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Simple Summary: Pancreatic cancer is an aggressive disease with a high mortality rate. The study
of the biological processes involved in carcinogenesis (tumor formation) and tumor progression
(development of metastases) is still necessary. In this work, we established three subtypes of pan-
creatic tumors according to their protein profiles: one adhesion subtype, a metabolic subtype, and
a nucleoplasm subtype. In addition, the identified mechanisms involved in carcinogenesis and in
tumor progression differ between subtypes. These differences may need to be considered when
designing new treatments.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with an overall 5-year
survival rate of just 5%. A better understanding of the carcinogenesis processes and the mechanisms
of the progression of PDAC is mandatory. Fifty-two PDAC patients treated with surgery and
adjuvant therapy, with available primary tumors, normal tissue, preneoplastic lesions (PanIN),
and/or lymph node metastases, were selected for the study. Proteins were extracted from small
punches and analyzed by LC-MS/MS using data-independent acquisition. Proteomics data were
analyzed using probabilistic graphical models, allowing functional characterization. Comparisons
between groups were made using linear mixed models. Three proteomic tumor subtypes were
defined. T1 (32% of patients) was related to adhesion, T2 (34%) had metabolic features, and T3 (34%)
presented high splicing and nucleoplasm activity. These proteomics subtypes were validated in the
PDAC TCGA cohort. Relevant biological processes related to carcinogenesis and tumor progression
were studied in each subtype. Carcinogenesis in the T1 subtype seems to be related to an increase
of adhesion and complement activation node activity, whereas tumor progression seems to be
related to nucleoplasm and translation nodes. Regarding the T2 subtype, it seems that metabolism
and, especially, mitochondria act as the motor of cancer development. T3 analyses point out that
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nucleoplasm, mitochondria and metabolism, and extracellular matrix nodes could be involved
in T3 tumor carcinogenesis. The identified processes were different among proteomics subtypes,
suggesting that the molecular motor of the disease is different in each subtype. These differences
can have implications for the development of future tailored therapeutic approaches for each PDAC
proteomics subtype.

Keywords: pancreatic ductal adenocarcinoma; high-throughput proteomics; carcinogenesis; tumor
progression; molecular profiles

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with an overall
5-year survival rate of only 5%. At the time of diagnosis, 80% of tumors are already in
incurable stages. On the other hand, in patients with localized disease, surgery represents
the best option of curative treatment as part of multidisciplinary management, including
chemotherapy and radiation therapy. However, despite performing a radical resection,
80% of patients are going to relapse [1,2]. In 2021, 60,430 new PDAC cases and 48,220
related deaths have been estimated in the United States with an increasing incidence, being
the fourth cause of cancer death [3]. Therefore, it is an absolute priority to deepen the
knowledge of PDAC pathogenesis.

PDAC molecular subtypes have already been defined using transcriptomics data [4–6].
Collison et al. divided PDAC into a classical, exocrine-like, and quasi-mesenchymal sub-
type [5]. Moffit et al. established a classification making distinctions between tumor
subtypes -basal-like and classical-, and stromal subtypes—normal and activated [4]. Fi-
nally, Bailey et al. divided PDAC into squamous, pancreatic progenitor, immunogenic,
and aberrantly differentiated endocrine exocrine (ADEX) subtypes [6]. Squamous, quasi-
mesenchymal, and basal-like subtypes are well aligned across the three classifications.
Puleo et al. suggested that the differences shown by Bailey et al. were due to the cellularity
of the samples [7].

Proteomics has been developed as a complementary approach to the massive sequence
of genes and genomes and to analysis at the RNA level. Its importance lies in the fact
that proteins ultimately define the function and the operations of cells, tissues, and organ-
isms [8]. Whereas genomics usually shows why things happen, proteomics explains what
is happening. In this regard, genomics and proteomics complement each other, integrating
different levels of information.

A previous study defined proteomics subtypes of PDAC using hepatic metastases,
classifying tumors into metabolic, progenitor-like, proliferative, and inflammatory sub-
types [9]. Another study identified four risk subgroups of PDAC using proteomics [10].
Recently, Cao et al. studied early biomarkers of PDAC by proteogenomics using tumors
and normal adjacent tissues [11]. However, until now, a proteomics study to define those
processes involved in tumor development and progression has not been performed.

In this study, a molecular characterization of paired PDAC samples (normal tissue-
preneoplastic lesions-primary tumor-lymph node metastases) based on a proteomics analy-
sis pipeline followed by computational approaches was performed to deepen the molecu-
lar information.

Coupling proteomics with our data analysis pipeline allows the identification of
those biological processes related to carcinogenesis and tumor progression through the
analysis of paired samples. Network analysis based on probabilistic graphical models
(PGMs) was used to further characterize those biological functions that may be relevant to
tumor development and progression by comparing the different types of samples. Three
proteomics tumor PDAC subtypes were identified, and biological processes involved in
carcinogenesis and tumor progression were different among them.
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2. Materials & Methods
2.1. Patient Samples and Clinical Data

Patients with PDAC treated with surgery and adjuvant therapy from February 2010
to October 2020 at Hospital Universitario La Paz with available FFPE primary tumor and
normal tissue, preneoplastic lesions grade 2–3 (PanIN), and/or lymph node metastases
were selected for the study. Samples were punched to study the differences associated with
the different types of regions. A total of 52 primary tumors, 47 non-tumor tissues, 43 PanIN,
and 31 lymph nodes were obtained for the proteomics analyses. The study was approved
by the Ethical Committee of the Hospital Universitario La Paz (IRB number: 1349). The
7th edition of TNM was used to classify the samples.

