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Herrera”, Departamento de Biologı́a Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de
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Abstract

Geographical distribution of forest species is closely regulated by environmental conditions,

particularly temperature and precipitation. Climate change predicted by general circulation

models is expected to modify the distribution of many species’ distribution, especially those

adapted to extreme environmental conditions, leading to large-scale migrations or local

extinctions. The aim of this research was to determine the potential impact of climatic

change on Pinus hartwegii geographic distribution and the niche breadth of its populations.

Ecological niche models were used by generated with four different algorithms based on 19

bioclimatic variables in addition to altitude. Climatic niche breadth was delimited by the dis-

persion of species occurrence records within the intervals of the bioclimatic variables. We

modelled future distribution based on three general circulation models, MIROC-ESM-

CHEM, CCSM4 and HadGEM2-ES, using two representative concentration pathways

(RCP) 2.6 and 8.5, for two-time horizons 2050 and 2070. Niche breadth analysis showed

narrow ranges of suitability, indicating a strong relationship between the presence of P. hart-

wegii with the temperature of the warmest quarter and precipitation of the coldest quarter. In

addition, the suitability area of P. hartwegii is predicted to be reduced up to 70% by 2070;

the populations of the extreme northern and southern latitudes will be reduced in greater

proportion than those of central Mexico. This suggest that environmental suitability area of

P. hartwegii are reduced by the effect of the increase in environmental temperature. There-

fore, it is necessary to monitor extreme populations of this species in the long term in order

to establish efficient conservation strategies and well adaptive management facing climate

change.

Introduction

Climate is the main determining factor of plant species distribution on a global scale [1]. At

local level, however, the plant species presence depends not only on climate but also on other
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factors such as altitude, availability of microsites and biological interactions [2, 3]. There is

therefore some environmental specificity in the presence of a stable population of a particular

species [4]. Geographical distribution of species is not random [5], and their dispersal and

adaptability depend on the intrinsic limitations of the species. In addition, these which could

be accentuated by ecological and physiological aspects specific of these species, such as biologi-

cal associations, growth rate, or the pollen and seeds dispersion [6, 7], which aspects that can

be drastically modified by changes in climatic conditions [1, 8, 9]. Moreover, to the complex

interaction of limiting environmental factors as temperature or precipitation [10]. Therefore,

each species occupies a specific area that represents a unique niche in the environment [4],

and that persists along its evolutionary lineage [3]. However, when a modification of environ-

mental condition resulted from some natural or anthropic perturbation the species could have

conservative, breadth or shift its niche as an evolutive response. Under context of niche con-

servatism, the potential altitudinal migration of many forest species in the limit of its altitudi-

nal distribution could result from the need of the species to conservative its niche. This last

refers to the retention of certain characteristics of the ancestral fundamental niche over time

and space [10]. However, the species also could breadth its niche adapting to the new condi-

tions or even change it. To know the capacity of one species to conserve its niche is particularly

important to predict future variations in the geographical distribution of a species as effect of

climatic change [11], as the projections are based on the central hypothesis of niche conserva-

tism [4, 12]. Accordingly, it has been suggested that if the climatic tolerance of a species is not

extensive enough to face new environmental conditions, then those species with strong niche

conservatism must migrate or become extinct [10, 13]. Climate change could significantly

accelerate the migration or potential reduction of forest populations [8, 14, 15], due to the

alteration of regulatory variables such as temperature, precipitation or wind intensity [8, 9].

Another important aspect is the genetic variability reduction of some populations, which limits

their plasticity to adapt to new conditions [16, 17, 18] and then limit the survival of these spe-

cies or their establishment at higher altitudes or northern latitudes [11, 14].

