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Prediction of MMP-9 inhibitory activity
of N-hydroxy-a-phenylsulfonylacetamide
derivatives by pharmacophore based
modeling and 3-D QSAR studies
Dharmender Rathee, MSa, Viney Lather, PhDb, Harish Dureja, PhDa,∗
Abstract

Matrix metalloproteinase-9 (MMP-9), also known as gelatinase B, is a MMP that is strongly associated with multiple cellular
processes including proliferation, angiogenesis, and metastasis. Various studies have shown that N-hydroxy-a-phenyl-
sulfonylacetamide (HPSAs) derivatives are promising and selective for the MMP-9 inhibition. In the present study, we have
selected and reported 80 HPSAs derivatives as inhibitors of MMP-9 and performed structure-based 3-dimensional quantitative
structure–activity relationship (3D-QSAR) studies to elucidate the important structural elements responsible for binding affinity.
Developed pharmacophore models; QSAR model I contains 2 hydrogen-bond acceptors (A), 2 hydrogen-bond donors (D), and 1
aromatic ring (R) and QSAR model II contains 3 hydrogen-bond acceptors (A), 1 positive ionic (P), and 1 aromatic ring (R). The
statistical results of QSARmodels (I and II) such as good correlation coefficient (0.61 for I and 0.63 for II), good predictive power (0.84
and 0.77 for I and II, respectively) with low standard deviation (SD\0.3 for both) strongly suggest that the developed models are
virtuous for the future prediction of MMP-9 inhibitory activity of HPSAs derivatives. The geometry and features of pharmacophore
were expected to be useful for further design and development of selective MMP-9 inhibitors.

Keywords: 3D-QSAR, MMP inhibitors, MMP-9 (92kDa), N-hydroxy-a-phenylsulfonylacetamide derivatives, pharmacophore
based modeling
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Introduction

The matrix metalloproteinase (MMP) family consists of at least
23 structurally related zinc-dependent endopeptidases enzymes,
sharing several specific functional and structural components.
These enzymes selectively break down many components of the
extracellular matrix (ECM) releasing growth factors and
cytokines, and play a key role in many constitutive processes,
including embryogenesis, normal tissue remodeling, and angio-
genesis. Over the years, several studies have indicated that
enzymes such as MMPs are the primary mediators of the
microenvironment changes seen during cancer progression.1

They have a significant role in pathological conditions, such as
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atheroma, arthritis, cancer, and tissue ulceration, as well.
Furthermore, due to their proteolytic activity, they are very
important in tumor invasion and metastasis, being overexpressed
in several types of human cancer. Also, they are accountable for
regulating pathways of cell growth, survival, inflammation, and
angiogenesis, which are crucial factors for tumor progression.6

Concerning the subtypes ofMMP involved in cancer progression,
MMP-2 and MMP-9 have been associated with tumor aggres-
siveness, metastatic potential, and poor prognosis in malignant
neoplasms.2,7 They are overexpressed in breast, brain, ovarian,
pancreas, colorectal, bladder, prostate, lung cancers, and
melanoma.8 MMP-9, however, is also responsible for releasing
several extracellular matrix factors, which promote proliferation
and migration of endothelial cells involved in angiogenesis and
tumor growth.9 In this regard, the inhibition of MMP-2 and/or
MMP-9 activity, as potential treatment for tumor progression,
would be highly desirable. Amongst all, MMP-9 is particularly
involved in inflammatory processes, bone remodeling, and
wound healing. It is also implicated in pathological processes
such as rheumatoid arthritis, atherosclerosis, tumor growth, and
metastasis.10–12 Difference in production levels of regulatory
mechanisms of MMP-9 subsequently results in restricted,
extensive, or improperly timed degradation of extracellular
matrices.13 The role ofMMP-9 in many pathological diseases has
laid a foundation for the identification of selective inhibitors. The
structure of the MMPs includes a signal peptide, a propeptide, a
catalytic domain with a highly conserved zinc-binding site, and a
haemopexin-like domain, which is linked by a hinge region.14

