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ABSTRACT 
 

Background: GDP Dissociation inhibitor 2 (GDI2) gene has been correlated with some important biological 
processes in a variety of cancers, whereas the role of GDI2 in hepatocellular carcinoma (HCC) is ill-defined. We 
aimed to demonstrate the relationship between GDI2 and HCC based on The Cancer Genome Atlas (TCGA) data 
mining.  
Methods: The expression of GDI2 was compared between cancer and normal tissues of 371 HCC patients 
collected from TCGA-LIHC, and verified in HCC cell lines. Gene set enrichment analysis (GSEA) was applied  
to annotate biological function of GDI2. Furthermore, Wilcoxon rank sum test, Logistics regression, as  
well as Cox regression and Kaplan-Meier survival analysis, were employed to evaluate the  
association of GDI2 expression with clinicopathological characteristics, and survival status of HCC patients, 
respectively.  
Results: It showed that the expression of GDI2 was much higher in tumor tissues than in normal tissues (P < 
0.001) of HCC patients. And the elevated expression of GDI2 was correlated with more aggressive HCC tumor 
status, including severe primary tumor extent, advanced pathological stage, serious histologic grade, and 
mutated TP53 status (P < 0.05). Moreover, high GDI2 expression was strongly associated with a poor survival 
rate (P < 0.001). Both enrichment and immune infiltration analyses implied that GDI2-associated signaling 
mainly involve lipid metabolism and extracellular matrix (ECM) constructing pathways related to tumor 
microenvironment (TME) (P < 0.05).  
Conclusions: The elevated expression of GDI2 predicts poor prognosis in HCC patients, indicating that GDI2 
could be applied as a predictive biomarker for diagnosis and prognosis of HCC. 
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INTRODUCTION 
 

The major histological type of primary liver cancer 

(PLC) is hepatocellular carcinoma (HCC), which 

seriously threatens human health [1] and is the fifth 

most common malignant tumor covering 700, 000 

newly diagnosed cases globally every year [2]. 

Though the development of surgery and various drug 

therapies has significantly increased the survival rate 

of patients with early HCC [3], the overall five-year 

survival rate of advanced HCC patients has not been 

exceeding 5% [4]. Moreover, as the pathogenesis of 

HCC is extremely complex with complicated 

interactions involving multiple genes at multiple steps 

[5], most cases of HCC are already at advanced stages 

at diagnosis due to rapid progression resulting from 

limited understanding of its mechanism. In addition to 

high rate of recurrence and metastasis, unsatisfactory 

efficacy of existing targeted drugs, and complexity of 

anti-HCC drug resistance [6], the lack of biomarkers 

that are specific for tumor types or disease stages 

represents a critical gap in the current understanding 

and treatment of HCC [7–9]. In particular, HCC is 

considered a virus-related malignancy in which 

hepatitis B and C viruses (HBV and HCV) are major 

etiological factors [10]; while nonalcoholic fatty liver 

disease (NAFLD) also becomes the fastest growing 

cause of HCC globally [11]. Both trends are rather 

important because the gene signature of HCC could be 

altered by the shifting of etiology mediated by either 

virus infection or fatty metabolism. Therefore, it is 

crucial to discover new diagnostic and therapeutic 

targets for profound HCC research and effective HCC 

treatment. Considering that researchers have  

gained valuable evidence from genetic studies [12],  

it may be possible to identify crucial biomarkers  

underpinning HCC pathogenesis or therapeutic  

targets for HCC treatment by screening gene networks 

for changes related to tumor formation and 

progression. 

 

GDP dissociation inhibitor 2 (GDI2, Gene ID:2665), 

located in region from 5,765,223 to 5,842,132 of the 

reverse strand on Chromosome 10, is a family 

member of GDP dissociation inhibitors (GDIs) [13]. 

GDI2 is a ubiquitously expressed gene that encodes 

proteins to regulate the GDP-GTP exchange reaction 

of members from the Rab family, or small GTP-

binding proteins from the Ras superfamily, and is 

involved in vesicular trafficking of molecules between 

cellular organelles. GDIs slow the rate of dissociation 

of GDP from rab proteins and release GDP from 

membrane-bound rabs [14]. 

 

As a regulator of GDP-GTP exchange reaction, GDI2 

was reported to participate in various biological 

processes of solid tumors, such as breast cancer (BC) 

[15], pancreatic carcinoma (PC) [16], gastric cancer 

(GC) [17], and so on. However, the relationship 

between GDI2 and HCC has not been reported yet. 

The only report studied in hepatic carcinoma cells 

HepG2 was to demonstrate that the methanol extract 

of T. indica fruit pulp altered the release of GDI2 

from HepG2 cells, which possibly correlated GDI2 

gene to cellular lipid metabolism [18]. Hence, we 

performed advanced bioinfomatics analyses on the 

expression and clinical association of GDI2 gene in 

LIHC project from The Cancer Genome Atlas 

(TCGA) [19] in order to explore the role of  

GDI2 in HCC. Our results figured out that the GDI2 
could be applied as a potential biomarker for 

diagnosis and prognosis for HCC patients, thus  

providing novel target and strategies for HCC 

treatment. 

 

RESULTS 
 

Clinical characteristics 

 

The clinical characteristics of 371 hepatocellular 

carcinoma (HCC) patients from TCGA were collected 

as shown in Table 1, including gender, race, TNM 

stage, pathologic stage, vascular invasion and tumor 

status, as well as HCC-specific index as adjacent 

hepatic tissue inflammation, fibrosis ishak score and 

Child-Pugh grade. In present study, a total of 121 

female patients (54.2%) and 250 male (54.2%) patients 

were analyzed, including 184 white patients (49.6%) 

and 175 non-white patients (47.2%; 158 Asian patients 

and 17 Black or African American patients). The tumor 

status involved 201 tumor free (54.2%) cases and 151 

cases with tumor (40.7%), while 109 with (19.4%) and 

206 without (55.6%) vascular invasion. Stage I disease 

was found in 171 patients (46.1%), and Stage II, III, IV 

in 85 (22.9%), 85 (22.9%), and 5 (1.3%) patients, 

respectively. Most tumors were distributed among 

48.8% T1 Stage (n=181), 25.3% T2 (n=94), 21.6% T3 

(n=80), and 3.5% T4 (n=13). As not all the HCC 

patients could offer intact clinical data, the censoring 

values made the total number fail to sum up to 371 

cases for each clinical count.  

 

Identification of differentially expressed genes 

(DEGs) in HCC 

 

To elucidate whether GDI2 was positively correlated 

with HCC occurrence, the GDI2 expressions were 

compared between 371 HCC cases and 50 normal tissue 

cases via RNAseq TMP data from TCGA combined 

with GTEx, which showed much higher expression of 

GDI2 in tumor cases than in normal cases (P < 0.001, 

Figure 1A). Among them, 50 tumor-and-adjacent paired 
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Table 1. Clinical characteristics of HCC patients. 