Species adapted to temperate and cold climates are more susceptible to climate change

effects [3, 9]. Species distributed at high altitudes [7, 16, 19] are particularly are subject to

harsh conditions such as shallow soils, low CO2 partial pressure or high radiation indices [2,

8]. In this sense, there are reports that associate the increase in temperature with the reduction

of the area occupied by forest species such as the Mexican White Pine (Pinus ayacahuite) [15]

and the False Weymouth Pine (Pinus pseudostrobus) [14]; others predict massive migrations of

Egg-Cone Pine (Pinus oocarpa) populations [20], or the growth rate reduction of Hartweg’s

Pine (Pinus hartwegii) [21]. Some projections even point to the local extinction of these and

other associated species [22], which could be accentuated by the increase in pest incidence

associated with temperature increase [8]. Under this vision, several models have been gener-

ated to evaluate the potential impact of climate change on forest species [23], producing a wide

variety of projections that seek to represent the possible responses of these species [24]. In gen-

eral, the most realistic models are those that include vegetation dynamics and atmospheric

chemistry [23], due to these factors improve the model’s predictive quality, even under differ-

ent future scenarios. For Mexico, an increase of between 2 and 4˚C is predicted for the 2020–

2080 period [25]. Under this scenario, the exclusive habitat of species adapted to high moun-

tain conditions could be reduced or even disappear [14, 15], due the fact that the ideal condi-

tions for these species could be located at higher altitudes or northern latitudes in the next 50

years [26].

Hartweg´s Pine (Pinus hartwegii Lindl.) is considered one of the most vulnerable species to

climate change [14, 15]. It has a discontinuous geographic distribution, from northeastern

Mexico to northern El Salvador [27]. Pinus hartwegii presence is restricted to the highest
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Mexican peaks, mainly in the Transmexican Volcanic Belt, such as Nevado de Colima, Nevado

de Toluca, Popocatepetl-Iztaccihuatl, Pico de Orizaba and Cofre de Perote [28, 29, 30]. Previ-

ous studies [14, 15, 31], agree that the occupied area by this species in central Mexico will be

reduced between 10% and 70% in response to climate change or even reaching the extinction

of some of its population [1, 9]. The foregoing is of great local and regional importance

because this species is tolerant to the low temperatures that dominate the high altitudes, being

able to form forest that reach the limit of the tree line up to 4,200 m a.s.l. [29]. Therefore, this

forest ecosystems are essential to regional climate regulation and others ecosystem services

such as wind regulation, water harvesting, carbon sequestration and wildlife refuges through-

out its geographical distribution [6, 25, 26, 32]. Despite the great importance of this species,

the optimal intervals of climatic variables in which the species is found (i.e., the climatic niche

associated with P. hartwegii) have not been studied. For this reason, knowledge of the potential

distribution and niche breadth of this species could contribute understand the long-term

effects of temperature increase and changes in precipitation regimes on their populations.

Therefore, the objective of this research was to determine the potential impact of climate

change on the distribution of P. hartwegii populations and their niche breadth within the terri-

tory occupied by this species under different climate change scenarios. This information will

allow long-term monitoring of the distribution of P. hartwegii populations, and the identifica-

tion of risk areas and opportunities for the conservation of this species in the face of the effects

of climate change.

Materials and methods

Occurrence records

Pinus hartwegii occurrence data throughout its geographical distribution (from Mexico to

Central America) were collected through GBIF (download 23 February 2017 and available at

https://www.gbif.org/), as well as from specimens of Mexican herbaria as Instituto de Biologı́a-

UNAM (MEXU), Escuela Nacional de Ciencias Biológicas-IPN (ENCB), Instituto de Ecologı́a

A.C. (XAL), Universidad Veracruzana Campus Xalapa (XALU), Universidad Veracruzana

Campus Córdoba (CORU), and Colegio de Postgraduados Campus Montecillo (CHAPA). In

addition, online databases of international herbaria such as the New York Botanical Garden

