peptidases. Among them, we found serine carboxypeptidase and ser-
ine-type endopeptidase, belonging to the serine peptidases (Fig 9). Of these, 117 unigenes had
a length above 600 bp, 87 of which were above 1 kb. Moreover, we found 96 neuropeptide uni-
genes, corresponding to insect neurohormones that signal via G-protein-coupled receptors
(GPCRs) to control growth, reproduction, behavior, breeding and other physiological pro-
cesses [94]. Identifying important molecule-related unigenes for these basic physiological pro-
cesses inM. alternatus will provide a reference for possible future research into targets for
insect control and other applications.

Immune-related molecules
Organisms have unique immune mechanisms against pathogens in the environment. Com-
pared to vertebrates, invertebrates lack of an acquired immune system and rely on an innate
immune system; adaptive immunity in insects has yet to be identified [95]. The innate immune
system of insects is divided into cellular immunity and humoral immunity. Cellular immunity
comprises phagocytosis, melanization and encapsulation. Humoral immunity has three

Fig 9. Number of unigenes related to possible future insect control targets. x-axis indicates the corresponding number of unigenes and y-axis indicates
the specific unigenes related to possible future insect control targets. 465 possible future insect control targets unigenes were found inM. alternatus Hope
transcriptome. Among these, 117 unigenes had a length above 600 bp and 87 above 1 kb. (I) Number of specific unigenes related to Serine Peptidase in
possible future insect control targets. The icon indicates specific unigenes. The number in brackets indicates the corresponding number of unigenes.
Serine carboxypeptidase, serine-type endopeptidase and others belongs to the serine peptidases.

doi:10.1371/journal.pone.0147855.g009
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steps:1) pattern recognition protein receptors (PRRs) recognize and bind to pathogen-associ-
ated molecular patterns (PAMPs); 2) a series of innate immune responses are activated, and 3)
finally triggering the generation of innate effector activities (phagocytosis) and effector mole-
cules (antimicrobial peptides (AMPs)) [96, 97]. RNAi machinery also plays an important role
in regulating the innate immune response in insects and other organisms [98]. We identified
478 unigenes related to immune molecules and receptors related to immune activities (Fig 10).
This group contains 20 widely recognized immune factors, including serine protease inhibitors
(94, ~20%) and being the most abundant, followed by peroxidases (75, 16%). Interestingly,
MD2(an extracellular binding partner of Toll-like receptor 4 (TLR4),)-like proteins and ML
(MD-2-related lipid-recognition) -related unigenes were not found, although MD2-like gene
family encodes for secretory proteins [99]. Therefore, molecules directly related to MLs may
not be present inM. alternatus immune system.

1. Antimicrobial peptides. AMP-related unigenes were represented by approximately 7%
of the total identified immune factors. AMPs play important roles in the innate immune system
of invertebrates and possess significantly broad antimicrobial activity. AMPs are widespread in
nature and mainly distributed in Lepidoptera, Coleoptera, Diptera, Hymenoptera, Hemiptera,
Isoptera, Homoptera and Odonata orders. Antimicrobial peptides such as metchnikowin, dro-
socin, defensin, diptericins, attacins, cecropins, drosomycins, have been characterized inD.mel-
anogaster [100, 101]. We identified 33 antimicrobial peptide-related coding unigenes: antifungal
peptides were the most abundant (15, ~ 45%), while attacins, cecropins and defensins repre-
sented 15%, 9% and 6%, respectively. Iijima R et al. isolated an anti-fungal peptide (AFP) from
Sarcophaga peregrina as the first reported AFP [102], it is composed of 67 amino acid residues
and is rich in glycine and histidine. We identified 5 attacin-related unigenes. Attacins only par-
ticipate in bacteriostasis for some gram-negative bacteria [103]. At present, more than 20 cecro-
pin analogues have been isolated from Lepidoptera and Diptera insects [104]. Cecropines form

Fig 10. Number of unigenes related to immune-related molecules. x-axis indicates the corresponding
number of unigenes and y-axis indicates the specific unigenes related to immune-related molecules. 478
unigenes were identified related to immune molecules and receptors in the transcriptome. This group
contains 20 widely recognized immune factors. (I) Number of specific unigenes related to IMD pathway in
immune-related molecules. (II) Number of specific unigenes related to Toll pathway in immune-related
molecules. The icon indicates specific unigenes. The number in brackets indicates the corresponding
number of unigenes.

doi:10.1371/journal.pone.0147855.g010
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a voltage-dependent channel that changes the permeability of the bacterial cell membrane. Its
antibacterial spectrum includes gram-negative and gram-positive bacteria. Moreover, we found
two defensin unigenes (~6%), insect defensins were first isolated in Phormia terranovae, due to
their high homology with mammalian defensins and later identified in S. peregrina (sapecins)
[105]. Members of insect defensins family were also identified in A. aegypti and A. gambiae
[106]. Although fewer in number defensin activities cannot be ignored inM. alternatus immune
system. Dobson et al. hypothesized that the highly diverse function of antibacterial peptides
have implications in the evolution of pathogen inhibition mechanisms in the host [107].