Characters Level Low expression of GDI2 High expression of GDI2 P value 

Number  186 185  

T stage (%) 

T1 100 (53.8%) 81 (44.5%)  0.163 

T2 47 (25.3%) 47 (25.8%)  

T3 35 (18.8%) 45 (24.7%)  

T4 4 (2.2%) 9 (4.9%)  

N stage (%) 
N0 117 (99.2%) 135 (97.8%)  0.627 

N1 1 (0.8%) 3 (2.2%)  

M stage (%) 
M0 129 (98.5%) 137 (98.6%)  1.000 

M1 2 (1.5%) 2 (1.4%)  

Pathologic stage (%) 

Stage I 94 (53.4%) 77 (45.0%)  0.138 

Stage II 45 (25.6%) 41 (24.0%)  

Stage III 34 (19.3%) 51 (29.8%)  

Stage IV 3 (1.7%) 2 (1.2%)  

Residual tumor (%) 

R0 169 (95.5%) 155 (93.9%)  0.458 

R1 7 (4.0%) 10 (6.1%)  

R2 1 (0.6%) 0 (0.0%)  

Histologic grade (%) 

G1 30 (16.2%) 25 (13.8%)  0.214 

G2 97 (52.4%) 80 (44.2%)  

G3 53 (28.6%) 69 (38.1%)  

G4 5 (2.7%) 7 (3.9%)  

Gender (%) 
Female 53 (28.5%) 68 (36.8%)  0.113 

Male 133 (71.5%) 117 (63.2%)  

Race (%) 

Asian 75 (42.1%) 83 (45.9%)  0.628 

Black or African 

American 
10 (5.6%) 7 (3.9%)  

White 93 (52.2%) 91 (50.3%)  

Adjacent hepatic tissue 

inflammation (%) 

Mild 48 (38.4%) 51 (46.8%)  0.351 

None 68 (54.4%) 49 (45.0%)  

Severe 9 (7.2%) 9 (8.3%)  

Child-Pugh grade (%) 

A 117 (93.6%) 100 (87.7%)  0.108 

B 7 (5.6%) 14 (12.3%)  

C 1 (0.8%) 0 (0.0%)  

Fibrosis ishak score (%) 

0 44 (39.3%) 30 (30.0%)  0.242 

1/2 13 (11.6%) 18 (18.0%)  

3/4 17 (15.2%) 11 (11.0%)  

5/6 38 (33.9%) 41 (41.0%)  

Vascular invasion (%) 
No 107 (67.3%) 99 (63.5%)  0.551 

Yes 52 (32.7%) 57 (36.5%)  

Tumor status (%) 
Tumor free 107 (59.8%) 94 (54.3%)  0.356 

With tumor 72 (40.2%) 79 (45.7%)  

TP53 status (%) 
Mut 43 (24.3%) 59 (32.6%)  0.105 

WT 134 (75.7%) 122 (67.4%)  

Age (median [IQR])  62.50 [54.00, 69.00] 59.00 [50.75, 68.00]  0.073 

Height (median [IQR])  
168.00  

[160.00, 174.00] 

168.00 

[163.00, 174.00] 
 0.687 

Weight (median [IQR])  72.00 [61.00, 87.50] 68.00 [58.00, 79.00]  0.035* 

BMI (median [IQR])  25.15 [22.23, 29.67] 23.88 [21.21, 27.47]  0.020* 
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AFP(ng/ml) (median 

[IQR]) 
 10.00 [3.00, 150.75] 24.00 [5.00, 548.25]  0.019* 

Albumin(g/dl) 

(median [IQR]) 
 4.00 [3.50, 4.30] 4.00 [3.50, 4.30]  0.815 

Prothrombin time  

(median [IQR]) 
 1.10 [1.00, 9.75] 1.10 [1.00, 5.25]  0.173 

*P < 0.05; ** P < 0.01. 

 

samples were also showed high expression of GDI2 in 

tumor compared with paired normal tissues (P < 0.001, 

Figure 1B). To further define the oncogenicity of GDI2, 

comparison of GDI2 expression between tumor and 

normal specimens was also made in pan-cancers from 

TCGA-GTEx database. It was shown that GDI2 

significantly expressed in most of the 33 kinds of solid 

tumors, such as hepatocellular carcinoma (LIHC, 

HCC), lung adenocarcinoma (LUAD), cholangio-

carcinoma (CHOL), breast cancer (BRCA), 

glioblastoma (GBM), endometrial carcinoma of uterus 

(UCEC), etc (Figure 1C). Then the differential 

expression of GDI2 was verified between two normal 

hepatic cell lines (L02, WRL-68) and seven hepatoma 

cell lines (Huh7, SK-HEP1, BEL-7402, PLC/PRF/5, 

SMMC-7721, HepG2, Hep3B) in vitro. Moreover, 

which transcript exerts effect in these HCC cell lines 

was also confirmed by designing different primers 

amplifying certain fragments for different transcripts 

of GDI2 gene. Both qRT-PCR and western blot assays 

confirmed that compared with normal hepatic cells 

L02, GDI2 expression was increased in most of 

hepatoma cells (Figure 1D, 1E). Although there are 

three transcripts GDI2 mRNA, Transcript I 

(NM_001115156.2) and Transcript II (NM_001494.4) 

are two confirmed mature transcripts, while Transcript 

III (XM_017016071.2) is a predictive transcript 

overlapped with Transcript I only with a latter Start 

Codon (Figure 1F). Correspondingly, PCR 

amplification displayed that almost both Transcript I 

and II of GDI2 gene contributed to GDI2 expression in 

HCC cell lines (Figure 1G). Finally, based on the cut-

off criteria (|log2-fold change (FC)|>1, adjusted P-

value<0.05) for median value of GDI2 expression, a 

total of 1225 Differentially Expressed Genes (DEGs) 

were identified after the analyses of TCGA RNA-seq 

data between GDI2-high and -low groups, including 

654 upregulated and 571 downregulated DEGs 

illustrated by Volcano Map (Figure 1H), 10 of which 

were specifically displayed by Heat Map (Figure 1I). 

 

Functional enrichment analysis associated with 

GDI2 by GO, KEGG and GSEA 

 

To better understand the functional implications of 

GDI2 in HCC, GO and KEGG functional enrichment 

analyses were performed based on 1225 DEGs 

between high- and low-GDI2 expression, which 

indicated that the GDI2-associated genes engaged in 

342 GO terms of biological processes (BP), 62 terms 

of cellular components (CC) and 74 terms of 

molecular function (MF). Thereinto, massive 

enrichment of Receptor ligand activity (GO:0048018), 

Hormone activity (GO:0005179), Metal ion 

transmembrane transporter activity (GO:0046873) and 

Extracellular matrix structural constituent 

(GO:0005201) categorized by MF, Stress response to 

metal ion (GO:0097501), Extracellular structure 

organization (GO:0043062), Cell-cell adhesion via 

plasma-membrane adhesion molecules (GO:0098742) 

and Second-messenger-mediated signaling 

(GO:0019932) categorized by BP, Haptoglobin-

hemoglobin complex (GO:0031838), Transmembrane 

transporter complex (GO:1902495), Protein-lipid 

complex (GO:0032994) and Collagen-containing 

extracellular matrix (GO:0062023) categorized by 

CC, were highly associated with the aberrant 

expression of GDI2 (**P < 0.01; Figure 2A). 
 