(NYBG; http://sweetgum.nybg.org/science/vh/), Missouri Botanical Garden (MBG; http://

www.tropicos.org/Home.aspx), Academy of Natural Sciences of Philadelphia (ANSP; http://

ph.ansp.org/), and the Field Museum of Natural History (FMNH; http://fm1.fieldmuseum.

org/vrrc/index.php?) were consulted. The database was complemented with records obtained

in the field between September 2014 and August 2017 from Pico de Orizaba, La Malinche,

Iztaccı́huatl-Popocatepetl, and Cerro El Potosi, which were obtained with a Garmin GPS

(Model V, USA). Pinus hartwegii occurrence data were recorded by systematic stratified sam-

pling to reduce the number of occurrence points per pixel. In addition, the widest possible

range of geographic conditions under which the species is distributed was used, improving the

homogeneity of the sample and reducing the prevalence of the species itself in a given set of

environmental characteristics, in order to reduce the final bias in the suitability model [4].

This sampling was performed on the database obtained that represents the known distribution

of the species and was used as background area, which corresponds to the distribution range

14˚ to 25˚ N and -97˚ to -103˚ W (Fig 1). A total of 1,788 occurrence records were obtained for

P. hartwegii. This database was refined by (i) removing records prior to 1980 by the advanced

of agriculture, (ii) duplicate occurrence records, (iii) occurrence records with coordinates out-

side of the natural distribution of the species and, (iv) occurrence records that did not have

specific coordinates using package CoordinateCleaner in R-Studio [33]. Once the database
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was cleaned up, a total of 477 unique occurrence records were obtained, that is, the records

represent a unique location in a 30" of arc grid (approximately 1 km2) within the selected geo-

graphical area (S1 Table).

Bioclimatic variables

The 19 bioclimatic variables from WorldClim version 2.0 (available at http://www.worldclim.

org) [34] were used. Many of these variables are of great importance in limiting the distribu-

tion of species [35], for Mexico and Central America they are available at a 30" arc resolution

[34], and they have demonstrated adequate performance for ENM on different species [35,

36]. A Principal Component Analysis (PCA) was conducted to assess the collinearity between

bioclimatic variables [35]. The fixed cumulative eigenvalue criteria were used [37], which con-

sists in retain the set of components that explained at least 95% of the total variance, this

include the first five axes (S2 Table). The layers were re-projected using the eigenvectors values

for each cell, and ASCII files of the components were created with which run the models.

Climate change scenarios were derived from three general circulation models with which

the models were run, the Model for Interdisciplinary Research on Climate—Earth System

Fig 1. Pinus hartwegii current geographic distribution (shaded areas) and occurrence point used in the construction of its climate niche model (dots show).

https://doi.org/10.1371/journal.pone.0229178.g001
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Model—atmospheric Chemistry coupled version (MIROC-ESM-CHEM), The Community

Climate System Model v.4 (CCSM4) and the Hadley Global Environment Model 2—Earth Sys-

tem (HadGEM2-ES; all available at http://www.worldclim.org) [34, 38]. Two-time horizons

2050 and 2070 were used for the three scenarios, as well as two Relative Concentration Path-

ways (RCP’s) 2.6 and 8.5 representing an optimistic and pessimistic projection of particle con-

centration in the atmosphere. These models offer a Terrestrial System configuration that

includes vegetation dynamics, ocean biology, and atmospheric chemistry [23], in addition pro-

viding excellent representations of climate trends for Mexico and Central America [36]. In the

same way was carried out for future scenarios, preserving the first five axes of PCA. All biocli-

matic layers were processed with the help of ArcMap 10.2 software [39] with SDMtoolbox

functions [40].