2. Immune enzymes and inhibitors. We found 17 unigenes related to caspases (CASPs),
a class of aspartic acid proteolytic enzymes containing cysteine and responsible for apoptosis
initiation; they play a critical role in regulating cell death in the growth process of an organism.
CASPs 4, 5 and 11 have been reported as cytoplasmic receptors for gram-negative lipopolysac-
charides (LPS) [30, 108]. LPS are important structural components of gram-negative bacterial
outer cell membranes and can activate the innate immune response through TLR4.

Ninety-four serine protease inhibitors (SRPN) unigenes were identified in our data, contrib-
uting for ~20% of the total number of immune factor unigenes; which may possess important
active defense immune functions in the process of pathogenic microorganism infection. SRPNs
can participate in a variety of physiological reactions and are present higher eukaryotes and
viruses [109, 110].

3. Oxidative stress molecules. In insect immune responses, a high level of reactive oxygen
species (ROS) is produced. Peroxidase-related unigenes identified inM. alternatus contributed
for 16% of the total number of immune factor-related unigenes, we identified 75 peroxidase-
related unigenes, 21 unigenes corresponding to including glutathione [GPXs], 8 corresponding
to thioredoxin [TPXs], and 30 unigenes corresponding to Haem. Furthermore, we identified 15
catalase-related unigenes (CAT), 16 Lysozyme-related unigenes (LYS), and 6 prophenoloxidases-
related unigenes (PPO). CATs can effectively convert H2O2 into water and oxygen, removing
hydrogen peroxide from the cell to prevent H2O2 poisoning. Therefore, CATs are key enzymes
in the biological defense system. Studies have shown that CAT gene disruption inD.melanoga-
ster quickly leads to death [111]. Moreover, we also identifed superoxide dismutases (SODs) uni-
genes (5%). SODs can convert •O2

– into hydrogen peroxide (H2O2), which is less toxic.
4. Lectins and galectins. Seven unigenes related to C-Type lectins (CTLs) and five galectin

(GALEs) genes were identified in our data. CTLs are secreted proteins or membrane proteins
that depend on calcium ions for their function, they are the largest and most diverse family of
animal lectins. Several invertebrate immune responses involving CTLs include opsonization
[112, 113], pathogen elimination, hemocytes biosynthesis and activating prophendoxidase to
produce melaninization [114–116]. GALEs are β-galactoside binding proteins that depend on
mercaptans. There is evidence that galectins are related to congenital immunity in Drosophila
and An. gambiae [117].

5. Pattern recognition proteins. Peptidoglycan recognition proteins (PGRP) are pattern
recognition receptors that can recognize bacteria peptidoglycans and they play an important
role in recognition and adaption of innate immunity. We found 7 PGRP-related unigenes and
interestingly, 34 pattern recognition scavenger receptor (SCR), SCR mediates the recognition
of pathogen LPS and LTA [118–120] and “clean up” after apoptosis [53, 54, 121–125]. We
hypothesize that SCR-associated molecules inM. alternatusmay have similar actions. In addi-
tion, we identified 11 fibrinogen-related proteins (FREP) and 30 CLIP-domain serine prote-
ases, contributing for 2% and 6% respectively. CLIP proteases have regulatory roles for
immune responses in insects [111, 126–132]. We also discovered one unigene that correlated
with a Gram-Negative Binding Protein (GNBP). Based on the genetics and biochemistry analy-
sis GNBP1 has been identified as a co-receptor for gram positive microbes and PGRP-SA [133,
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134]. Finally, we identified 9 thioester-containing (TEP) protein-related unigenes (~2%). The
TEP family is mainly composed of vertebrate complementary factors (C3, C4, C5) and
α2-macroglobulin. Anopheles gambiae TEP1 is a typical TEP in insects, which can bind to the
surface of pathogenic bacteria and promote the haemocytes of mosquitoes to phagocyte the
bacteria or eliminate Plasmodium [135–137].

6. IMD, Toll, JAK/STAT and JNK-signaling pathway. We identifed unigenes that are
closely related to the IMD, Toll, JAK/STAT and JNK-signaling pathway, represented by 20, 62,
4 and 9 unigenes, respectively.

Imd pathway. The Imd pathway is the primary immune pathway that acts against Gram-
negative bacteria. We identified 20 unigenes, such as IMD, TAK1, IAP, IAP2, dredd, ikkb and
relish (Fig 10). Imd pathway regulates the activity of a third DrosophilaNF-kB protein named
Relish, controls the expression of most of the Drosophila AMPs and, thus is indispensable for
normal immunity [138]. TAK1 is ubiquitin-dependent kinase of IKK [68,139]. IAP2 partici-
pates in Relish nuclear localization in Drosophila [140]. IKK enhanced the phosphorylation of
Relish, after Relish cleavage by DREDD, causing translocation of the N-terminal end to the
nucleus [141].