As for advanced analysis, gene set enrichment 

analysis (GSEA) was applied to confirm the key 

signaling pathways referring to GDI2 expression data 

sets. Significant differences with normalized 

enrichment score |NES| > 1.0, adjusted P-value < 

0.05, false discovery rate (FDR) < 0.25 in enrichment 

of the MSigDB Collection h.all.v7.0.symbols 

[Hallmarks] and c2.cp.v7.0.symbols [curated] were 

observed in a total of 39 and 690 pathways, 

respectively. In particular, GDI2 was related to the 

Fatty acid metabolism, Angiogenesis, G2M 

checkpoint, Epithelial mesenchymal transition of 

Hallmarks symbols (adj.P = 0.008, FDR = 0.002; 

Figure 2B–2E), and similarly, to the Fatty acid 

metabolism by REACTOME, Cell extracellular 

matrix interactions by REACTOME, P53 regulation 

pathway by PID, Cell adhesion molecules CAMS by 

KEGG of C2_curated symbols (adj. P = 0.017, FDR = 

0.009; Figure 2F–2I). 
 

Furthermore, protein-protein interaction (PPI) 

enrichment analysis was performed to predict co-

regulatory protein network of GDI2, and the functional 
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Figure 1. Differentially expressed genes (DEGs) involved in GDI2 expressing cancer groups. (A) Elevated expression of GDI2 
between Normal and Tumor tissues of HCC patients. (B) Elevated expression of GDI2 in 50 paired Normal-and-Tumor tissues of HCC patients. 
(C) Box plot of the differentially expression of GDI2 gene among 33 kinds of pan-cancers. The X-axis represents the pan-cancer types, while 
the Y-axis denotes the expression of GDI2. (D) qRT-PCR assay confirmed the GDI2 mRNA expressions in two normal hepatic cells and seven 
hepatoma cells. (E) Western blot assay confirmed the protein levels of GDI2 in two normal hepatic cells and seven hepatoma cells.  
(F) Structural diagram of Transcript I, II and III of GDI2 gene. (G) Electrophoretogram for expressions of Transcript I, II and III of GDI2 gene 
based on different fragments of PCR primers in two normal hepatic cells and seven hepatoma cells. (H) Volcano plot of differential gene 
profiles between GDI2-high and -low groups. In 1225 DEGs, 654 upregulated and 571 downregulated genes were represented by red and 
blue tones, respectively. (I) Heat map of 10 significantly differentially expressed DEGs between GDI2-high and -low groups. Normalized 
expression levels are shown in descending order from red to blue. *P < 0.05, **P < 0.01, ***P < 0.001. 
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interactions among proteins were illustrated by 

STRING online database. The interactions  

with a combined score > 0.7 were considered  

statistically significant, covering 620 protein network 

interactions. The resultant protein network  

illustrated by STRING encompassed the Red  

Node GDI2 with interactive proteins as multicolor  

Bubbles, and interaction Edge indicating both 

functional and physical protein associations  

(Figure 2J). 

 

 
 

Figure 2. Functional enrichment analyses of DEGs between high- and low-GDI2 expression in TCGA-LIHC patients. (A) Twelve 
significant GO terms and KEGG pathway enrichment of DEGs between high- and low-GDI2 expression in TCGA-LIHC patients. (B–E) 
Enrichment plots of (B) Fatty acid metabolism, (C) Angiogenesis, (D) G2M checkpoint, (E) Epithelial mesenchymal transition pathways of 
Hallmarks symbols by GSEA analysis. *adj.P = 0.008, FDR = 0.002. (F–I) Enrichment plots of (F) Fatty acid metabolism by REACTOME, (G) Cell 
extracellular matrix interactions by REACTOME, (H) P53 regulation pathway by PID, (I) Cell adhesion molecules CAMS by KEGG of C2_curated 
symbols by GSEA analysis. adj. **adj.P = 0.017, FDR = 0.009. (J) Visualized protein-protein interaction enrichment of DEGs associated with 
GDI2 expression by STRING online database (Combined score > 0.7). 
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Immune infiltration analysis associated with GDI2 

 

The enrichment analyses indicated that the occurrence 

of HCC was strongly associated with tumor micro-

environment (TME) like extracellular matrix (ECM) 

organization. Therefore, the relative tumor infiltration 

levels of a list of 509 genes were quantified and the 

abundance of a diverse set of 24 tumor-infiltrating 

adaptive and innate immune cell types was predicted in 

individual tissue sample by single-sample gene set 

enrichment analysis (ssGSEA) analysis (Figure 3A). 

Then, Spearman correlation analysis between GDI2 

expression and immune cell infiltration level displayed 

that the GDI2 expression was positively correlated with 

the abundance of T helper cells (R = 0.287; P < 0.001; 

Figure 3B), Th2 cells (R = 0.225; P < 0.001; Figure 3C) 

and Tcm cells (R = 0.271; P < 0.001; Figure 3D); while 

negatively correlated with Cytotoxic cells (R = -0.290; 

P < 0.001; Figure 3E), Dendritic cells (DCs) (R = 0.-

280; P < 0.001; Figure 3F), Plasmacytoid Dendritic 

cells (pDCs) (R = -0.291; P < 0.001; Figure 3G), Th17 

cells (R = -0.196; P < 0.001; Figure 3H), B cells (R = -

0.106; P = 0.041; Figure 3I), and Neutrophils (R = -

0.113; P = 0.030; Figure 3J). While other immune cell 

subsets, including T cells, Treg cells, NK cells, and 

macrophages were weakly correlated with GDI2 

expression (Figure 3A). 

 

Association analyses of GDI2 expression with 

clinicopathologic variables  

 

To explore the association between GDI2 expression 

with 11 kinds of clinicopathologic characteristics, GDI2 

expression was firstly classified into high- and low-

level, and Chi-square test was applied to explore the 

difference between high and low expression of GDI2 in 

different clinicopathological characteristics of HCC 

patients (Table 1). Here, there was significant 

differences between high and low expressions of GDI2 

in HCC patients with clinical index as weight (P = 

0.035), BMI (P = 0.020) and AFP (ng/ml) (P = 0.019). 

Then Logistics regression was applied to explore the 

clinical risky factors in HCC patients with GDI2 
expression on both TPM values and high- and low-

classifications (Table 2). It was displayed that high- and 

low-expression of GDI2 was only associated with 

histologic grade (OR=1.58(1.03-2.44); P = 0.035) 

(Table 2; upper); while consecutive TPM values of 

GDI2 expression were associated with patients under 

more progressive stage (OR= 1.01(1.00-1.01) for T1 vs. 

T2/T3/T4, P < 0.001), more advanced pathologic stage 

(OR=1.01(1.00-1.01) for Stage I vs. Stage II/III/IV, P = 

0.001), more serious histologic grade (OR=1.01(1.00-
1.01) for G1/G2 vs. G3/G4, P = 0.007), and mutated 

TP53 status (OR=1.01(1.00-1.01) for WT vs. MUT, P < 

0.001) (Table 2; lower). Though the odds ratios were 

critical (only 1.01(1.00-1.01)), it was indicated that the 

associations between GDI2 and these four clinical 

factors were significant (*P < 0.05) but not strongly 

dependent. Finally, the Wilcoxon rank sum test was 

further applied and demonstrated that the GDI2 

expression was significantly associated with 

clinicopathologic features as T stage (T1-2 vs. T3-4; P = 

0.004), Pathologic stage (PI-II vs. PIII-IV; P = 0.001), 

Histologic grade (G1-2 vs. G3-4; P = 0.004), AFP 

(ng/ml) level (AFP<=400 vs. >400; P = 0.009), TP53 

status (WT vs. Mut; P = 0.007) and tumor status 

(Tumor free vs. With tumor; P = 0.047) (Figure 4A–

4F); and consistently associated with personal physical 

index as Age (age<=60 vs. >60; P = 0.040), Weight 

(weight<=70 vs. >70; P = 0.006) and BMI (BMI<=25 

vs. >25; P = 0.002) (Figure 4G–4I). Those association 

analyses suggested that GDI2 expression was probably 

an independent risky factor for HCC patients, and 

significantly associated with clinicopathologic 

characteristics as T stage, pathologic stage, histologic 

grade and TP53 status. 