Potential distribution and climatic niche breadth

Ecological niches models were built using four algorithms: Gradient Boosting Machine

(GBM), Support Vector Machines (SVM), Random Forest (RF), and Maximum Entropy

(MaxEnt). GBMs iteratively fit regression trees to random samples, taken with replacement

from a given dataset, to find optimal parameter values for predictor variables. Random forest

is an algorithm that generating a set of weak learners based on a data bootstrap, the algorithm

converges on an optimal solution while avoiding issues related to CARTs (Classification and

Regression Trees) and parametric statistics. Breiman [41] defines Random Forest as a collec-

tion of tree-structured weak learners comprised of identically distributed random vectors

where each tree contributes to a prediction for x. To the algorithms SVM and MaxEnt used

background presence data, and 10,000 random background units were considered in the algo-

rithms [42]. SVM is a set of supervised learning methods that separate presence and pseudo-

absence records in a hyperplane created from the input vectors [35]. MaxEnt, to the other

hand, is based on the estimation of the probable distribution of species according to a set of

environmental variables, with the aim of determining the maximum distribution of entropy

[42]. This algorithm achieves high predictive accuracy, in a logistic format, by improving

model calibration, which provides greater representativeness of suitability [43]. GBM, Random

Forest and SVM algorithms were performed in R-Studio [33] and MaxEnt was performed

using MaxEnt software version 3.4 [42]. The algorithms were fed with five layers derived from

the PCA to improve model prediction. The models show the potential range on a scale from 0

to 1, where 1 indicates sites of high environmental suitability for the species and 0 indicates

unsuitable sites. These algorithms are integrated in the computational platform bioemsembles.

To determine the niche breadth a Jackknife analysis was performed to identify the most

limiting variables for P. hartwegii [44] the seven resulting variables were analyzed through the

BioClim algorithm included on modeling module of DIVA-GIS software version 7.5 [45],

obtained mean, standard deviation and the intervals at which the species presents an optimal

behavior. The validation of the model was performed calculating the partial receiver operating

characteristic (ROC) curve [46]. This is a modification of the original ROC curve that seeks to

overcome the problem of the inclusion in the area under curve (AUC) calculation of the full

spectrum of proportional variables in the study area; in addition, an equal weighting of omis-

sion and commission errors [47]. Different subsets of random data were used to perform 100

replicates. In these, the occurrence data were divided into different calibration and validation

groups (70%-30% respectively) to each iteration [48]. The model that presented the best per-

formance was selected for the projection of future climate change scenarios [35, 48]. Partial

ROCs were performed in R-Studio [33] with the help of the NicheToolBox library [49]. Finally,

to distinguish novel environmental conditions under future climate conditions, mobility-
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oriented parity (MOP) analysis was used [50]. MOP identifies future environmental condi-

tions not available in present climate conditions. Results allowed us to establish those areas of

strict model extrapolation from those areas with current environmental conditions. MOP

analyses was performed in NicheToolBox library [49].

Potential distribution under different climate change scenarios

For the construction of future models, the time horizons 2050 and 2070 have been used, for

the three general circulation models (MIROC-ES-CHEM, CCSM4 and HadGEM2-ES) in

combination with two representative concentration pathways (RCP). The RCP 2.6 was used as

an optimistic model that assumes that maximum greenhouse gas (GHG) emissions will occur

between 2010 and 2020, with a consequent substantial decrease in emissions. The RCP 8.5 was

used as a pessimistic model that assumes that emissions will continue to increase throughout

the 21st century [24]. Results of these were exported to ArcMap 10.2 [39] in order to apply a

threshold value to produce the occurrence map. Applying a threshold is the last step of many

species modelling approaches. It is necessary to transform the probability map in presence/

absence data. Ten percentile training presence was used as suggested by Phillips and Dudı́k

[43]. This threshold value provides a better ecologically significant result when compared with

more restricted thresholds values. Finally, 12 change scenarios were presented for the suitabil-

ity area of P. hartwegii. To estimate the variation in the potential distribution area, the differ-

ence between the area of the current potential distribution model and the different projection

models under climate change scenarios was calculated using ArcMap 10.2 software [39].

Results

Potential current distribution models

Potential distribution models showed a similar distribution in the four algorithms used (Fig 2).