The structure of the catalytic domain of humanMMP-9 (without
the fibronectin repeats) consists of 5-stranded-sheet and 3-helices,
which is similar to other MMPs. The catalytic center is composed
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of the active-site zinc ion, which is coordinated by 3 histidine
residues (401, 405, and 411) and an essential water molecule.15

MMP-9 is illustrious among the other MMPs by the incidence of
3 head to tail cysteine rich repeats which resemble fibronectin
type II repeats. This insert is mandatory for their interaction with
substrates like gelatin, laminin, and collagen.16

A wide range of medicinal chemistry approaches can be applied
for designing new drug candidates, identifying potential hits, and
accelerating the optimization of potential leads. Quantitative
structure–activity relationship (QSAR) formalisms, for instance,
are among the promising approaches in computer-assisted drug
design (CADD) employed in the drug discovery process.
Nowadays, structure-based drug design, molecular docking, and
virtual high-throughput screening arewidely used tools in the drug
discovery. However, pharmacophore based drug design has
proved to be a more efficient technique for the identification of
potential new drug-like candidates, as this method provides the
information about key structural features (in the form of an active
pharmacophore) which are essential for biological activity. In
modern computational biology, pharmacophores based approach
is used to delineate the essential features of ≥1 molecules with the
same biological activity. The pharmacophore based modeling of
ligands is a well-established approach to quantitatively discover
common chemical features among a considerable number of
structures. Pharmacophore mapping can be used in designing the
inhibitors in several ways, including justification of activity trends
in molecules, searching of databases to find new chemical entities,
and to identify important features for activity.17

In 2003, Aranapakam et al18 reported N-hydroxy-a-phenyl-
sulfonylacetamidederivatives (HPSAs) derivatives as the inhibitors
ofMMPs. These novelHPSAs derivativeswere potent inhibitors of
MMP-9, MMP-13, and moderate inhibitors of MMP-1. The
selective inhibition of these compounds against gelatinases thus
motivated to select these inhibitors to reveal the selectivity profile
against MMP-9 and this can give clear picture on designing of
molecules selectively towards MMP-9. Several studies of the
relationships between MMP inhibitors and the structural features
have been published.19–23 Previous reported studies discussed
various linear and non-linear QSAR24,25 approaches against
MMP-1, MMP-9, MMP-13, however, 3D-QSAR approach was
not discussed. It was reported that the inhibitors of MMP-9 were
potentially valuable for arresting tumor metastasis and also the
Figure 1. Structure of N-hydroxy-a-
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inhibitors of MMP-13 could protect the cartilage degradation
associated with osteoarthritis.25 In this study, we have focused to
design 3D-QSAR models against MMP-9 and to the best of our
knowledge, no 3D-QSAR investigations for such kind of
compounds have been reported till date. In the present study, a
pharmacophore based drug design approach was used to identify
the common set of features amongst a group ofMMP-9 inhibitors
resulting in development of a common pharmacophore model
helping in the prediction of binding interactions with the MMP-9
enzyme. Furthermore, to uncover the important structural features
responsible for the higher activity against MMP-9, we have
performed 3D-QSAR studies on HPSAs.
Materials and methods

Software and hardware

The pharmacophore modeling and 3D-QSAR studies were
carried out using PHASE version 3.0 as implemented in the
Maestro 8.5 modeling package from Schrodinger, Molecular
Modelling Interface Inc., LLC,NY installed on a Pentium IV 3.06
GHz, Core 2 Duo Quad PC with Windows 7 operating system.26
Dataset for analysis (biological data set)

