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Abstract. Convolutional Neural Networks (CNN) has gained much
attention for the solution of numerous vision problems including dis-
parities calculation in stereo vision systems. In this paper, we present a
CNN based solution for disparities estimation that builds upon a basic
module (BM) with limited range of disparities that can be extended using
various BM in parallel. Our BM can be understood as a segmentation by
disparity and produces an output channel with the memberships for each
disparity candidate, additionally the BM computes a channel with the
out–of–range disparity regions. This extra channel allows us to parallelize
several BM and dealing with their respective responsibilities. We train
our model with the MPI Sintel dataset. The results show that Mod-
uleNet, our modular CNN model, outperforms the baseline algorithm
Efficient Large-scale Stereo Matching (ELAS) and FlowNetC achieving
about a 80% of improvement.

Keywords: Stereo vision · Convolutional Neural Networks · U-Net ·
Census transform · Deep learning

1 Introduction

The purpose of an stereo system is to estimate the scene depth by comput-
ing horizontal disparities between corresponding pixels from an image pair (left
and right) and has been intensively investigated for several decades. There is a
wide variety of algorithms to calculate these disparities that are complicated to
include them all in one methodology or paradigm. Scharstein and Szeliski [13]
propose a block taxonomy to describe this type of algorithms, following steps
such as matching cost calculation, matching cost aggregation, disparity calcula-
tion and disparity refinement. One example is ELAS, an algorithm which builds
a disparities map by triangulating a set of support points [8].

We present a CNN based solution for disparities estimation that builds upon
a basic module (BM) with limited range of disparities that can be extended
using various BM in parallel. Our BM can be understood as a segmentation
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by disparity and produces an output channel with the memberships for each
disparity candidate, additionally the BM computes a channel with the out–of–
range disparity regions. This extra channel allows us to parallelize several BM
and dealing with their respective responsibilities. We list our main contributions
as follows: i) We propose ModuleNet, which is a novel modular model to measure
disparities on any range, which is inspired on FlowNet and U-Net. ii) We use a
low computational time algorithm to measure cost maps. iii) The architecture of
our model is simple, because it does not require another specialized networks for
refinement as variants of FlowNet do for this problem. iv) Our model improves
the baseline model ELAS and FlowNetC (the correlation version of FlowNet)
with about 80% of unbiased error.

The paper is organized as follows: Sect. 2 presents the related work. At Sect. 2
are the algorithms FlowNet, Census transform and ELAS. The proposed model
is in Sect. 3. Section 4 describes the dataset used in this research. At the end are
our results, conclusions and future work.

2 Related Methods

In recent years, Convolutional Neural Networks (CNN) have made advances
in various computer vision tasks, including estimation of disparities in stereo
vision. Fischer et al. propose a CNN architecture based on encoder-decoder
called FlowNet [6]. This network uses an ad hoc layer for calculating the nor-
malized cross-correlation between a patch in the left image and a set of sliding
windows (defined by a proposed disparity set) of the right window and uses Full
Convolutional Network (kind encoder-decoder architecture) for estimate the reg-
ularized disparity [11]. Park and Lee [9] use a siamese CNN to estimate depth
for SLAM algorithms. Their proposal is to train a twin network that transforms
patches of images and whose objective is to maximize the normalized cross cor-
relation between corresponding transformed patches and minimize it between
non-corresponding transformed patches. To make the inference of the disparity
in a stereo pair, a left patch and a set of displaced right patches are used, then
the normalized cross correlation between the twin networks transformed patches
and the disparity is selected using a Winner–Takes–All (WTA) scheme. Other
authors use a multi-scale CNN, where the strategy is to estimate the disparity
of the central pixel of a patch by processing a pyramid of stereo pairs [4]; and
the reported processing time for images in the KITTI database is more than
one minute [7]. A state of the art method with really good results is reported by
Chen and Jung [3], they use a CNN that is fed with patches of the left image and
a set of slipped patches of the right image (3DNet). Then, for a set of proposed
disparities, the network estimates the probability that each of the disparities
corresponds to the central pixel of the left image patch that requires of evaluate
as many patches as pixels, so it is computationally expensive.