 

Prognostic analysis and model construction for GDI2 

expression in HCC patients 

 

To explore the risky factors associated with patients’ 

prognosis, the Univariate Cox regression analysis was 

performed to figure out the hazard clinicopathologic 

indicators for HCC survival based on high- and low-

GDI2 expression, from which the significant variables (P 

< 0.1) as T stage (P < 0.001, hazard ratio (95% 

confidence interval) [HR (95%CI)] = 2.109 (1.469-

3.028)), M stage (P = 0.018, HR (95%CI) = 4.032 

(1.267-12.831)), pathologic stage (P < 0.001, HR 

(95%CI) = 2.074 (1.418-3.032)), tumor status (P < 0.001, 

HR (95%CI) = 2.361 (1.620-3.441)), and GDI2 

expression (P < 0.001, HR (95%CI) = 1.844 (1.298-

2.620)), were put into the Multivariate Cox regression 

analysis for further investigation. The results confirmed 

that tumor status (P = 0.003, HR (95%CI) = 2.145 

(1.300-3.539)) and GDI2 (P = 0.014, HR (95%CI) = 

1.836 (1.130-2.983)) were independent prognostic factors 

for HCC patients’ survival (*P < 0.05) (Table 3).  

 

To validate whether the model construction was 

effective, receiver operating characteristic (ROC) curve 

was displayed to measure the discrimination value of 

GDI2. The calculated area under curve (AUC) of GDI2 
was 0.748, indicating that GDI2 owned an efficient 

ability to discriminate hepatic carcinoma from normal 

liver and might be a potential diagnostic biomarker 

(Figure 5A). Then to provide clinicians with a 

quantitative approach to predicting the prognosis of 
HCC patients, a nomogram integrating GDI2 and tumor 

status was constructed based on multivariate Cox 

analysis. We compared the predictive accuracy of this 
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Figure 3. Immune infiltration analysis based on GDI2 expression by ssGSEA. (A) The GDI2 expression level was associated with the 

relative abundances of 24 immune cell subsets involved in immune infiltration in the tumor microenvironment. (B–J) Correlation between 
the relative enrichment score of immune cells and the expression level (TPM) of GDI2. The size of dots shows the absolute value of Spearman 
R. Positive correlations were found in (B) T helper cells; (C) Th2 cells; and (D) Tcm cells, Negative correlations were found in (E) Cytotoxic cells; 
(F) Dendritic cells (DCs); (G) Plasmacytoid Dendritic cells (pDCs); (H) Th17 cells; (I) B cells; and (J) Neutrophils. *P < 0.05; |R| < 0.40. 
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Table 2. Association of clinicopathological characteristics with GDI2 expression. 

Characteristics with high- and low-GDI2 expression Odds ratio (OR) P value 

T stage (T2&T3&T4 vs. T1) 1.45 (0.96-2.19) 0.076 

N stage (N1 vs. N0) 2.60 (0.33-52.95) 0.411 

M stage (M1 vs. M0) 0.94 (0.11-7.94) 0.952 

Pathologic stage (Stage II&Stage III&Stage IV vs. Stage I) 1.40 (0.92-2.14) 0.119 

Histologic grade (G3&G4 vs. G1&G2) 1.58 (1.03-2.44) 0.035* 

Residual tumor (R1&R2 vs. R0) 1.36 (0.52-3.65) 0.525 

Child-Pugh grade (B&C vs. A) 2.05 (0.84-5.31) 0.122 

Fibrosis ishak score (1/2&3/4&5/6 vs. 0) 1.51 (0.86-2.69) 0.158 

Adjacent hepatic tissue inflammation (Mild&Severe vs. None) 1.46 (0.87-2.45) 0.150 

Vascular invasion (Yes vs. No) 1.18 (0.74-1.89) 0.475 

Tumor status (With tumor vs. Tumor free) 1.25 (0.82-1.91) 0.303 

TP53 status (Mut vs. WT) 1.51 (0.95-2.40) 0.083 

Characteristics with GDI2 expression (TPM value) Odds ratio (OR) P value 

T stage (T2&T3&T4 vs. T1) 1.01 (1.00-1.01) <0.001** 

N stage (N1 vs. N0) 1.01 (0.99-1.02) 0.309 

M stage (M1 vs. M0) 1.00 (0.98-1.01) 0.755 

Pathologic stage (Stage II&Stage III&Stage IV vs. Stage I) 1.01 (1.00-1.01) 0.001** 

Histologic grade (G3&G4 vs. G1&G2) 1.01 (1.00-1.01) 0.007** 

Residual tumor (R1&R2 vs. R0) 1.00 (1.00-1.01) 0.236 

Child-Pugh grade (B&C vs. A) 1.01 (1.00-1.01) 0.130 

Fibrosis ishak score (1/2&3/4&5/6 vs. 0) 1.00 (1.00-1.01) 0.112 

Adjacent hepatic tissue inflammation (Mild&Severe vs. None) 1.01 (1.00-1.01) 0.051 

Vascular invasion (Yes vs. No) 1.00 (1.00-1.01) 0.094 

Tumor status (With tumor vs. Tumor free) 1.00 (1.00-1.01) 0.065 

TP53 status (Mut vs. WT) 1.01 (1.00-1.01) <0.001** 

*P < 0.05; ** P < 0.01. 

 

nomogram with that of GDI2 and tumor status, 

obtaining the nomogram performance (C-index: 0.599 

(0.573-0.626)) between predicted values 0.5 and 1.0. In 

addition, HCC patients with tumor (100 points) and 

high GDI2 level (77 points) could receive a total point 

score of 177 in this nomogram. Then the probabilities of 

1-, 3-, 5-year survival were determined by drawing a 

vertical line from the total point axis at a value of 177 

straight downward to the outcome axis, respectively 

(Figure 5B). 

 

Next, the Kaplan-Meier survival analysis was 

performed in 184 HCC patients with GDI2-high 

expression and 186 cases with GDI2-low expression to 

evaluate the relationship between GDI2 expression and 
survival status of HCC patients in TCGA cohort. It 

showed that high GDI2 expression was strongly 

associated with a worse overall survival (OS) (P < 

0.001, HR (95%CI) = 1.84 (1.30-2.62); Figure 5C), a 

worse progression-free interval (PFI) (P=0.027, HR 

(95%CI) = 1.40 (1.04-1.87); Figure 5D), as well as a 

worse disease-specific survival (DSS) (P = 0.036, HR 

(95%CI) = 1.61 (1.03-2.51); Figure 5E) than that of low 

GDI2 expression. In survival prediction nomogram for 

OS, the calibration curve conformed well to 

observations in all patients, integrating GDI2 and tumor 

status index, as well as T stage, pathologic stage and 

histologic grade with a Hosmer-Lemeshow test, implied 

no departure from perfect fit (Figure 5F). These 

validations suggested that the models based on GDI2 

expression were effective for predicting short-term or 

long-term survival in HCC patients. 