The experimental dataset comprising of a series of 80 HPSAs
derivatives was taken from the literature.18,25 These compounds
were discovered by Aranapakam et al18 as MMP inhibitors and
were used for the present study. In this study, two separate models
were developed against MMP-9, that is, QSAR model I was
developed for compounds 1 to 33 and QSAR model II was
developed for compounds 34 to 80. In total 27 molecules were
selected forQSARmodel I, whereas 47molecules were selected for
QSARmodel II. The in vitro biological activity data were reported
as half maximal inhibitory concentration (IC50). The IC50 values
were converted to pIC50 using the formula (pIC50=�log IC50).
The dataset consisted of diverse range of molecules with highly
active, inactive, and moderately active molecules. Figure 1
represents the common structure of the HPSAs derivatives
employed and Tables 1 and 2 represent the substituents and the
pIC50values forall the compounds involved in this study.Outof27
molecules used in the development ofQSARmodel I, 20molecules
were randomly chosenas training set and7moleculeswere selected
phenylsulfonylacetamide moiety.



Table 1

Chemical structures of HPSAs derivatives (compounds 1–33) employed for 3D-QSAR study along with predicted and actual pIC50 values
against MMP-9 QSAR model I.

Compound (ligand name) R R1 R2 Actual pIC50 Predicted pIC50 Residual Pharm set Fitness

1
∗

OMe Bn H 3.97 3.86 �0.11 Moderate 2.72
2 OMe Bn Me 4.96 4.01 �0.95 Active 2.52
3 OMe 2-Naphthylmethyl H 3.71 3.4 �0.31 Moderate 2.33
5
∗

OMe 4-Biphenylmethyl Me 4.64 4.6 �0.04 Active 2.48
6 OMe Isoprenyl Me 4.96 4.01 �0.95 Active 2.57
9
∗

OMe 3-Phenylallyl Me 4.8 4.32 �0.48 Active 2.59
10

∗
OMe n-Pr n-Pr 3.35 2.87 �0.48 Inactive 2.65

11 OMe Iso Pr H 0 2.69 2.69 Inactive 2.52
14

∗
OMe n-dodecyl H 2.53 2.4 �0.13 Inactive 1.77

15 OMe Propargyl Propargyl 3.85 3.39 �0.46 Moderate 1.96
16

∗
OMe 3-Picolyl Me 4.42 4.08 �0.34 Active 3

17 OMe 3-Picolyl Isoprenyl 5.05 3.95 �1.01 Moderate 2.38
18 OMe 3- Picolyl IsoBu 4.2 3.62 �0.58 Moderate 2.27
19 OMe 3-Picolyl IsoPentyl 3.92 3.14 �0.78 Inactive 2.21
20 OMe 3-Picolyl n-Bu 0 1.71 1.71 Inactive 2.54
21 OMe 3-Picolyl n-Octyl 3.76 3.27 �0.49 Inactive 2.41
22 OMe 3-Picolyl Propargyl 4.08 3.51 �0.57 Active 2.25
23 OMe 4-[2-(1-Piperidinyl)ethoxy]benzyl Me 5.05 4.97 �0.08 Active 2.51
24 OMe 4-[2-(1-Azepanyl)ethoxy]benzyl Me 4.72 5.29 0.57 Active 2.71
25 OMe 4-[2-(Diisopropylamino)ethoxy]benzyl Me 4.82 5.75 0.93 Active 1.77
26 OMe 4-[2-(Diethylamino)ethoxy]benzyl Me 4.89 5.43 0.54 Active 2.75
27 OMe 4-{3-[4-(3Cl-phenyl)-1-piperazinyl]propoxy}benzyl Me 5.15 6.1 0.95 Active 2.37
28 OMe 4-[2-(4-Morpholinyl)ethoxy]benzyl Me 4.68 3.98 �0.07 Moderate 2.19
29

∗
OEt 4-[2-(Diethylamino)ethoxy]benzyl Me 4.96 4.62 �0.34 Active 2.55

30 O-n-Bu 4-[2-(1-Piperidinyl)ethoxy]benzyl Me 5.52 5.04 �0.48 Active 2.31
31 2-Furyl 4-[2-(Diethylamino)ethoxy]benzyl Me 5.4 5.83 0.43 Active 2.48
33 Me Isoprenyl Isoprenyl 4.29 3.93 �0.36 Moderate 2.46

MMP-9=matrix metalloproteinase-9; QSAR=quantitative structure–activity relationship.
∗
Test compounds.
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as a part of test set,whereas out of 47molecules used for theQSAR
model II development, 37 molecules were randomly chosen as
training set, and 10 were selected as a part of test set.