In this section, we present FlowNet, an architecture designed for optical
flow, and it can be used for stereoscopy. Also, this section introduces the Census
Transform.
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2.1 FlowNet

FlowNet is composed by two main blocks. The network computes the local vec-
tor that measure the dissimilarity between each pixel (x, y) in the left image
Il and its corresponding candidate pixel (x + δ, y), for a given disparity δ, in
the right image Ir; where δ ∈ d with d = [d1, d2, . . . , dh] and di is an integer
value. This block is deterministic (not trainable) and produces a dissimilarity
map (tensor) D of size equal to (h, nrows, ncolumns). FlowNet is based on the
U-Net [11]. The network computes the regularized disparities d∗; with dimen-
sion equal to (1, nrows, ncolumns). The main disadvantage of this method is the
computational cost of the normalized cross-correlation layer and it also produces
blurred disparity maps [6], see in Fig. 1 the FlowNetC architecture.

Fig. 1. FlowNet architecture.

2.2 Census Transform

Differently to FlowNet, that uses normalized cross-correlation to measure the
cost maps, an alternative is Census Transform [15]. Other algorithms for this
task are Sum of Absolute Differences (SAD) [14], Sum of Square Differences
(SSD) [14], Normalized Cross-Correlation [5]. Because a low complexity cost
function is desirable, we chose the Census Transform [15]. Figure 2 exemplify the
Census algorithm, where it transforms the values of the neighbors. The values
of the neighbors of a pixel are encoded within a binary chain (it is assigned “1”
when they are greater than or equal to the central pixel, or “0” otherwise). This
chain is called census signature, the signature retains spatial information of each
neighbor given the position within the string where each bit is stored.

For a 3 × 3 window, the census signature contains eight values and can be
saved in one byte, this transformation can be computed with:

Cl(x, y) = Bitstring(i,j)∈w(Il(i, j) ≥ Il(x, y)) (1)

for the case of the left image Il; and in a similar is computer the census transform
Cr for the right image Ir. To obtain the level of correspondence, the Hamming
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Fig. 2. Census transform

distance (H) is used to count how many bits are different between two census
signatures:

Dm(x, y; d) = H(Cl(x, y), Cr(x + dm, y)) (2)

We can denote this stage by the representational function Fc that trans-
forms the information in the images Il and Ir into the distance tensor D =
[D1,D2, . . . , Dh]:

D = Fc(Il, Ir; d) (3)

where the parameters are the set of candidate disparities, d.

3 ModuleNet: Modular CNN Model for Stereoscopy

Our proposed model (ModuleNet) builds upon U-Net blocks and is inspired on
the FlowNet. First, we describe the general block U-Net (see Fig. 3) that can find
disparities in a range d. Second, we introduce the cascade U-Net for refinement,
see Fig. 4. Finally, the modular CNN model (ModuleNet) for disparities out of
the range d is presented, see Fig. 5.

3.1 General Block: U-Net U-Net Module

Our neural network for stereo disparity estimation is composed with blocks based
on the UNet. Indeed, the most basic construction block can be seen as a simpli-
fied version of the FlowNet where the Disparity Map D is computed with the
Hamming distances between the Census transformed patches (the fixed and the
δ-displaced one). Another difference between our basic block and the FlowNet
model is that, instead of computing directly a real valued map of disparities, we
estimate the probability that a particular candidate disparity δ is the actual one
at each pixel. We also compute an additional layer that estimates outliers: the
probability that the actual disparity in each pixel is not included in the set of
disparities d. As input to the U-Net, we have h channels of distances correspond-
ing to the h candidate disparities and, as output, we have h+1 probability maps;
see Fig. 3. We can represent this U-Net block by the representational function
F1 that transforms the information in the distance tensor D = [D1,D2, . . . , Dh]
into the probabilities tensor P = [P1, P2, . . . , Ph, Ph+1]:

P = F1(D, θ1) (4)

where θ1 are the network weight set.
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Fig. 3. General block (U-Net)

The representational U-Net F1 (4) can be seen as a regularizer of the noisy
Census-distance maps. We observed that the output of the basic (trained) block
can be refined by a second U-Net. This second U-Net (in cascade) is trained using
as input the census cost maps, the initial estimation of the disparity probabilities
maps and the outliers’ probability map and produces as output refined versions
of the inputs. We represent this U-Net block by the representational function F2

that refine probabilities tensor P using also as input the distance tensor D:

Ŷ = F2(P,D, θ2) (5)

where θ2 are the weight set. We denote our basic module for disparity estimation
by

D = Fc(Il, Ir; d) (6)

Ŷ = F (D)
def
= F2(F1(D),D). (7)

where we omitted the parameters θ1 and θ2 in order to simplify the notation.
Once we have trained a basic module (7), it can be used for estimating disparities
into the range defined by the disparity set d. The regions with disparities outside
such a range are detected in the outliers’ layer. Figure 4 depicts our block model
based on two cascaded U-Nets (general blocks, see Fig. 3).

Fig. 4. Our Basic Block composed with two U-Net in cascade.
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3.2 ModuleNet: Modular CNN Model

Assume, we have a trained basic module for the disparities into the interval
[d1, dh] and the actual range of disparities, in the stereo pair, lays into the interval
[d1, 2dh]. We can reuse our basic model for processing of such a stereo pair
if we split the calculations for the disparities sets d(0) = [d1, d2, . . . , dh] and
d(1) = [dh+1, dh+2, . . . , d2h]. Then, we can compute two census distance tensors
D(0) = Fc(Ir, Il; d(0)) and D(1) = Fc(Ir, S{Il, h}; d(1) − h); where we define the
shift operator

S{I, dh} def
= I(x + dh, y). (8)

Thus, we can estimate the probability that the disparity is in the set d(0) with
Ŷ (0) = F (D(0)) and in the set d(1) with Ŷ (1) = F (D(1)); where F is our basic
module 7.

This idea can be extended for processing stereo pair with a wide range of
disparities. First we define the k-th set of disparities as

D(k) = Fc(Ir, S{Il, kh}; d(k) − kh) (9)

for k = 1, 2, . . . ,K. Second, we estimate, in parallel, the K tensor of probability:

Ŷ (k) = F (D(k)) (10)

Note that the network F is reused for processing the K modules. The CNN
transforms the representation D(k) into Ŷ (k): the probability that disparities
δ(k) of the module k at the pixel (x, y) are the correct displacement. To estimate
the tensor Ŷ that integrates the individual probability tensors Ŷ (k)’s, we use the
additional layer with the probability that the correct displacement of each pixel
is not the k-th interval:

Ŷ(kh+i) = Ŷ
(k)
i �

(
1 − Ŷ

(k)
h+1

)
(11)

for i = 1, 2, . . . , h, k = 0, 1, . . . , K − 1 and � denotes the element-wise product.
Finally, the disparity estimation, d∗ is computed by applying a WTA procedure
in the disparities map Ŷ :

d∗(x, y) = arg max
l

Ŷl(x, y) (12)

for l = 1, 2, . . . ,Kh. Figure 5 depicts ModuleNet – our modular model.
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Fig. 5. ModuleNet: Modular CNN Model

4 Dataset and Training Parameters

We used the MPI Sintel dataset for train our model. The MPI Sintel-stereo
dataset is a benchmark for stereo, produced from the open animated short film
Sintel produced by Ton Roosendaal and the Blender Foundation [1]. This dataset
contains disparity maps for the left and right image, occlusion masks for both
images. The dataset consist of 2128 stereo pairs divided in clean and final pass
images. The left frame is always the reference frame. For our experiments, we
use the clean subset pairs that consist of 1064 pairs; 958 for training and 106
for testing. See example in Fig. 6, the disparity map is the ground truth. Our
training set consisted on patches (256×256 pixels) randomly sampled from of 958
stereo pairs (1024 × 460 pixels) and 106 stereo pairs were leave-out for testing.