 
As for the subtypes of clinicopathological features 

associated with prognosis, the K-M survival analysis for 

sub-population displayed that GDI2 expression 
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significantly impacted the OS rate in HCC patients with 

certain clinical index as: Age>60 (HR=2.08(1.31-3.28); P 

= 0.002; Figure 6A), BMI>25 (HR=2.10(1.21-3.66); P = 

0.009; Figure 6B), and AFP(ng/ml)<=400 

(HR=2.01(1.21-3.35); P = 0.007; Figure 6C). Meanwhile, 

HCC patients with low GDI2 expression could improve 

their prognosis when they were with clinicopathological 

subtypes as: T1 Stage (N=49, P = 0.010; HR (95%CI) = 

2.18 (1.21-3.94); Figure 6D), negative lymph nodes 

(N=252, P < 0.001; HR (95%CI) = 2.252 (1.427-3.555); 

Figure 6E), without metastasis (N=266, P = 0.004; HR 

(95%CI) = 1.919 (1.232-2.990); Figure 6F), with fibrosis 

ishak score-1/2&3/4&5/6 (HR=2.56(1.24-5.25); P=0.011; 

Figure 6G); early pathologic stage I&II (HR=1.66 

(1.03-2.68); P=0.037; Figure 6H), and no vascular 

invasion (HR=2.23(1.32-3.76); P=0.003; Figure 6I). Then 

significant subtypes with prognostic impact were 

together intuitively illustrated by Forest Map (Figure 

6J). These results suggested that GDI2 could be applied 

as a prognostic indicator in early stage of HCC. 

 

 
 

Figure 4. Association between GDI2 expression and clinical characteristics. (A–I) Violin images for clinicopathologic characteristics 
as (A) T stage; (B) Pathologic stage; (C) Histologic grade, (D) AFP(ng/ml); (E) TP53 status; and (F) tumor status, as well as Physical index as (G) 
Age; (H) Weight; (I) BMI, demonstrated significant association with GDI2 expression by Wilcoxon rank sum test. *P < 0.05,**P < 0.01. 
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Table 3. Prognostic correlation between GDI2 expression and clinical characteristics. 

Characteristics Total (N) 
HR (95% CI) 

univariate analysis 

P value 

univariate 

analysis 

HR (95% CI) 

multivariate 

analysis 

P value 

multivariate 

analysis 

T stage (T2&T3&T4 vs. T1) 367 2.109 (1.469-3.028) <0.001** 0.857 (0.116-6.338) 0.880 

N stage (N1 vs. N0) 256 2.004 (0.491-8.181) 0.333   

M stage (M1 vs. M0) 270 4.032 (1.267-12.831) 0.018 1.774 (0.423-7.445) 0.433 

Pathologic stage  

(Stage II&Stage III&Stage IV vs. Stage I) 
346 2.074 (1.418-3.032) <0.001** 2.652 (0.346-20.308) 0.348 

Histologic grade (G3&G4 vs. G1&G2) 365 1.120 (0.781-1.606) 0.539   

Residual tumor (R1&R2 vs. R0) 341 1.571 (0.795-3.104) 0.194   

Age (>60 vs. <=60) 370 1.248 (0.880-1.768) 0.214   

Gender (Male vs. Female) 370 0.816 (0.573-1.163) 0.260   

Weight (>70 vs. <=70) 343 0.916 (0.640-1.312) 0.634   

Height (>=170 vs. < 170) 338 1.208 (0.833-1.753) 0.319   

BMI (>25 vs. <=25) 334 0.818 (0.563-1.186) 0.289   

Race (White vs. Asian&Black or African 

American) 
358 1.245 (0.867-1.789) 0.235   

Child-Pugh grade (B&C vs. A) 238 1.616 (0.797-3.275) 0.183   

AFP(ng/ml) (>400 vs. <=400) 277 1.056 (0.646-1.727) 0.827   

Albumin(g/dl) (>=3.5 vs. <3.5) 296 0.921 (0.565-1.503) 0.743   

Prothrombin time (>4 vs. <=4) 293 1.330 (0.877-2.015) 0.179   

Fibrosis ishak score (1/2&3/4&5/6 vs. 0) 211 0.779 (0.470-1.293) 0.334   

Adjacent hepatic tissue inflammation 

(Mild&Severe vs. None) 
233 1.228 (0.755-1.997) 0.409   

Vascular invasion (Yes vs. No) 314 1.348 (0.890-2.042) 0.159   

Tumor status (With tumor vs. Tumor free) 351 2.361 (1.620-3.441) <0.001** 2.145 (1.300-3.539) 0.003** 

TP53 status (Mut vs. WT) 357 1.434 (0.972-2.115) 0.069 1.602 (0.961-2.671) 0.071 

GDI2 (High vs. Low) 370 1.844 (1.298-2.620) <0.001** 1.836 (1.130-2.983) 0.014* 

*P < 0.05; ** P < 0.01. 

 

DISCUSSION 
 

Based on the specific bioinformatics analyses on GDI2 
based on The Cancer Genome Atlas (TCGA)-LIHC 

database, our results figured out that the GDI2 

significantly over-expressed in tumor tissues of HCC 

patients compared with normal tissues (Figure 1), acting 

as a tumor booster in HCC progression. Especially, in 

terms of that GDI2 was positively correlated with the 

abundance of T helper cells, Tcm cells and Th2 cells, 

while negatively correlated with Cytotoxic cells and 

Dendritic cells (Figure 2), it could be speculated that the 

poor cytotoxic effect of immune cells might pave the 

way for tumor progression mediated by GDI2. As a 

result, high expression of GDI2 turned out to be 

correlated with advanced tumor status (Figure 4) and 

poor prognosis (Figure 5).  
 

As regulators of GDP-GTP exchange reaction of 

members of the Rab family, small GTP-binding proteins 

of the Ras superfamily, GDIs involve in many energy-

related biological processes. There are two isoforms of 

Rab-GDIs, GDI1 and GDI2 genes. Anyway, it was 

reported that mutations in GDI1 have been mainly linked 

to X-linked nonspecific cognitive disability [20], while 

more studies indicated that GDI2 has been correlated with 

the energy-required tumors, yet leaving HCC uninvolved 

up to now. To be specific, the latest study in prostate 

cancer (PC) found that GDI2 was a target of paclitaxel 

that affects tumorigenesis via p75NTR signaling pathway 

[21]. In human ovarian cancer (OC), paclitaxel-resistance 

[22] and tumor cell-induced fibroblasts were associated 

with GDI2 up-regulation in OC cells [23]. While in breast 

cancer (BC), GDI2 was found to contribute to EGFR 

endocytosis and thus enhance EGFR signaling and 

metastasis formation [15]. In human pancreatic 

adenocarcinoma (PAAD), GDI2 was over expressed [16] 
and co-localized with Hsp90, together with family 

member Rab-GDI-1, they regulated agonist-induced 

amylase release in AR42J cells [24]. Likewise, GDI2 was 
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Figure 5. Effective nomogram model for prognostic evaluation of GDI2. (A) ROC analysis of GDI2 showing a high ability to 