However, the estimated total area occupied by the species varied according to the algorithm

used being the suitability area estimated by GBM and RF larger compared to SVM and Max-

Ent. Thus, projected area was 1,903.11 km2 by GBM, 2,935.52 km2 by RF, 1,296.32 km2 by

SVM, and 1,736.17 km2 by MaxEnt (Fig 2).

Bioclimatic variables associated with P. hartwegii niche breadth

The Jackknife test showed a greater contribution of the mean temperature of the warmest

quarter (Bio10), as well as the annual mean temperature (Bio1) and the maximum temperature

of the warmest month (Bio5). By omitting the precipitation of the coldest quarter (Bio19), the

models gain decreases in greater proportion, which shows a greater amount of information

that is not present in the other variables. PCA shows the formation of four groups of correlated

variables (Fig 3) from which the biologically most important for the species were selected.

Narrow intervals were found for the main bioclimatic variables that determine the distribu-

tion of P. hartwegii (Fig 4), and point dispersion showed relatively low averages for all biocli-

matic variables (Table 1). The temperature of the warmest quarter (Bio10) and the

precipitation of the coldest quarter (Bio19) were summarized graphically, which according to

the analysis were the most limiting variables for the distribution of P. hartwegii. For this rea-

son, the niche breadth is given by the most limiting variables, Bio10 and Bio19, which provide

more information in contrast to the other five variables and explaining 92.1% of the data varia-

tion (Fig 5).

Potential reduction of Pinus hartwegii populations
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Fig 2. Potential current distribution models of P. hartwegii were constructed with the five main components that accumulate 95.77% of the data variation,

generated by four algorithms: GBM, RF, SVM, and MaxEnt.

https://doi.org/10.1371/journal.pone.0229178.g002
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Models validation

The partial ROC calculations for each model showed differences in the fit of the models gener-

ated models (Table 2). GBM showed the lowest AUC value and MaxEnt the highest (Table 2).

These values showed that MaxEnt was the model with the highest fit, indicating that for P.

hartwegii, this model can predict the environmental suitability area of P. hartwegii.

Extrapolation assessment

The resulting figures of MOP analyses are available in S1 Fig, which show that there are no

areas with strict extrapolation (i.e. with climate values outside the range of those in the calibra-

tion region). MOP for P. hartwegii showed a projection similarity a its calibration area. The

similarity of the projection of Pinus hartwegii is concentrated in central Mexico, in specific,

Transmexican Volcanic Belt.

Fig 3. Principal components analysis of the environmental variables and altitude used in the modeling process of P. hartwegii. The symbol “$” indicates the nine

variables that further limit the niche breadth.

https://doi.org/10.1371/journal.pone.0229178.g003
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Fig 4. Cumulative frequencies of the bioclimatic variables associated with the niche breadth of P. hartwegii. Records within the intervals of each bioclimatic

variables: a) mean annual temperature (Bio1); b) isothermality (Bio3); c) mean annual temperature range (Bio7); d) mean driest quarter temperature (Bio9); e) mean

warmest quarter temperature (Bio10); f) mean coldest quarter temperature (Bio11); and g) coldest quarter precipitation (Bio19).

https://doi.org/10.1371/journal.pone.0229178.g004

Table 1. Bioclimatic variables and their percent contributions associated with the niche breadth of P. hartwegii
according to Jackknife analysis.