We change the number of filters distributions across the layers according to
Reyes-Figueroa et al. [10]. It has been shown that in order to have more accurate
features and to recover fine details, more filters are required in the upper levels
of U-Net and less filters in the more encoded levels. Our model’s architecture
is summarized in Fig. 3. We trained our model during 2000 epochs with mini-
batches of size eight.

We used data augmentation by randomly resizing the frames (random scaling
factor into the range [.6, 1]), adding Gaussian noise (mean zero with standard
deviation equal 1% the images’ dynamic range). The ADAM optimization algo-
rithm was used with fixed lr = 1 × 10−4 and β = [0.9, 0.999]. For processing the
data set, we used a basic block with sixteen disparities (h = 16) and K = 24
parallels blocks.
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Fig. 6. Example of MPI Sintel data: left and right images and disparity map.

5 Results

In Fig. 7 are shown the results from seven scenes by using the MPI Sintel dataset.
We show a single image per scene for illustrating the algorithm’s performance.
We compare the results from our model versus ELAS and FlowNetC. Visually,
one can see that the proposed model is closer to the ground truth than ELAS
and FlowNetC.

Fig. 7. Results from MPI Sintel dataset on selected scenes

In Table 1 is the comparison of results from applying a Total–Variation poten-
tial for edge–preserving filtering to the Distance Tensor D (here named TV–
Census) [2], ELAS, FlowNetC and our proposal (ModuleNet); in bold font the
best results. We use the metric Mean Absolute Error (MAE) in non-occluded
areas to measure the results quantitatively. Our proposed model outperforms
the compared methods. The advantage of the MPI Sintel dataset is that the
ground truth is provided, so the accuracy (MAE) is unbiased. Show particular
results from seven representative stereo pairs and the average over the total of
frames. Additionally we tested our method with the Middlebury Stereo Datasets
2014 [12] which consist of 33 image pairs, divided in 10 evaluation test sets with
hidden ground truth, 10 evaluation training sets with ground truth and 13 addi-
tional sets, the first 20 sets are used in the new Middlebury Stereo Evaluation.
Figure 8 shows a visual comparison of the computed results.
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Table 1. MAE results from MPI Sintel dataset on selected scenes

Scene FlowNetC ELAS TV–Census Proposed

alley 1 2.98 2.98 0.92 0.44

bamboo 1 2.91 2.39 0.63 0.51

bandage 2 14.09 12.77 2.60 2.14

cave 2 3.95 3.10 1.85 0.65

market 2 1.94 2.07 0.54 0.43

temple 2 2.26 2.44 0.60 0.38

temple 3 6.09 2.85 0.74 0.43

All test images 24.3 14.1 1.7 1.5

Fig. 8. Results from Middlebury dataset on selected stereo pairs

6 Conclusions and Future Work

We proposed a new model called ModuleNet for disparities estimation that can
be applied in stereoscopy vision. Our model is build upon FlowNet, U-Net and
Census transform. The modularity of our method allows generating disparity
maps of any size simply by adding more blocks. The extra layer, for detecting
pixels with disparities out of range, helps us to classify pixels that usually adds
noise since these pixels are outside the range of work or are pixels of occluded
regions. Our results show that qualitatively and quantitatively our model out-
performs Census–Hamming approach (robustly filtered), ELAS and FlowNetC;
which are baseline methods for disparities estimation. The unbiased error was
improved by about 80%.

Our future work will focus on extend the training set with real stereo pairs,
conduct more exhaustive evaluations and implement our model on an embedded
system (e.g. NVIDIA R© Jetson NanoTM CPU-GPU and Intel R©MovidiusTM USB
stick). We plan to compare the performance of our model with other state-of-
the-art methods, regardless the complexity and computational time with GPU
hardware. As most of the methods, the texture-less regions are difficult to iden-
tify. So an algorithm to detect such textures is desired.
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