2.2. Protein Isolation

Protein isolation was performed as previously described [12]. Briefly, the FFPE sections
were deparaffinized in xylene and washed twice in absolute ethanol. Protein isolates
were prepared in 2% SDS. Protein quantity was measured using a MicroBCA Protein
Assay Kit (Pierce-Thermo Scientific). Finally, 10 µg of each protein extract were digested
with trypsin (1:50), and SDS was eliminated from the lysates using Detergent Removal
Spin Columns (Pierce). Before mass-spectrometry experiments, samples were desalted
using ZipTips (Millipore), dried, and resolubilized in 15 µL of a 0.1% formic acid and
3% acetonitrile solution.

Peptides were acidified to perform a stage-tip cleanup using two Empore reversed-
phase extraction disks (3M) [13]. Digests were dried in a SpeedVac and stored at −20 ◦C un-
til LC-MS/MS analysis. Peptides were re-solubilized in 20 µL of 3% acetonitrile, 0.1% formic
acid, and 1 µL of indexed retention time (iRT)-peptides (Biognosys) were spiked in each
sample for MS analysis. For the DDA analysis and subsequent spectral library generation,
a small volume of each sample was taken and combined into a total of 10 pooled samples.

2.3. Liquid Chromatography–Mass Spectrometry Experiments

One hundred and seventy-three samples from 52 PDAC patients, including non-
tumor tissue, primary tumor, PanIN, and affected lymph nodes, were analyzed by high-
throughput proteomics.

Mass spectrometry analysis was performed on an Orbitrap Fusion (Thermo Scientific)
equipped with a Digital PicoView source (New Objective) and coupled to an M-Class
UPLC (Waters). The solvent composition of the two channels was 0.1% formic acid for
channel A and 0.1% formic acid, 99.9% acetonitrile for channel B. For each sample, 2 µL
of peptides were loaded on a commercial MZ Symmetry C18 Trap Column (100 Å, 5 µm,
180 µm × 20 mm, Waters) followed by a nanoEase MZ C18 HSS T3 Column (100 Å, 1.8 µm,
75 µm × 250 mm, Waters). The peptides were eluted at a flow rate of 300 nL/min. After an
initial hold at 5% B for 3 min, a gradient from 5% to 22% B in 109 min and 32% B in 8 min
was applied. The column was washed with 95% B for 5 min, and afterwards the column
was re-equilibrated to starting conditions for an additional 10 min.

For library generation using the pooled samples, the mass spectrometer was operated
in data-dependent mode (DDA), acquiring a full-scan MS spectra (350−1500 m/z) at a
resolution of 120,000 at 200 m/z after accumulation to a target value of 400,000. Data-
dependent MS/MS were recorded in the Orbitrap using quadrupole isolation with a
window of 1.4 Da and HCD fragmentation with 30% normalized collision energy (NCE).
Orbitrap resolution was set to 30,000, maximum injection time was set to 54 ms with a
target value of 50,000, and the cycle time was set to 3 s. Charge-state screening was enabled.
Singly, unassigned, and charge states higher than seven were rejected. Precursor masses
previously selected for MS/MS measurement were excluded from further selection for 25 s,
and the exclusion window was set at 10 ppm.

For the analysis of the individual samples, the mass spectrometer was operated in a
data-independent mode (DIA). The DIA scans covered a range from 400 to 1100 m/z in
windows of 20 m/z. The resolution of the DIA windows was set to 30,000, with an AGC
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target value of 50,000, the maximum injection time set to Dynamic, and a NCE of 30. Each
instrument cycle was completed by full MS scan monitoring 350 to 2000 m/z at a resolution
of 120,000.

The samples were acquired using internal lock mass calibration on m/z 371.1010 and
445.1200. The mass spectrometry proteomics data were handled using the local laboratory
information management system (LIMS) [14], and all relevant data were deposited to
the ProteomeXchange Consortium via the PRIDE (http://www.ebi.ac.uk/pride) partner
repository with the data set identifier PXD032076.

2.4. Spectral Library Generation and Protein Quantification

A hybrid spectral library was generated using the Pulsar search engine and spectral
library generation functionality in Spectronaut (14.0.200601.47784, Biognosys), applying
the default parameter settings to DDA and DIA runs. Spectra were searched against
a canonical SwissProt database for human and common protein contaminants (NCBI
taxonomy ID9606, release date 9 July 2019). Carbamidomethylation of cysteine was set as a
fixed modification, while methionine oxidation and N-terminal protein acetylation were
set as variable modifications. Enzyme specificity was set to trypsin/P allowing a minimal
peptide length of 7 amino acids and a maximum of two missed-cleavages. Precursor and
fragment tolerance were set to Dynamic for the initial search. The maximum false discovery
rate (FDR) was set to 0.01 for peptides and 0.01 for proteins. Protein quantification was
performed in Spectronaut using default settings. The quantitative data were extracted using
the BGS Factory Report (default) and used for follow-up analyses. Stringent filtering of the
extracted feature groups by the Spectronaut-reported q-Value was applied. For precursor
fragment groups, we required a per run q-value of at most 0.05 and a per experiment
q-value of at most 0.01. The q-value sparse mode was used in combination with a global
imputing strategy. To perform statistical modeling, fragment intensities were aggregated
into precursor and peptide intensities.