Variable Mean Standard Error % contribution

Bio 1 11.5˚C ± 2.5˚C 10.0

Bio 3 6.8˚C ± 3.5˚C 2.0

Bio 7 19.2˚C ± 2.2˚C 8.4

Bio 9 8.2˚C ± 1.9˚C 4.8

Bio10 11.5˚C ± 2.5˚C 54.5

Bio11 7.4˚C ± 1.8˚C 2.7

Bio19 78.9 mm ± 38.4 mm 1.2

Altitude 3192.3 m ± 18.6 m 8.4

https://doi.org/10.1371/journal.pone.0229178.t001
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Potential distribution of P. hartwegii under different climate change

scenarios

The potential range of P. hartwegii distribution showed a reduction in the area occupied by the

species compared to the current distribution model. All used scenarios showed a clear trend

towards P. hartwegii population reduction. However, according to the results of the partial

ROC curves, HadGEM2-ES was the model that best describes the species environmental suit-

ability, showing an important reduction in the suitability area of P. hartwegii (Figs 6 and 7).

HadGEM2-ES 2050–2.6 (optimistic scenario) showed a partial reduction of the area (Table 3),

equivalent to 29.3% of the current distribution (Table 3, Fig 6C), compared to scenario 2050–

8.5 (pessimistic scenario) which showed a reduction equivalent to 39.8% with 841.01km2 of

residual area (Table 3, Fig 6D).

In contrast to the optimistic model to 2050, HadGEM2-ES-2070 showed a greater reduction

in the species populations. HadGEM2-ES- 2070–2.6 showed a total reduction equivalent to

42.5% of the P. hartwegii current distribution with 803.29 km2 of residual area (Table 4, Fig

Fig 5. Niche breadth of P. hartwegii represented with two bioclimatic variables that provides the most information according to Jackknife analysis: The

temperature of the warmest quarter (Bio10) and the precipitation of the coldest quarter (Bio19).

https://doi.org/10.1371/journal.pone.0229178.g005

Table 2. Validation by calculating the partial ROC of models generated by four algorithms used. Area under the

curve (AUC) and Standard deviation (SD) values are showed for each algorithm.

Algorithm AUC ratio SD AUC at 0.5 AUC ratio at 0.5

GBM 1.241 ±0.075 0.610 0.312

RF 1.292 ±0.063 0.615 0.319

SVM 1.685 ±0.032 0.773 0.352

MaxEnt 1.787 ±0.015 0.878 0.493

https://doi.org/10.1371/journal.pone.0229178.t002
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Fig 6. Climate niche model of P. hartwegii for 2050. Models comparing three general circulation models used MIROC-ES-CHEM, CCSM4, and HadGEM2-ES in

combination with the two Relative Concentration Pathways used RCP’s 2.6 and 8.5 for the horizon 2050.

https://doi.org/10.1371/journal.pone.0229178.g006
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Fig 7. Climate niche model of P. hartwegii for 2070. Models comparing three general circulation models used MIROC-ES-CHEM, CCSM4, and HadGEM2-ES in

combination with the two Relative Concentration Pathways used RCP’s 2.6 and 8.5 for the horizon 2070.

https://doi.org/10.1371/journal.pone.0229178.g007
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7C). Scenario 2070–8.5, to other hand, showed the greatest reduction in the area occupied,

equivalent to 68.8% of the predicted by the current potential distribution model, occupying

435.87 km2 of total area (Table 4, Fig 7D).

Discussion

In this study, the potential distribution of P. hartwegii under different scenarios of climate

change were determined in order to determine to what extent this species will conserve or

breadth its climate niche in the face of climate change. Results showed that niche breadth of P.

hartwegii has narrow ranges of suitability intervals for all bioclimatic variables evaluated, indi-

cating that the environmental requirements of this species are very specific/restricted in their

preferences [51, 52, 53]. Pinus hartwegii is a pine species confined to most of the highest peaks

in the Mexican mountains in an altitudinal range from 3,000 to 4,200 m [29]. In these moun-

tain areas additional to low extreme temperatures up to -30 oC, other harsh condition such

shallow soils, low CO2 partial-pressure and eventual snow presence [2, 8], increase the ecologi-

cal value of this specie in the local and regional climate regulation [54] Here a strong relation-

ship of the P. hartwegii presence with the temperature of the three months warmest of the

year; in addition of precipitation of the tree coldest months of the year, i.e. winter precipita-

tion. In areas where this species is distributed for example the Nevado de Toluca, this time

period corresponds to April, May and June (warmest) and November, December and January

(coldest). According to Villanueva-Dı́az et al. [55] most of conifers in Mexico have a positive

relationship with precipitation in the seasonal period winter-spring. This is adjudicated to role

of moisture in the nutrients and carbon allocation to growth [56].