discriminate controls from liver samples validated in TCGA. The X-axis represents False Positive Rate (FPR), while the Y-axis denotes True 
Positive Rate (TPR). AUC is plotted as sensitivity% vs 100-specifificity%. (B) Nomogram to predict survival probability at 1, 2, and 3 years of OS 
for HCC patients. (C–E) High GDI2 expression was associated with poor outcomes on (C) overall survival (OS), (D) progression-free interval 
(PFI), and (E) disease-specific survival (DSS) in HCC patients of a TCGA cohort. Blue: high GDI2 (n=184); Red: low GDI2 (n=186). * P < 0.05;  
** P < 0.01. (F) Calibration curve with Hosmer-Lemeshow test of the nomogram-predicted OS (%) in the TCGA-LIHC cohort relating to GDI2 
expression and tumor status, as well as T Stage, Pathologic Stage and Histologic Grade. The X-axis represents Prognostic Probability (0-100%), 
while the Y-axis denotes Observed OS (0-100%). Gray line: ideal line. 
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upregulated in anaplastic thyroid cancers (ATC) [25] 

and might be a genetic driver of metastatic 

dissemination in sonic hedgehog medulloblastoma [26]. 

Moreover, GDI2 was differentially expressed in the 

secretome of esophageal squamous cell carcinoma 

(ESCC) [27] as well as in gastric cancer (GC) [17]. 

Gratifyingly, our findings were generally consistent 

with the reported studies mentioned above and showed 

that the GDI2 gene was significantly over-expressed in 

most of the 33 types of cancers, such as lung 

adenocarcinoma (LUAD), Cholangiocarcinoma (CHOL), 

Breast Cancer (BRCA), Glioblastoma (GBM), 

endometrial carcinoma of uterus (UCEC), etc. In 

addition, our study explored for the first time that GDI2 

significantly over-expresses in tumor tissues of HCC 

patients compared with normal tissues, making it 

reasonable that GDI2 could be considered as a tumor 

activator in future researches (Figure 1).  

 

As for the GDI2-related pathways, the GO and KEGG, 

even GSEA enrichment analysis all indicated that 

GDI2-associated genes engaged in biological signaling 

mainly involving fatty acid metabolism and 

extracellular matrix (ECM) organization (Figure 2). 

This finding was generally consistent with Guzman-ruiz 

R’s study [28] that in obesity-associated insulin 

resistance (IR), GDI2 altered lipid storage in adipocytes 

via dysregulation of both adipose tissue extracellular 

matrix organization and intracellular trafficking 

processes. Elsewhere, it was reported that 126kDa-

GDI2 interaction altered vesicle trafficking to enhance 

the establishment of a Tobacco mosaic virus (TMV) 

infection [29], which was accorded with transmembrane 

transporter enrichment. Considering that many HCC 

patients were originated from hepatitis B virus (HBV) 

infection, it could be assumed that GDI2 might regulate 

the HBV-antigen vesicles trafficking to hepatocytes, 

similarly. Furthermore, since that HCC was mainly 

progressed from hepatic fibrosis (HF) till liver cirrhosis 

(LC), the GDI2 might also participate in hepatic disease 

progression, similar to its role in multiple sclerosis 

(MS) [30]. Therefore, the GDI2-involved dominant 

pathways, not only Extracellular Structure Organization 

by GO and KEGG enrichment as BP_GO:0043062, 

MF_GO:0005201, CC_GO:0062023, and REACTOME 

_Cell extracellular matrix interactions by GSEA; but 

also ECM-related cell adhesion pathways, were of great 

instructive significance. Besides, as NAFLD is already 

the fastest growing cause of HCC globally [31–34], the 

lipid-related enrichments might put forward an inspiring 

direction for researchers to connect GDI2-mediates fatty 

acid metabolism with HCC. Notably, the GSEA 

analysis defined that the REACTOME_Rho GTPases 
Activate Formins (NES = 3.028, adj.P = 0.017, FDR = 

0.009) pathway, and REACTOME_Immunoregulatory 

Interactions A Lymphoid and Non-lymphoid Cell (NES 

= 2.086, adj.P = 0.017, FDR = 0.009) pathway were 

also significantly enriched in our GDI2 study (data not 

shown). In view of the immune infiltration analysis that 

GDI2 expression was utmost positively correlated with 

T helper cells but utmost negatively with plasmacytoid 

Dendritic cells (pDC) (Figure 3), it could be speculated 

that GDI2 might play an role in immune tumor 

microenvironment for HCC progression, which 

definitely requires profound and comprehensive 

researches for further confirmation.  

 

In terms of physiological correlation, there were many 

biological functions associated with GDI2 should be taken 

into consideration. For one thing, as the GDI2 expression 

was related to Weight and BMI (**P < 0.01), energy-

required and metabolism-related biological functions of 

GDI2 could be emphasized. For another thing, the GDI2 

expression was significantly associated with the serum 

AFP(ng/ml) level and TP53 mutated status (**P < 0.01). 

Since that AFP is an indicator for HCC diagnosis, the co-

expression of GDI2 might tender it for a co-indicator in 

HCC diagnosis. While TP53, encoded by the typical 

antioncogene P53, is recently reported to be involved in 

the HIF1alpha/USP2/TP53 axis to promote hypoxia-

induced HCC stemness [35], in the MiR-30e-

3p/MDM2/TP53 axis to influence Sorafenib resistance in 

HCC [36], and a TP53-associated immune prognostic 

model for HCC has been developed and validated [37]. In 

view of that PID_P53 Regulation Pathway was enriched 

in GDI2-based GSEA analysis in our study (Figure 2H), 

the association of this novel protein GDI2 with 

transcriptional factor TP53 should be attached great 

importance to, as well as their interactive mechanism in 

HCC tumorigenesis should be studied for further 

confirmation. As for the clinicopathological correlation 

for HCC patients, it was found that the expression of 

GDI2 was increased as the disease progressed, especially 

for the HCC patients in late T stage, advanced pathologic 

stage, poor histologic grade, and with bad tumor status 

(*P < 0.05) (Figure 4). Since there were no reports 

demonstrating the clinicopathological correlation of GDI2 

with HCC, our study figured out that upregulation of 

GDI2 might be applied as a diagnostic indicator for HCC 

progression for the first time.  

 

What’s more, GDI2 could also act as a prognostic 

biomarker to correlate HCC patients with high GDI2 

expression to poor prognosis, including poor overall 

survival (OS), poor progression-free interval (PFI), and 

poor disease-specific survival (DSS) (*P < 0.05) 