2.5. Data Preprocessing

Proteomics data were transformed into log2. At least 75% of valid values in at least
one group (non-tumor tissue, PanIN, primary tumor, and lymph nodes) were applied as
quality criteria. Then, missing values were imputed to a normal distribution using Perseus
software [15].

2.6. Study of GATA6 Expression by Immunohistochemistry

For GATA6 determination, optimal tissue blocks were selected by an expert patholo-
gist on hematoxylin and eosin (H&E) slides. Representative tumor areas of each case were
selected for tissue microarray (TMA) construction. Two representative cores of 1.2 mm in
diameter were taken and arrayed into a receptor block using a tissue microarray (TMA)
workstation (Beecher Instruments, Silver Spring, MD, USA) as previously described [16].
Four micrometer sections of the TMAs were used for immunohistochemistry (IHC) pur-
poses. Briefly, slides were cut with a semiautomatic microtome HM 3508 (MICROM),
deparaffinized, and rehydrated in water. Antigen retrieval was performed using a DAKO
PT Link. Peroxidase activity was blocked with a Dako Protein block for 10 min, incubated
for 30 min with primary antibodies, detected with a Dako Envision Plus kit, and counter-
stained with haematoxylin. All reagents were from Dako (Agilent, Santa Clara, CA, USA).
GATA-6 antibody used: ref. number AF1700 (R&D Systems, MN, USA).

2.7. Probabilistic Graphical Models

As in previous works [12,17], probabilistic graphical models (PGMs) were calculated
using proteomics data without any a priori information in R using the grapHD package [18].
This analysis allows the organization of protein data according to their expression profile
and the identification of relevant biological processes. The resulting networks were split
into functional nodes according to the gene ontology of their branches. Gene ontology

http://www.ebi.ac.uk/pride
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analyses to assign a function to each functional node were done in DAVID webtool [19],
using homo sapiens as background and GOTERM-FAT, Biocarta, and KEGG as categories.
Once the functional nodes were assigned, functional node activities were calculated as
the mean expression of those proteins involved in the main function of each node. These
functional node activities were used to make comparisons between groups of samples.

2.8. Statistical Analyses

Hierarchical cluster (HCL) based on correlation and average linkage to establish tumor
proteomics subtypes was done using MeV software [20]. Mixed linear models with fixed
effects were used to establish the significant differences between the groups of samples.
These calculations were done in R using library lme4 [21]. For the comparison between
tumor samples, a Mann–Whitney test was used. Finally, the relationships between clinical
parameters and subtypes were studied using Chi-squared tests. These tests were done
using Graph Pad Prism v6; p-values were two-sided and considered significant below 0.05.

2.9. Validation of PDAC Proteomics Subtypes in the TCGA Cohort

A centroid based on the 313 differential proteins defined in the SAM was calculated
for each tumor proteomic subtype. On 284 of these 313 proteins, an equivalent gene existed
in the TCGA cohort. Using these 284 genes, TCGA samples were classified into one of the
three defined subtypes. Then, functional node activities were calculated to verify that the
subgroups had the same molecular features as the tumor proteomics subtypes.

3. Results
3.1. Clinical Data

From a cohort of 110 PDAC patients treated with surgery and adjuvant therapy
from February 2010 to October 2020 at Hospital Universitario La Paz, fifty-two patients
were selected for proteomics experiments. For these patients, all the available samples
were analyzed: non-tumor tissue, preneoplastic lesions grade 2–3 (PanIN), tumor, and
lymph nodes. Fourty-seven non-tumor samples, 43 PanIN, and 31 lymph node samples
were available.

Regarding clinical data, only information of 50 patients was available due to loss of
follow-up after surgery of two of them. These 50 patients were used for the analyses that
involved clinical parameters (Table 1).

The median follow-up was 13 months, and 37 relapses occurred, of which 10 were
local relapses and 27 were distant relapses. All patients were treated with surgery and
adjuvant therapy, and none received neoadjuvant therapy.

3.2. Proteomics Experiments

A total of 3927 proteins were identified in DIA mass-spectrometry experiments. After
applying a quality criterion of at least 75% of valid values in at least one group (non-
tumor tissue, PanIN, primary tumor, and lymph nodes), 2311 proteins were used for the
subsequent analyses.

3.3. Proteomics Pancreatic Dutal Adenocarcinoma Subtypes

First, all the samples were analyzed by a hierarchical cluster (HCL) to establish dif-
ferences between different types of tissues. Surprisingly, the HCL was not capable of
splitting samples by tissue type, i.e., establishing a group of non-tumor tissue, another of
tumor samples, another with PanIN and a last one containing the lymph node samples
(Figure S1).
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Table 1. Patients’ characteristics.