Phase methodology

“PHASE is a highly flexible program for pharmacophore
perception, structural alignment, activity prediction and it
provides support for lead discovery, SAR development, lead
optimization, and lead expansion.”27 The step wise methodology
used in the current study for the generation of pharmacophore
models followed by development of 3D-QSAR models has
already been discussed in previous publication by Lather et al.28

Ligand preparation. The LigPrep software (MMFF force field)
implemented within PHASE was used for the 3-D conversion and
minimization. All the structures were ionized at neutral pH 7.
Conformers for each ligand were generated using ConfGen by
applying OPLS-2005 force field method29,30 with implicit GB/SA
distance-dependent dielectric solvent model at cutoff root mean
square deviation (RMSD) of 1 (MacroModel 9.6 2010) with
1000 iterations using water as solvent.

Pharmacophore model development. In order to create sites
for all the ligands, a pharmacophore model generation uses a
defined set of pharmacophoric features. In order to facilitate non-
covalent binding between the ligand and its target receptor, each
ligand structure coincides with various chemical features. In 3-D
space, it is presented by a set of points. “PHASE module provides
an in built set of 6 pharmacophore features, that is, hydrophobic
group (H), hydrogen bond donor (D), hydrogen bond acceptor
3

(A), aromatic ring (R), positively ionizable (P), and negatively
ionizable (N).” During pharmacophore sites creation a default
setting having H, D, A, P, N, and R was used and in the present
study user-defined feature was not employed.
Thepharmacophoresweregrouped togetherbasedon identical set

of features with very similar spatial arrangements. A tree-based
partitioning technique was used to identify common pharmaco-
phores that groups similar pharmacophores as per their inter-site
distances (ie, the site to site distances in the pharmacophore). After
application of default feature definitions to each ligand, the common
pharmacophores containing≥5 sitesusinga terminal box sizeof1°A
were generated, where all of the active molecules should match. For
alignmentof the actives to thehypotheses andcalculationof the score
for the actives a score hypotheses step was employed. A hypothesis
was provided by the developed pharmacophorewhich explained the
binding of the active molecules to their receptors. This scoring
procedure provides the positioning for the different hypotheses, and
helps tomakerational choicesabout thehypotheseswhicharemostly
suitable for further investigations. Common pharmacophores with
statistically significant values were chosen for molecular alignments.

3D-QSAR. PHASE module provides the basis of building the 3D-
QSAR models by using the ligands activities that matches a
reported hypothesis. “PHASE 3D-QSARmodels are based on PLS
regression, which applied to a large set of binary valued variables.
In the QSAR model the independent variables are derived from a
regular grid of cubic volume elements that span the space occupied
by the training set ligands. Each ligand is represented by a set of bit
values (0 or 1) that indicate which volume elements are occupied
by a Van der Waals surface model of the ligand.”

http://www.portobiomedicaljournal.com


Table 2

Chemical structure of HPSA (compounds 34–80) employed for 3D-QSAR study alongwith predicted and actual pIC50 values againstMMP-
9 QSAR model II.

Compound (Ligand name) R R1 Actual pIC50 Predicted pIC50 Residual Pharm Set Fitness

34 OMe Bn 5 4.78 �0.22 Moderate 3
35 OMe 3-Methoxy benzyl 5.05 4.78 �0.27 Moderate 2.95
36 OMe 3,4-Dichloro benzyl 5.22 4.88 �0.34 Active 2.97
37 OMe 4-Me benzyl 4.77 4.83 0.06 Active 2.98
38 OMe 2-Naphthylmethyl 5.3 4.92 �0.38 Active 2.9
39