(Figure 5). On the contrary, HCC patients with low 

GDI2 expression could strongly improve their OS rate 

especially when they were in clinicopathological 
subtypes as T1 Stage, pathologic Stage I/II, retarded 

fibrosis with negative lymph nodes, without metastasis 

and vascular invasion (*P < 0.05) (Figure 6).  
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Figure 6. Prognostic impact of clinical subtypes associated with GDI2 expression in HCC patients. (A–I) High GDI2 expression was 

associated with poor outcomes on overall survival (OS) in HCC patients of a TCGA cohort with clinicopathological indicators as: (A) Age>60; 
(B) BMI>25; (C) AFP(ng/ml)<=400; (D) T1 Stage; (E) N0 Stage; (F) M0 Stage; (G) Fibrosis ishak score-1/2&3/4&5/6; (H) Pathologic Stage I&II; 
and (I) No Vascular invasion. Blue: high GDI2; Red: low GDI2. *P < 0.05,**P < 0.01. (J) Forest map illustrated subtypes of clinicopathological 
features associated with GDI2 expression for HCC prognosis. *P < 0.05,**P < 0.01. 
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Definitely, even though the multiple bioinformatic 

analyses in our study elucidate the significant 

correlation of GDI2 gene with HCC for the first time, 

there were still a few limitations. Firstly, our results 

were mainly obtained from the TCGA database, lacking 

of comparisons among several databases made them not 

so comprehensive. Secondly, the sample size of HCC 

patients from TCGA with 371 cases was not large 

enough to acquire a convincing analytic result. Thirdly, 

the TCGA-LIHC samples of 371 patients were kinda of 

limited [38]: 1) There were three ethnic groups so that 

the genetic background and etiology of HCC among 

them could differ significantly; 2) The LIHC samples 

contain relatively few patients in T4 Stage, yet the 

clinical reality is that most HCC patients are with 

advanced disease and extremely poor prognosis when 

firstly diagnosed; 3) The transcriptome sequencing for 

RNAseq data can detect only static mutations at nucleic 

acid level, rather than directly provide information on 

expression or activity of proteins. Hence, follow-up 

studies and further confirmation should be carried out to 

fulfill these questions using molecular biology 

techniques. Anyway, considering that the clinical 

evaluation models, both Calibration discrimination and 

Nomogram evaluation were well-established; the results 

obtained in this study were basically creditable and 

instructive.  
 

In conclusion, GDI2 expression was explored to be 

elevated in HCC tumor tissues and associated with poor 

prognosis in HCC patients from our TCGA study for 

the first time. After further confirmation verifying the 

biological functions of GDI2 and mechanisms of GDI2-

related pathways, the relationship between GDI2 and 

HCC could be fully elucidated. We believe that GDI2 
could be applied as a potential biomarker for diagnosis 

and prognosis for HCC patients, thus providing novel 

target and strategies for HCC treatment. 

 

MATERIALS AND METHODS 
 

Data collection for bioinformatics analysis from 

TCGA data repository 

 

We downloaded level 3 HTSeq - FPKM formatted 

RNAseq data and clinical information from LIHC-

hepatocellular carcinoma project from the website: 

https://portal.gdc.cancer.gov/ of The Cancer Genome 

Atlas (TCGA). A total of 371 cases with gene 

expression data and clinical information were collected 

by discarding those RNAseq data without clinical 

information [39]. Meanwhile, 50 normal control cases 

from GTEx database were downloaded from UCSC 

XENA (https://xenabrowser.net/datapages/) and unified 

handled by Toil procedure [40]. Level 3 RNAseq data 

formatted as HTSeq-FPKM (Fregments Per Kilobase 

per Million) from TCGA and GTEx were transformed 

into TPM (transcripts per million reads) for subsequent 

analyses. This study was in accordance with the 

publication guidelines provided by TCGA 

(https://cancergenome.nih.gov/publications/publicationg

uidelines). All data used in this study were obtained 

from TCGA without containing any human participants 

or animals performed by any of the authors, and hence 

ethics approval and informed consent were not required. 

 

Analysis of immune infiltration characteristics by 

ssGSEA 

 

The ssGSEA (single-sample Gene Set Enrichment 

Analysis) method classifies marker gene sets in a single 

sample with common biological functions, chromo-

somal localization, and physiological regulation [41]. 

Normalized HCC gene expression profiles from 

formatted TPM data of single sample were compared 

with the immunocyte signatures using GSVA (R 

package) [42]. We quantified the relative tumor 

infiltration levels of immunocyte signature genes, 

including a total of 509 genes predicting the abundance 

of 24 tumor-infiltrating adaptive and innate immune cell 

types in individual tissue sample [43].  

 

The following 24 types of immune cells were obtained: 

B cells; T cells, Helper T cells (Th), Cytotoxic T cells 

(Tc), CD4+ T cells, CD8+ T cells, type-1 T helper cells 

(Th1), type-2 T helper cells (Th2), type-17 T helper 

cells (Th17), Regulatory T cells (Treg), gamma delta T 

cells (γδT), central memory T cells (Tcm), effector 

memory T cells(Tem), follicular helper T cells(Tfh); 

Dendritic cells (DCs), activated Dendritic cells (aDCs), 

immature Dendritic cells (iDCs), plasmacytoid 

Dendritic cells (pDCs); natural killer (NK) cells, CD56 

bright natural killer cellsr (CD56+NK), CD56 dim 

natural killer cells (CD56-NK); eosinophils, mast cells, 

neutrophils and macrophages. The correlation between 

GDI2 and these immune cells was analyzed by 

Spearman correlation, and Wilcoxon rank sum test was 

adopted to explore the association of the infiltration 

levels of immune cells between the high- and low- 

expression groups of GDI2 gene.  

 

DEGs analysis between high and low GDI2 

expression groups 

 

We firstly used Wilcoxon Rank Sum Test to compare 

the expression of GDI2 gene between tumor and normal 

specimens from TCGA combined with GTEx database 

in pan-cancers, referring to 33 kinds of solid tumors. 

Then in LIHC, GDI2 expression was compared in both 
paired and unpaired normal-versus-tumor tissues. 

Finally, the GDI2 expression profiles (HTSeq-counts) 

were compared between the divided high and low GDI2 

https://portal.gdc.cancer.gov/
https://xenabrowser.net/datapages/
https://cancergenome.nih.gov/publications/publicationguidelines
https://cancergenome.nih.gov/publications/publicationguidelines
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expression groups to identify differentially expressed 

genes (DEGs) by using DESeq2 R package [44]. |log2-

fold change (FC)|>1 and adjusted P-value<0.05 were 

considered as threshold values for the DEGs. 

 

GO, KEGG and GSEA enrichment analysis 

 
Gene Ontology (GO) functional analysis, including 

cellular component (CC), molecular function (MF), and 

biological process (BP), as well as Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathway analysis, were 

performed on the DEGs based on high and low GDI2 

expression levels by using the ClusterProfiler package 

(http://www.bioconductor.org/) [45] with P value 

adjusted by Benjamini and Hochberg method, from 

which adjusted P-value of <0.05 was considered as 

significance for GO function and KEGG pathway. 

 

Gene Set Enrichment Analysis (GSEA; 

http://software.broadinstitute.org/gsea/index.jsp) is a 

computational method that determines whether prior 

defined functions or pathway sets of genes show 

statistical significance, concordant differences between 

two biological states [46]. Thus in this study, GSEA 

was applied to generate an ordered list of all genes 

according to their correlation with GDI2 expression, 

then carried out by R package to elucidate the 

significant differences observed between high- and low- 

GDI2 expression. The datasets h.all.v7.0.symbols.gmt 

[Hallmarks] (https://www.gsea-msigdb.org/gsea/msigd 

b/collections.jsp#H) and c2.cp.v7.0.symbols.gmt 

[Curated] (https://www.gsea-msigdb.org/gsea/msigdb/ 

collections.jsp#C2) from MSigDB Collections were 

chosen as reference gene sets, and the expression level 

of GDI2 was regarded as a phenotype. Gene set 

permutations were performed 1000 times for each 

analysis. A function or pathway term with adjusted P-

value <0.05 and false discovery rate (FDR) <0.25 was 

considered to be statistically significant enrichment.  