Number of Patients = 50 (100%)

Gender

Male 30 (60%)

Female 20 (40%)

Age (median) (IQR) 28–84 (65) (52–76)

Diabetes at diagnosis

Yes 9 (18%)

No 40 (80%)

Unknown 1 (2%)

Tobacco use

Yes 22 (44%)

No 21 (42%)

Unknown 7 (14%)

Location of primary tumor

Head 38 (76%)

Body 3 (6%)

Tail 5 (10%)

Various 4 (8%)

Grade

Very differentiated 6 (12%)

Moderately 33 (66%)

Poor 8 (16%)

Unknown 3 (6%)

Type of resection

R0 16 (32%)

R1 34 (68%)

pT

1 3 (6%)

2 11 (22%)

3 34 (68%)

4 2 (4%)

pN

N0 11 (22%)

N1 39 (78%)

Stage (TNM 7th edition)

Ia 2 (4%)

Ib 2 (4%)

IIa 4 (8%)

IIb 38 (76%)

III 3 (6%)

IV 1 (2%)
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In order to establish whether the variability associated with this distribution that
does not distinguish by sample origin was related to different proteomics tumor subtypes,
only tumor samples were selected to perform the analysis. In this case, the HCL clearly
established three different groups of tumors in PDAC according to their proteomic profiles.
T1 included 16 (32%) patients, whereas T2 and T3 were composed of 17 (34%) patients each
(Figure 1).
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Figure 1. Hierarchical clustering (HCL) of PDAC tumor samples clearly showed three proteomic
subtypes (T1, T2, and T3). HCL is based on the average linkage method and Pearson correlation.

As in previous works [12,17], a network analysis based on PGMs was used to charac-
terize in depth the differences at the biological processes level between the three proteomics
PDAC tumor subtypes. The resulting network was divided into eight functional nodes, two
of which had an overrepresentation of adhesion proteins. Functional node activities showed
differences between the three subtypes. T1 presented higher functional node activities in
adhesion and complement activation nodes, and will be referred as “adhesion subtype”
for now on. T2 had higher functional node activities of mitochondria and metabolism and
translation nodes, being for now on the “metabolic subtype”. Finally, T3 showed higher
functional node activities in nucleoplasm and splicing, and will be named as “nucleoplasm
subtype” (Figure 2).
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Figure 2. (A) Network formed by 2311 proteins in PDAC tumor samples. (B) Functional node activi-
ties comparing the three proteomic subtypes in tumor samples. **** p < 0.0001; *** 0.0001 < p < 0.001;
** 0.001 < p < 0.05. * p < 0.05; ns: nucleoplasm subtype.

Regarding the clinical relevance of these subtypes, T1 and T2 contained most of
the pancreatic tumors located in the head of the pancreas, and T3 contained most of the
tumors located in the body and tail (Supplementary Figure S1A). There were no significant
differences between T groups according to age, gender, diabetes, pancreatitis, smoking,
grade, type of resection, pT, pN, stage, or location of metastases. Any differences in
prognosis according to overall survival or disease-free survival between the three PDAC
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proteomics subtypes were found (Supplementary Figure S1B). The percentage of relapses
at 12 months was 37% in the T1 subtype and 53% in the T2 and T3 subtypes.

3.4. Study of Classical Defined Biomarkers from PDAC Transcriptomics Subtypes

Of the defined biomarkers from transcriptomics PDAC subtypes, only Mucin 5
(MUC5A), characteristic of Moffit classical subtype and Bailey progenitor subtype, and
insulin (INS), characteristic of Bailey’s ADEX subtype, were identified in the list of the iden-
tified and quantified proteins. MUC5A expression was compared across the defined PDAC
proteomics subtypes, and it was significantly higher in the T1-adhesion subtype. Addition-
ally, insulin protein (INS) had a higher expression in the T2 subtype, being comparable
with the ADEX subtype (Supplementary Figure S2).

GATA6, a marker characteristically expressed in the Moffit classical subtype, was
studied by IHQ. All T3 tumors showed a positive expression of GATA6 by IHC, and
negative ones were split into T1 and T2 subtypes (Supplementary Figure S3). Altogether,
these results suggested that T2 tumors correspond to the ADEX subtype and contained
classical and basal-like tumors; T1 also contained basal-like and classical subtypes; and T3
corresponded only to classical tumors that also had an overexpression of proteins related
to nucleoplasm.

3.5. Identification of Biological Processes Involved in Carcinogenesis and Tumor Progression in
Each PDAC Proteomics Subtype

Since differences between subtypes are bigger than differences between the types
of samples, we studied the differences between samples at a functional level in order to
characterize the biological processes involved in the progression of the disease indepen-
dently in each defined proteomics subtype. Thus, new analyses including each type of
sample (normal pancreatic tissue, PanIN, tumor, and lymph nodes) were performed for
each proteomics subtype.

3.5.1. Identification of T1 Carcinogenesis and Tumor Progression Processes

T1 tumor samples are characterized by higher adhesion and complement functional
node activities compared with the other PDAC proteomics tumor subtypes.