∗
OMe 4-Biphenylmethyl 4.89 4.86 �0.03 Active 2.83

40
∗

OMe Isoprenyl 4.41 4.44 0.03 Moderate 2.9
41

∗
OMe 4-Br benzyl 5 4.95 �0.05 Active 2.9

42 OMe 3-Ph propyl 4.89 4.14 �0.75 Inactive 2.58
43 OMe t-Bu 3.19 4.15 0.96 Inactive 2.78
44 OMe n-Bu 3.34 4.1 0.76 Inactive 2.74
45 OMe Cyclo octyl 3.86 4.09 0.23 Inactive 2.76
46 OMe Et 3.44 4.24 0.8 Inactive 2.77
47 OMe Iso Pr 3.43 4.26 0.83 Inactive 2.75
48 OMe Me 3.32 4.23 0.91 Inactive 2.79
49 O-n-Bu Bn 5.4 5.56 0.16 Active 2.79
50 OMe 4-F benzyl 4.8 4.91 0.11 Active 2.9
51 O-n-Bu 4-F benzyl 4.72 4.9 0.18 Active 2.91
52

∗
OMe 4-Methoxy benzyl 4.92 4.89 �0.03 Active 2.96

53 OMe 4-Methoxy phenyl ethyl 4.47 4.14 �0.33 Inactive 2.69
54

∗
OMe 2-Ph ethyl 4.35 4.17 �0.18 Inactive 2.74

55 O-n-Bu 4-Methoxy benzyl 5.52 5.69 0.17 Active 2.75
56 OMe 3-Phenoxy propyl 4.36 4.14 �0.22 Inactive 2.58
57 O-n-Bu 3-Phenoxy propyl 5.3 4.72 �0.58 Active 1.66
60 OMe 4-[2-(1-Piperidinyl)ethoxy]benzyl 5.52 6.03 0.51 Active 2.53
61

∗
O-n-Bu 4-[2-(1-Piperidinyl)ethoxy]benzyl 5.7 5.81 0.11 Active 2.62

62
∗

O-n-Bu 3-[2-(4-Morpholinyl)ethoxy]benzyl 5.7 5.67 �0.03 Active 2.62
63 O-n-Bu Me 5 4.47 �0.53 Moderate 2.67
64 O-n-Bu Et 4.37 4.26 �0.11 Inactive 2.78
65 O-n-Bu n-Bu 4.55 5.02 0.47 Active 2.7
66

∗
O-benzyl Bn 5.52 5.56 0.04 Active 2.7

67 O-4Cl-Phenyl Me 5.7 5.15 �0.55 Active 2.57
68 O-4Cl-Phenyl Et 6 5.05 �0.95 Active 2.61
70 O-4Cl-Phenyl Bn 6 6.23 0.23 Active 2.68
71 O-4Cl-Phenyl H 5.7 4.84 �0.86 Active 1.9
72 O-Isopentyl Bn 5.4 4.93 �0.47 Active 2.9
73 2-Ethylbutoxy Bn 4.85 5.02 0.17 Active 2.81
74

∗
O-n-Bu 3-Methoxy benzyl 5.52 5.53 0.01 Active 2.75

75
∗

O-Me 4-(2-Thienyl)benzyl 4.96 4.89 �0.07 Active 2.87
76 O-Me 4-(2-Pyridinyl)benzyl 5.22 4.83 �0.39 Active 2.82
78 O-4Cl-Benzyl 4-Me benzyl 5.22 5.64 0.42 Active 2.68
79 2-Furanyl Bn 5.52 5.12 �0.4 Active 2.47
80 O-4Cl-Phenyl 4-Methoxy benzyl 6 6.37 0.37 Active 2.66

3D-QSAR=3-dimensional quantitative structure–activity relationship; MMP-9=matrix metalloproteinase-9.
∗
Test compounds.