To the other hand, the fact that P. hartwegii is highly adapted to low temperatures makes

also this species highly vulnerable at environmental temperature increases because of global

warming [15, 20, 49, 53]. Thus, climate change predicted by the RCPs and time horizons used

in this study display a greatly modify the distribution of P. hartwegii in the future. According

to the results, the area occupied by this species could be reduced to 68.8% by 2070 compared

to the current distribution model. This prediction is reinforced by the narrow ranges of suit-

ability shown by the niche breadth for this species, which suggest a high specificity on the part

of P. hartwegii for their population establishment. According to other projections [15, 20, 53],

Table 3. Comparison between the suitability areas estimated by the current and future different general circula-

tion models (GCM) for two Relative Concentration Pathways (RCP’s) used for 2050.

GCM Current CCSM4 HadGEM2-ES MIROC-ES-CHEM

RCP 2.6 8.5 2.6 8.5 2.6 8.5

Suitability area (Km2) 1,736.17 1,593.80 1,503.52 1227.47 1,045.17 1,343.79 1,102.46

Percentage occupied (%) 100 91.8 86.6 70.7 60.2 77.4 63.5

Reduced area (Km2) N/A 142.37 232.65 508.7 691 392.38 633.71

Percentage of reduction (%) N/A 8.2 13.4 29.3 39.8 22.6 36.5

https://doi.org/10.1371/journal.pone.0229178.t003

Table 4. Comparison between the suitability areas estimated by the current and future different general circula-

tion models (GCM) for two Relative Concentration Pathways (RCP’s) used for 2070.

GCM Current CCSM4 HadGEM2-ES MIROC-ES-CHEM

RCP 2.6 8.5 2.6 8.5 2.6 8.5

Suitability area (Km2) 1,736.17 1,491.37 1,296.91 998.29 541.68 1,020.86 583.35

Percentage occupied (%) 100 85.9 74.7 57.5 31.2 58.8 33.6

Reduced area (Km2) N/A 244.8 439.26 737.88 1,194.49 715.31 1,152.82

Percentage of reduction (%) N/A 14.1 25.3 42.5 68.8 41.2 66.4

https://doi.org/10.1371/journal.pone.0229178.t004
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this species is very susceptible to being affected by climate change, due to its discontinuous dis-

tribution and the restricted range of climatic conditions to which it is adapted [49]. This,

reduction in habitat suitability coincides with the results reported by other authors [14, 15,

57], who used earlier versions of the HadGEM model with projections to 2050. Gómez-Men-

doza & Arriaga [14] made projections for 42 species of pines and oaks, estimating P. hartwegii
as one of the species most affected by temperature increase. While Gutiérrez & Trejo [15]

made projections for three species of pine and two of oak, concluding that the area occupied

by P. hartwegii will be reduced up to 70% by 2050. However, these projections were made with

algorithms such as GARP and BioClim which, according to several authors [33, 39, 46], tend

to overestimate distribution areas. Bearing in mind that these studies have a limited time hori-

zon and use models out to date, the projections made in the present study that show a reduc-

tion of between 29.3% and 68.8% in the distribution of P. hartwegii could be considered more

realistic. These results also support the hypothesis that P. hartwegii is a highly vulnerable spe-

cies to climate change however it is necessary to evaluate more closely the response of this spe-

cies to temperature increase, including eco-physiological studies. Pinus hartwegii have been

exposed to climatic variations throughout their evolutionary history [1, 15], but the pace of

current changes far exceeds past patterns [49], the survival of this species to such changes will

depend on its ability to adapt and on how quickly it can migrate to places with optimal climatic

conditions [8, 58]. However, it is known that changes in vegetation distribution can often take

hundreds or thousands of years [59]. These changes in distribution may be limited too by fac-

tors such as: availability of microsites [1, 19], the treeline shape and structure [21, 29], the

health status of the vegetation [1, 60], and even the conservation status and deforestation [24].