A network based on PGMs was constructed, including all types of samples from
patients with T1 tumors. The resulting network had 11 functional nodes, one without
an overrepresented biological function (Figure 3A). Functional node activities and mixed
linear models were used to define the biological processes with differential functional node
activities between tissue samples (Figure 3B, Table 2).

Using mixed linear models, differences between non-tumor and tumor tissue were
identified. Mitochondria, pancreatic secretion, and translation node activity decreased in
tumor samples compared to PanIN, and adhesion2, and complement activation and antigen
presentation node activity presented an increase in tumor samples compared to PanIn.

Significant differences between tumors and lymph nodes and, therefore, related to
tumor progression were identified in complement activation and antigen presentation,
adhesion 2, ECM, nucleoplasm, and translation functional nodes. In this case, nucleoplasm
and translation were higher in lymph nodes, and the others suffered a decrease in their
activity in lymph node samples.

The adhesion 2 node contains some relevant proteins, such as HSPB1 or THY. Comple-
ment activation node was mainly formed by immunoglobulins and complement proteins
such as C3 or C1QB. The translation node was mainly formed by ribosomal proteins (RPL3,
RL23A, RL11, RL8, RS9, etc.). Finally, the most relevant protein included in the nucleoplasm
node was HIF1AN.
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Figure 3. (A) Network of 2311 proteins in the T1 subtype. (B). Differential functional node activities 

comparing the different histological samples in the T1 subtype according to mixed linear models. 

NT = normal tissue, P = preneoplastic lesions, T = primary tumors, LN = lymph nodes. * p < 0.05. 

Table 2. Summary of functional node activities identified as differential using mixed linear models 

between samples in each PDAC proteomics subtype. NT = no tumor tissue, P = preneoplastic lesions, 

T = primary tumor, LN = lymph node metastasis. 

Samples Direction T1 T2 T3 

NT→T 

↓   ECM 

↑  

Pancreatic secre-

tion 

Metabolism 

Nucleoplasm 

Figure 3. (A) Network of 2311 proteins in the T1 subtype. (B). Differential functional node activities
comparing the different histological samples in the T1 subtype according to mixed linear models.
NT = normal tissue, P = preneoplastic lesions, T = primary tumors, LN = lymph nodes. * p < 0.05.
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Table 2. Summary of functional node activities identified as differential using mixed linear models
between samples in each PDAC proteomics subtype. NT = no tumor tissue, P = preneoplastic lesions,
T = primary tumor, LN = lymph node metastasis.

Samples Direction T1 T2 T3

NT→T
↓ ECM

↑ Pancreatic secretion
Metabolism Nucleoplasm

P→T

↓
Pancreatic secretion

Mitochondria
Translation

Mitochondria
& metabolism

↑ Complement activation
Adhesion 2

Pancreatic secretion
Metabolism

T→LN

↓
Complement activation

Adhesion 2
ECM

Pancreatic secretion
Metabolism

↑ Nucleoplasm
Translation

3.5.2. Identification of T2 Carcinogenesis and Tumor Progression Processes

T2 tumors were characterized as having higher mitochondria, metabolism, and trans-
lation activity compared to the other PDAC tumor subtypes and presented overlapping
characteristics with the ADEX subtype. Again, a network was built using all T2 sam-
ples. It was composed of 12 functional nodes, two of which had two associated functions:
pancreatic secretion and metabolism, and the other cytoskeleton and MAPK (Figure 4A).

Functional node activities and mixed linear models were used to define those biological
processes with differential functional node activity between tissue samples (Figure 4B).

The biological processes identified as related to tumor development were pancreatic
secretion and metabolism, which were significantly higher in tumor samples than in normal
tissues and PanIN.
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Figure 4. (A). Network of 2311 proteins in the T2 subtype. (B) Differential functional node activities 

comparing the different histological samples in the T2 subtype according to mixed lineal models. 

NT = normal tissue, P = preneoplastic lesions, T = primary tumors, LN = lymph nodes. * p < 0.05. 

The biological processes identified as related to tumor development were pancreatic 

secretion and metabolism, which were significantly higher in tumor samples than in nor-

mal tissues and PanIN. 

These functional node activities (pancreatic secretion and metabolism) presented a 

significant decrease in lymph node samples compared to tumors, which could be associ-

ated with tumor progression. 

Pancreatic secretion node contained several relevant proteins such as TYMP, 

NAMPT, or pancreatic lipases, such as PNLIP. 

3.5.3. Identification of T3 Carcinogenesis and Tumor Progression Processes 

T3 subtype was characterized by higher nucleoplasm activity and also had overlap-

ping characteristics with the classical subtype. The obtained network using protein ex-

pression data from the T3 samples was composed of ten functional nodes (Figure 5A). 

Functional node activities showed differences between no tumor and tumor samples 

in nucleoplasm, mitochondria and metabolism, and ECM. ECM had a decrease in their 

activity in tumors compared to normal samples, while nucleoplasm showed an increase 

in tumor samples. In addition, tumor samples presented a decrease in mitochondria and 

metabolism node activity compared to PanIN. In the case of tumor and lymph nodes, 

there are no significantly different processes between them (Figure 5B). 