Toll pathway. ixty-two identified unigenes were related to the Toll pathway, including
spatzle, Toll, MyD88, Pelle, pellino, Cactin and Dorsal/Dif (Fig 10). In Drosophila the Toll recep-
tors are essential for embryonic development and immunity. The induction of the Toll pathway
by Gram-positive bacteria or fungi leads to the activation od cellular immunity and the systemic
production of AMPs. The Toll receptor is activated when the proteolytically cleaved ligand
Spatzle binds the receptor leading to the activation of the NF-kB factors Dorsal-related immunity
factor [141, 142]. Cactus is phosphorylated by a complex consisting of MyD88, tube and pelle,
causing degradation of cactus and release of Dorsal/Dif [143, 144]. Besides, pellino and Cactin
genes showed high expression levels in T. castaneum transcriptome [145].

JAK/STAT-signaling pathway/ JNK-signaling pathway. two additional signaling path-
ways have been shown to have immune functions in insects: the JNK and JAK-STAT pathways
involved in cell stress or wound response as other immune pathways in insects [139]. Only two
genes involved in JAK-STAT signaling pathway were identified in our transcriptome sequenc-
ing data, including 3 unigenes related to STAT92E and 1 unigenes related to hopscotch. We
could not identified the reaining components of this pathway (unpaired, STAT, JAK, and the
receptor Domeless/Master of marelle (DOME/MOM)) [146, 147]. We also identified 9 unigenes
related to the JNK-signaling pathway. Five unigenes were related to Kay and 4 to hemipterous.

Conclusion
M. alternatus is known as the cancer of pine trees and is considered a devastating disease, caus-
ing serious environmental and economic losses. Vector control strategies are needed to stop
and/or control the spreading of this disease [5]. In this work, we sequenced and characterized
the transcriptome in the insect vectorM. alternatus using Illumina sequencing. We identified a
large set of genes related to putative insecticide resistance, intestinal digestive enzymes, possible
future insect control targets and immune-related molecules. This study provides valuable infor-
mation that may serve as key point to develop new control strategies for Pine Wilt Disease.

Materials and Methods

Ethics Statement
There are no specific permits for insect collection in the selected locations. The chosen loca-
tions are not privately-owned or natural protected areas. Insects used for the experiments are
not considered endangered or protected species, and its collection is legal in China.
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Insects
Pinus massoniana (P.massoniana) trunks infested withM. alternatus were selected from trees
withered during the first year in the town of GuanTou, LianJiang county and FuJian province
(N 26.15046°;E 119.59261°). Trunks were cut into 1 m size with a chain saw in the open field
and transported to the isolated laboratory of FuJian Agriculture and Forestry University in
sealed canvas bags. Trucks were kept in a rearing cage (1.5 m x 1.0 m in length/width) with
1mm iron mesh to prevent insect scaping. Insects were maintained using an artificial diet and
kept for two generations. Twenty-five whole larvae (fourth instar) were collected for RNA
extraction.

cDNA library and Illumina sequencing
Total RNA was extracted from 25 whole larvae (fourth instar) using TRIzol Reagent (Invitro-
gen). Extracted RNA was processed using the E.Z.N.A. 1 HP Total RNA Kit (OMEGA RNA,
Invitrogen) to eliminate polysaccharides. RNA purity, quality and concentration were deter-
mined using Nanodrop, Qubit 2.0 and Agilent 2100 methods. Messenger RNA was extracted
from 6 μg (50 ng/ul) of total RNA, using oligo (dT) magnetic beads, fragmentation buffer was
added to the beads coated with mRNA and mRNA was broken randomly. mRNA was used to
synthetize the first cDNA chain and then subjected to a second amplification to obtain double
stranded cDNA. Double stranded cDNA was purified using AMPure XP. Finally, the cDNA
library was created by PCR enrichment using HiSeq2500 high-throughput sequencing, the
read length for the sequencing was PE125.

Bioinformatic analysis
The cDNA library was sequenced by High-throughput sequencing platform to produce a large
number of high quality reads based on Sequencing by Synthesis (SBS) technology. Raw data
were cleaned from joint sequence and low-quality reads. Depurated reads were assembled into
contigs using Trinity software. The transcript sequences were identified in each fragment col-
lection using the De Bruijn method of graphing the sequencing read information [9]. The
BLAST parameter E-value was set at 10−5, and the HMMER parameter E-value was set at
10−10. All unigenes were compared with NR [148], Swiss-Prot [149], GO [150], COG [150],
KOG [151] and KEGG [152] databases using BLAST [153] software. GO database was used to
determine the function of the identified transcript and to assign Gene Ontology (GO) terms. In
addition, metabolic pathways were predicted using the COG and KEGG databases. Amino acid
sequence of the unigenes was analyzed by HMMER [154] software and the outputs were
searched in the Pfam [155] database to obtain annotated information for the unigenes.

Supporting Information
S1 Fig. Contigs length distribution.
(TIF)

S1 Table. Gene Ontology ofMonochamus alternatusHope unigenes.
(XLSX)

S2 Table. KEGG summary ofMonochamus alternatusHope transcriptome.
(XLSX)

S3 Table. Putative P450 genes identified inMonochamus alternatusHope transcriptome.
(XLSX)
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