Future distribution scenarios for P. hartwegii showed a reduction in the area of suitability

associated with temperature increase at the sites where this species is found. Particularly in the

populations located in the northeastern extreme in Nuevo León, Mexico, and the southern end

of the distribution in El Salvador (see Fig 6), where, even for the optimistic scenario (2050–

2.6), a reduction of almost 30% was observed. In addition, there are external factors such as the

increment in pests and parasites related to the temperature increase [4, 58]. Aspects such as

population dynamics or infestation capacity of P. hartwegii associated species such as Bark bee-

tle (Dendroctonus adjunctus) or Dwarf mistletoes (Arceuthobium globosum and A. vaginatum)

could be modified due to climate change [31, 57]. Unfortunately, there is still very little infor-

mation on these pest species and how they may affect P. hartwegii populations in the future [1,

60]. On the other hand, there is an increase in anthropogenic pressure due to population

growth and deforestation [31], in this regard, alternatives have been proposed such as assisted

migration [19]. These alternatives which seeks to reduce decoupling between natural forest

populations and the climate for which they are adapted [52], although there is still little infor-

mation on the viability of these strategies on a large scale. These factors could have a negative

impact on the establishment of new individuals at higher altitudes, or on the ability of trees to

adapt to new conditions. In this sense, it would be favorable to evaluate in the long term not

only the potential distribution of P. hartwegii, but also of the associated species and their effect

on the populations of this species in relation to climate change. In addition, MOP analyses

were used to minimize extrapolation errors to assess predictions [50]. In our study, the suit-

ability areas of P. hartwegii in the models were mostly restricted to environmental zones like

the calibration areas; therefore, supporting our models.

Conclusions

The potential distribution models of P. hartwegii showed a reduction of the most suitable habi-

tat in the populations of the latitudinal extremes of their distribution. Based on climate change
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projections, the suitability area will decline by between 29.3% and 68.8% over the next 50

years, which implies increased pressure on the forests made up of this species and all the bio-

logical diversity they contain. The reduction of the potential future range could be accentuated

by factors such as anthropogenic pressure, driving populations from extreme northeastern and

southern latitudes into extinction. Reducing the suitability area of P. hartwegii can lead to

increased selection pressure in these ecosystems. The long-term effects of climate change on

the populations of the species need to be assessed, as well as the genetic factors that could

reduce or increase the effect of environmental conditions on these populations. Establishing

long-term monitoring schemes to evaluate in situ the response to temperature increase of the

different populations of P. hartwegii is a priority for their conservation.
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14. Gómez-Mendoza L, Arriaga L. Modeling the effect of climate change on the distribution of Oak and Pine

species of Mexico. Conservation Biology. 2007; 21:1545–1555. https://doi.org/10.1111/j.1523-1739.

2007.00814.x PMID: 18173478

15. Gutiérrez E, Trejo I. Effect of climatic change on the potential distribution of five species of temperate

forest trees in Mexico. Revista Mexicana de Biodiversidad. 2014; 85:179–188. https://doi.org/10.7550/

rmb.37737

16. Kozlowski T, Pallardy S. Acclimation and adaptive responses of woody plants to environmental

stresses. The Botanical Review. 2002; 68:270–334. https://doi.org/10.1663/0006-8101(2002)068

[0270:AAAROW]2.0.CO;2

17. Soberón J, Miller CP. Evolución de los nichos Ecológicos. Miscelánea Matemática. 2009; 49:83–99.
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