Nucleoplasm nodes were formed by some well-known proteins, such as PARP1, 
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Figure 4. Cont.
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NT = normal tissue, P = preneoplastic lesions, T = primary tumors, LN = lymph nodes. * p < 0.05. 
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Figure 4. (A). Network of 2311 proteins in the T2 subtype. (B) Differential functional node activities
comparing the different histological samples in the T2 subtype according to mixed lineal models.
NT = normal tissue, P = preneoplastic lesions, T = primary tumors, LN = lymph nodes. * p < 0.05.

These functional node activities (pancreatic secretion and metabolism) presented a
significant decrease in lymph node samples compared to tumors, which could be associated
with tumor progression.

Pancreatic secretion node contained several relevant proteins such as TYMP, NAMPT,
or pancreatic lipases, such as PNLIP.

3.5.3. Identification of T3 Carcinogenesis and Tumor Progression Processes

T3 subtype was characterized by higher nucleoplasm activity and also had overlapping
characteristics with the classical subtype. The obtained network using protein expression
data from the T3 samples was composed of ten functional nodes (Figure 5A).

Functional node activities showed differences between no tumor and tumor samples
in nucleoplasm, mitochondria and metabolism, and ECM. ECM had a decrease in their
activity in tumors compared to normal samples, while nucleoplasm showed an increase
in tumor samples. In addition, tumor samples presented a decrease in mitochondria and
metabolism node activity compared to PanIN. In the case of tumor and lymph nodes, there
are no significantly different processes between them (Figure 5B).

Nucleoplasm nodes were formed by some well-known proteins, such as PARP1,
ELAVL1, SART3, RAN, FUBP1, APEX1, or AKT1S1.

A summary of the differential functional node activities and their corresponding
biological processes is presented in Table 2. Complete results of the mixed linear models
are provided in Supplementary Figure S1.

3.6. Validation of These Tumor Subtypes in the TCGA Cohort

To confirm the described PDAC proteomics subtypes, the TCGA cohort was used.
According to a centroid assignation, there were 46 (25%) PDAC samples in the T1 subtype,
73 (40%) in the T2 subtype, and 65 (35%) samples in the T3 subtype. Using functional
node activities calculated in this cohort confirmed that the TCGA samples assigned to the
T2 subtype had metabolic characteristics. The T1 subtype samples had higher activities
in adhesion nodes as it occurred in the proteomics cohort. T3 subtype showed a higher
activity in nucleoplasm and splicing functional nodes (Supplementary Figure S4). No
differences in overall survival between the tumor proteomics subtypes were found.
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Figure 5. (A) Network of 2311 proteins in the T3 subtype. (B) Differential functional node activities 

comparing the different histological samples in the T3 subtype according to mixed lineal models. 

NT = normal tissue, P = preneoplastic lesions, T = primary tumors, LN = lymph nodes. * p < 0.05. 
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comparing the different histological samples in the T3 subtype according to mixed lineal models.
NT = normal tissue, P = preneoplastic lesions, T = primary tumors, LN = lymph nodes. * p < 0.05.

4. Discussion

This is the first study in PDAC using proteomics to define the molecular subtypes and
mechanisms involved in tumor development and progression in each subtype. Samples
from 52 PDAC patients, including non-tumor tissues, preneoplastic lesions, primary tumors,
and lymph nodes, were analyzed by high-throughput proteomics and a Systems Biology
approach in order to identify relevant biological processes in tumor development and
progression.

Using this approach, we have defined three proteomics PDAC subtypes, which can
be detected even in the earliest stages of tumor development. Each subtype showed
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specific molecular features. T1 subtype is related to adhesion, the T2 subtype has metabolic
features, and the T3 subtype presents high splicing and nucleoplasm activity. These
proteomics subtypes also shared some characteristics with subtypes previously defined
by transcriptomics, while providing new and complementary information: T2 tumors
correspond to ADEX subtype, including some metabolic basal-like and classical subtypes;
T1 contained basal-like and classical subtypes; and T3 corresponded to those classical
tumors with high expression of nucleoplasm-related proteins. Interestingly, the identified
processes involved in tumor development and progression were different between the
three PDAC proteomics subtypes, suggesting that the molecular motor of the disease is
different in each subtype. These differences can have implications for the development of
future tailored therapeutic approaches for each PDAC proteomics subtype.