 

Protein-protein interaction (PPI) network 
 

Search Tool for the Retrieval of Interacting Genes 

(STRING; http://string-db.org) (version 11.0) online 

database was used to predict PPI network co-regulated 

by GDI2 gene and exploring the functional interactions 

between co-regulatory proteins [47]. An interaction 

with a combined score > 0.7 was considered statistically 

significant. 

 

Clinical association and prognostic analysis  
 

Wilcoxon rank sum test and t. test were utilized to 

evaluate the clinical index (age, gender, weight, BMI, 

AFP(ng/ml), etc.) in non-paired samples and paired 

samples with different expression levels of GDI2 (the 

Fisher exact test was used when needed) [48]. The 

association of GDI2 expression with clinicopathological 

features, such as TNM stage (TNM stage is a way of 

staging tumors, in which T represents the range of 

primary tumors, N represents the presence and extent of 

regional lymph node metastasis and its scope, M 

represents the presence or absence of a distant transfer), 

pathologic stage, histologic grade, and TP53 status, was 

evaluated by Chi-square test, and Logistics regression 

was performed on both continuous TPM values and 

high- and low-classifications of GDI2 expression.  

 

Clinical prognosis correlating GDI2 to Overall Survival 

(OS), Progression-Free Interval (PFI) and Disease-

Specific Survival (DSS) of HCC patients, was assessed 

using Survminer package [49]. Survival curves were 

constructed using the Kaplan-Meier method, and the 

differences between the survival curves were examined 

by the log-rank test [50]. Clinicopathological risky 

factors were evaluated by Cox regression analyses. 

Univariate Cox proportional hazards regressions were 

applied to estimate the individual hazard ratio (HR) 

with GDI2 gene expression for HCC survival. The 

significant variables from the univariate analyses (P < 

0.1) were then put into the multivariate analysis [51]. 

Multivariate Cox analysis was used to compare the 

influence of GDI2 expression on survival along with 

other clinical characteristics in order to find 

independent variables. The HR with 95% confidence 

interval (CI) was measured to estimate the hazard risk 

of individual factors. Prognostic analyses were 

performed in both main-group and sub-group of 

clinicopathological indicators with GDI2 expression, 

respectively.  

 

Nomogram evaluation 

 

Calibration and discrimination are the most commonly 

used methods for evaluating the performance of 

models [52]. In this study, the Calibration curves were 

graphically assessed by mapping the nomogram-

predicted probabilities against the observed rates, and 

the 45° line represented the best predictive values. A 

concordance index (C-index) was used to determine 

the discrimination of the nomogram, and it was 

calculated by a bootstrap approach with 1000 

resamples [53]. The predictive accuracies of the 

nomogram and separate prognostic factors were 

compared using both the C-index and ROC (receiver 

operating characteristic) analysis. As the frequently-

used method for binary assessment, ROC analysis was 

performed by pROC package [54] to assess the 

effectiveness of the transcriptional expression of 
GDI2. The computed area under the curve (AUC) 

value ranging from 0.5 to 1.0 indicates the 

discrimination ability from 50 to 100%. 

http://www.bioconductor.org/
http://software.broadinstitute.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#H
https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#H
https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#C2
https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#C2
http://string-db.org/
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Cell lines and cell culture  

 

The human normal hepatic cell line L02 and hepatic 

embryonic cell line WRL-68 were the kind gifts from 

Infection Department of First People’s Hospital of 

Yunnan Province. Seven human hepatoma cell lines: 

Huh7, SK-HEP1, BEL-7402, PLC/PRF/5, SMMC-

7721, HepG2, Hep3B were purchased from Tongpai 

Biotechnology Company (Shanghai, China). All the cell 

lines were cultured in DMEM/high-glucose medium 

(Gibco, USA) supplemented with 10% fetal bovine 

serum (Gibco, USA) and 1% Penicillin-Streptomycin, 

and performed STR authentication [55]. 

 

RNA isolation and qRT-PCR analysis  

 

Total RNA from HCC cell lines was isolated using 

RNAprep FastPure Animal/Cell Total RNA Extraction 

Kit (TSINGKE, Beijing, China) according to 

manufacturer's protocols. Then approximately 2μg of 

RNA were reverse transcribed using the Goldenstar™ 

RT6 cDNA Synthesis kit (TSINGKE, Beijing, China). 

For GDI2 detection, qRT-PCR labeled by SYBR green 

master mix (TSINGKE, Beijing, China) was performed 

on a LightCycler 480 system (Roche, USA). To confirm 

the expression from different transcripts of GDI2, 

primers indicating different transcripts and common 

primers of GDI2 for qRT-PCR are listed as below: 

GDI2: Forward: 5’ATTCCACAGAACCAAGTCAA 

TCGA 3’; Reverse: 5’CTTCTCAGGCTCCTTGGTT 

TCC 3’; GDI2-Transcript I: Forward: 5'GGGCACCGG 

CCTGACGGAATGTA 3'; Reverse: 5'TGCCAGGGCT 

TCTGCTTCAGTGG 3'; GDI2-Transcript II: Forward: 

5'CCACCCGAGTCAATGGGGAGAGG 3'; Reverse: 

5'CTTGATGGGGTGGCTGAGGATGC 3'. ACTB was 

used as an internal reference: Forward: 5’CACCATT 

GGCAATGAGCGGTTCA 3’; Reverse: 5’AGGTCTTT 

GCGGATGTCCACGT 3’. 

 

Western blot  

 

Cultured cells were collected and washed twice with 

ice-cold PBS, then lysed in RIPA lysis mixed with 

PSMF (Beyotime, China) buffer on ice for 30 minutes. 

Cell lysates were collected immediately according to 

the manufacturer’s instructions and subjected to 

bicinchoninic acid (BCA) protein assay (Beyotime, 

China) for concentration determination. Equal amounts 

of proteins in each lane were separated by SDS-PAGE 

and subsequently transferred onto polyvinylidene 

fluoride (PVDF) membranes (Millipore, USA). The 

membranes were blocked with 3% (w/v) skim milk and 

then incubated with specific primary antibody at 
dilution of 1:5000 (anti-GDI2; Invitrogen, USA) 

overnight followed by incubation with horseradish 

peroxidase (HRP)-conjugated secondary antibody at 

dilution of 1:10000 (anti-rabbit-HRP; Cell Signaling 

Technology, USA). β-actin was used as an internal 

control at dilution of 1:10000 (anti-beta Actin; Cell 

Signaling Technology, USA). An enhanced 

chemiluminescence (ECL) chemiluminescence kit 

(ABclonal, China) was used to detect immunoreactive 

protein bands using a Gel Doc XR imaging system 

(Bio-Rad, USA). 
 

Statistical analysis  
 

All statistical analysis and plots referring to phenotype 

and expression profiles in 371 HCC patients from 

TCGA-LIHC were conducted using R package (v.3.5.1) 

(http://cran.r-project.org/web/packages/rms/index.html). 

In gene expression analysis, the median GDI2 

expression was regarded as the cut-off value. All 

hypothetical tests were two-tailed and all reported P 

values < 0.05 were considered significant, marked as 

*P< 0.05; **P < 0.01. The statistical analysis was 

carried out using Graphpad Prism 8.0 and SPSS version 

22.0. 
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