Previous transcriptomics studies defined a group of tumors in which adhesion plays
an important role [4–6], as observed in our proteomics subtype T1. Carcinogenesis in
the T1 subtype seems to be related to a decrease of mitochondria, pancreatic secretion
and translation node activity, and an increase of adhesion and complement activation
and antigen presentation node activity. The adhesion 2 functional node contains some
relevant proteins, such as HSPB1 and THY1. The HSPB1 gene codifies Heat Shock Pro-
tein 27 (Hsp27), a cell survival protein found at elevated levels in many human cancers,
including prostate, lung, breast, ovarian, bladder, renal, pancreatic, multiple myeloma,
and liver [22,23]. THY1, also known as CD90, is a stem cell marker that interacts with
monocytes and macrophages, promoting immunosuppressive features of immune cells and
enhancing the stemness and E-MT of PDAC. It has been suggested that THY1 establishes a
favorable environment that promotes tumor progression [24], which can be mediated by
high levels of PD-L1 in CD90+ cells [25]. In addition, complement and antigen activation
functional nodes are mainly composed of immunoglobulins and complement proteins.
Although the role of complement in PDAC development is still unclear [26], the role of
complement in tumor development and modulation of the tumor microenvironment has
been demonstrated [27]. The expression of complement C3 in pancreatic cancer was de-
scribed as significantly higher than in normal tissues and was proposed as a diagnostic
biomarker of early-stage pancreatic cancer [28,29]. Depletion of C3 in tumor cells enhanced
the efficacy of anti–PD-L1 treatment [30]. These results together suggest that high levels of
THY1 and complement components in T1 tumors provoke an immunosuppressive tumor
microenvironment, suggesting an inflammatory phenotype, and open up the possibility of
using a combination of immunotherapy coupled with anti-PD1/PD-L1 therapy in patients
with these T1 tumors. Differences between tumors and lymph nodes in the T1 subtype,
related to tumor progression, were identified in nucleoplasm, translation, adhesion, extra-
cellular matrix, and complement activation nodes. In the nucleoplasm functional node,
HIF1AN stands out due to its role in the regulation loop of IGFR. It has been described that
the use of an IGFR inhibitor caused a lower expression of this protein and a decrease in
growth in pancreatic cancer cells [31,32] Thus, IGFR pathway inhibitors may avoid tumor
progression in PDAC T1 proteomics subtype.

Our data in primary tumors confirmed that mitochondria metabolism plays an impor-
tant role in one of the PDAC proteomics subtypes, the T2 subtype. Our analysis based on
probabilistic graphical models also highlighted the importance of glycolysis and pyruvate
metabolism, valine metabolism, and fatty acid metabolism, among others. In a previous
study analyzing tumors and adjacent tissue from three PDAC patients, differential proteins
related to metabolism, especially mitochondrial proteins and proteins whose function is
acting as regulators of pancreatic juices, were identified [33]. The importance of metabolic
alterations in PDAC, including an increase in glutamine metabolism and mitochondrial
dysfunction, has been previously highlighted [34]. In addition, in a previous proteomics
study in hepatic PDAC metastases, a group related to metabolism was defined, character-
ized by the expression of ethanol oxidation, mitochondrial fatty-acid beta oxidation, and
retinoic acid signaling pathways [9]. Moreover, the downregulation of certain metabolic
pathways in patients with PDAC and diabetes mellitus has been suggested to be associated
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with the poor prognosis of these patients [35]. Metabolism and pancreatic secretion nodes
had differential activity between T2 normal tissue, PanIN, and tumors and between tumors
and lymph nodes. Pancreatic secretion node contained some relevant proteins. For in-
stance, expression of the angiogenic factor TYMP has been correlated with capecitabine and
fluorouracil response [36,37]. Additionally, in their proteomics study, Law et al. established
that TYMP had a strong correlation with patient survival in PDAC [9]. Another protein
in this node is NAMPT, whose inhibitor STF-118804, in combination with chemotherapy
agents, such as paclitaxel, gemcitabine, and etoposide, showed an additive effect in the
decrease of cell viability and growth in PDAC [38]. PNLIP is one of the main pancreatic
lipases. It is related to orlistat, a drug used in obesity treatment. Kridel et al. stated that
orlistat may inhibit the growth of prostate cancer by interfering with the metabolism of
fats [39]. Interestingly, in lymph node metastases, these processes presented a significant
decrease compared to primary tumors. In conclusion, regarding the T2 subtype, it seems
that metabolism and, especially, mitochondria act as the motor of cancer development.

The last proteomics subtype, T3, is related to nucleoplasm and histones. Mutational
studies of PDAC showed a high prevalence of genetic alterations in genes involved in chro-
matin remodeling such as SMARCA2, SMARCA4, MLL2, or ARID1A, among others [40],
so it is not surprising that proteomics subtyping highlighted the relevance of proteins
related to nucleoplasm and histone modification. This group was also GATA6 positive,
being equivalent to classical PDAC tumors. T3 analyses point out that nucleoplasm, mito-
chondria and metabolism, and extracellular matrix nodes could be involved in T3 tumor
carcinogenesis. The nucleoplasm node also contained some well-known cancer-related
proteins, such as PARP1. ELAVL1 is also present in this functional node, and it has been as-
sociated with response to gemcitabine in pancreatic cancer [41]. SART3 is an RNA-binding
nuclear protein that is a tumor-rejection antigen. This antigen possesses tumor epitopes
capable of inducing HLA-A24-restricted and tumor-specific cytotoxic T lymphocytes in
cancer patients and may be useful for specific immunotherapy. RAN promotes metastasis
and invasion in pancreatic cancer by deregulating the expression of AR and CXCR4. In
this study, they also demonstrated that the expression of Ran was remarkably higher in
lymph lode metastases than in primary pancreatic cancer tissue [42]. FUBP1 is a target
of irofulven, a novel anti-cancer compound whose anti-tumor activity in an advanced
pancreatic cancer patient was documented [43]. The APEX1 redox selective inhibitor E3330
caused a significant inhibition of tumor cell migration in PDAC [44]. AKT1S1 is a target of
rapamycin, a drug used in the treatment of other cancers [45,46].

Proteomics has been previously used to characterize PDAC disease, employing serum,
pancreatic juice, fresh tissue, and paraffin samples. Holm et al. analyzed 21 serum samples
from patients with pancreatic cancer to identify proteins differentially expressed in patients
with long or short survival [47]. Paulo et al. compared PanIN lesions and PDAC FFPE
samples, identifying a list of exclusive proteins for each condition. Annexin 4A, fibronectin
and mucin 2 were exclusively expressed in PDAC samples [48]. Naidoo et al. conducted the
first study of FFPE samples comparing PDAC and lymph node metastases and found that
differentially expressed proteins were mostly related to the immune system and metabolic
processes [49]. Cao et al. recently identified some proteins that could be useful as early
detection biomarkers in PDAC comparing normal and tumor tissue [11]. However, in
these studies, the differences between molecular subtypes were not evaluated. In this
context, our approach has two main advantages: first, analyzing different stages of tumor
progression (non-tumor tissue, PanIN, tumor, and lymph nodes) allowed us to study
carcinogenesis (differences between PanIN and tumor tissue) and tumor dissemination
(differences between tumor tissue and lymph nodes) independently. Second, our analytical
pipeline allows studying biological processes instead of proteins individually, providing
a naive and undirected context to the high-throughput proteomics data and allowing
interpretation of the molecular features detected in each proteomics subtype. Additionally,
our proteomic subtypes were validated by the PDAC TCGA cohort.
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Remarkably, our analyses showed that differences between tumor subtypes are higher
than between types of tissues. Connor et al. analyzed 19 paired samples, primary tumors,
and metastases, and showed that they were molecularly conserved, i.e., paired metastases
and primary tumors were classified in the same molecular subtype [50]. The fact that
adjacent non-tumor tissue is more related to its neighbor tumor than non-tumor tissue
from other patients suggests that the physical tumor border does not correspond with the
molecular tumor border in PDAC.

Drug development in PDAC is challenging, as modest results of immunotherapy
in this pathology point out. Although several reasons for this lack of results have been
proposed [51], the inclusion of unselected patients in clinical trials, regarding its molecular
features, may be a hidden factor, pointing out the need to consider molecular heterogene-
ity of PDAC in future developments. Our results suggest some therapeutic strategies to
follow up on in each proteomics subtype. For instance, regarding T1 tumors, HSPB1 is
the target of the drug apatorsen, a second-generation antisense drug able to inhibit the
production of Hsp27 in preclinical experiments. Data from the RAINIER trial showed that
adding apatorsen to gemcitabine+nab-paclitaxel did not improve the outcome of unse-
lected metastatic PDAC patients, but can be useful in those patients with high serum doses
of Hsp27 [52]. Additionally, high levels of THY1/PD-L1 and complement components
in T1 tumors provoke an immunosuppressive tumor microenvironment, suggesting an
inflammatory phenotype [25], and depletion of C3 in tumor cells enhanced the efficacy of
anti–PD-L1 treatment [30]. These results open up the possibility of using a combination of
complement immunotherapy coupled with anti-PD1/PD-L1 therapy in patients with T1 tu-
mors. Regarding T2 tumors, mitochondria are emerging as an interesting actionable target,
with numerous clinical trials currently testing different drugs modulating mitochondrial
activity in PDAC [53]. Finally, T3 tumors showed overexpression of a variety of actionable
targets. Veliparib, a PARP-1/2 inhibitor, was tested with gemcitabine and radiotherapy in
locally advanced pancreatic cancer in a phase 1 study, and the results supported a phase 2
validation study [54].

The main limitation of this study was the impossibility of obtaining all types of samples
from each patient. This limitation was mitigated using linear mixed models. Additionally,
after dividing samples by subtype, the number of samples in each group decreased, which
may have prevented the detection of differences in the possible predisposing factors,
clinical characteristics, and prognosis of the different proteomics subtypes. In addition, all
biological processes that might be therapeutic targets in the future need further study.

5. Conclusions

In this study, three PDAC proteomics subtypes were defined: an adhesion-related
subtype (T1), a metabolic-related subtype (T2), and a nucleoplasm subtype (T3). We also
suggested several biological processes involved in tumor development and progression
characteristics of each proteomics subtype, suggesting that the motor of the disease is
different in each subtype. These biological processes could be relevant as a guide to stratify
patients and select candidates for future tailored therapeutic treatments in PDAC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14102414/s1, Figure S1: A. Distribution according to
the location of primary tumor in PDAC proteomics subtypes. B. Disease-free survival (DFS) and
overall survival (OS) according to the three PDAC proteomics subtypes; Figure S2: Mucin-5 (MUC5A)
and insulin (INS) expression in PDAC proteomics subtypes. ***: p < 0.0001; **: 0.0001 < p < 0.001;
*: 0.001 < p < 0.05; p < 0.05; Figure S3: Distribution of GATA6 immunohistochemical expression in
PDAC proteomics subtypes; Figure S4: Validation of the functional node activities in the TCGA
cohort. ***: p < 0.0001; **: 0.0001 < p < 0.001; *: 0.001 < p < 0.05; p < 0.05.
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