Rathee et al Porto Biomed. J. (2018) 3:1 Porto Biomedical Journal
In order to distinguish between different types of atoms which
occupy the same region of space, in the grid a given cube might be
allocated as many as 6 bits, which accounts for 6 different atoms
classes namely: hydrogen-bond donor (D), hydrophobic or non-
polar (H), negative ionic (N), positive ionic (P), hydrogen-bond
acceptors or electron-withdrawing (A) and other types (miscella-
neous) (O).
PHASE generated 3D-QSAR models are either based on

pharmacophore or on atoms, the only difference is either all
atoms are considered, or only the pharmacophore sites which can
be synchronized en route for the hypothesis. The selection of the
type of model to develop mainly depends upon the fact that the
training set molecules are congeneric and adequately rigid or not.
The atom-based model can work well if the structures have some
common structural framework and also contain a comparatively
less number of rotatable bonds.31
4

Based on the criteria defined above, 2 atom-based 3D-QSAR
models (QSAR models I and II) were generated for MMP-9
inhibitory activities by using the best 5 point AADDR (A-acceptor,
D-donor, R-aromatic ring) and AAARP (A-acceptor, R-aromatic
ring, P-positive ionic) hypothesis, respectively. The hypotheses
were generated using 20 molecule training set for QSAR model I
and 37molecule training set forQSARmodel II, and a grid spacing
of 1.0 Q. 3D-QSARmodels (I and II) with 1 to 3 PLS factors were
generated and further, validated with predicting activities of
molecules in the test set.

Results and discussion

Pharmacophore hypothesis generation

Ligand-based drug design is based on the understanding of
known molecules which possesses biological activity to bind to



Figure 2. Pharmacophore model (AADDR) generated by PHASE for compounds 1 to 33. It illustrates hydrogen bond acceptors (A2, A3; pink color), (D7, D8; blue
color), and aromatic ring (R10; orange color) features. All ligands overlapped on the generated model AADDR.
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the target of concern. In order to bind to the target, a molecule
must possess the minimum necessary structural characteristics
and these molecules can be used to develop a pharmacophore.32

The HPSAs derivatives tested as inhibitors for MMP by
Aranapakam et al18 were used in the current study to derive
the pharmacophore models and to identify the necessary
chemical features for the inhibitory effect. The structures of
HPSAs employed in this work and their experimental values of
the inhibitory activities were collected from the literature.25

Previous reported studies discussed various linear and non-linear
QSAR24,25 approaches against MMP-1, MMP-9, and MMP-13,
however, 3D-QSAR approach was not discussed.
Ligand based approaches consider two or three dimensional

shape, chemistry, and pharmacophoric points to assess similarity.
For identification of the common pharmacophore hypothesis, the
experimental dataset was further divided into active and inactive
sets. Molecules with pIC50 values ≥4.00 were considered to be
active, and with pIC50 values �3.50 were considered as inactive,
whereas those in-between were considered to be moderately
active for QSAR model I. For QSAR model II, molecules with
pIC50 values ≥4.80 were considered to be active, and with pIC50

values �4.40 were considered as inactive, whereas those in-
between were considered to be moderately active. Selected
pharmacophoric features for creating sites were A, H, R, N, and
D. Pharmacophore models containing 3 to 6 features were
generated for this study. The selection of best hypotheses was
primarily dependent on best survival score which is a combina-
tion of active and inactive survival scores. For all the molecules in
the dataset, the identification and creation of pharmacophoric
sites was done followed by generation of common 5 point
pharmacophore model with AADDR and AAARP hypothesis for
MMP-9; QSAR model I and II, respectively. Further, these were
subjected to stringent scoring function analysis. The common
pharmacophore hypotheses were chosen based on a variant with
a site score 0.91, vector score 0.991, and volume score 0.842. The
best QSARmodel I comprise of 2 hydrogen bond acceptors (A), 2
donors (D), and 1 aromatic ring (R) andwas associatedwith the 5
point hypotheses. The hydrogen bond acceptors, donors, and
aromatic ring were denoted as A1, A2, D1, D2, and R1. The best
5

QSAR model II comprises of 3 hydrogen bond acceptors (A), 1
positive ionic (P), and 1 aromatic ring (R) and were associated
with the 5 points hypotheses. The hydrogen bond acceptors,
positive ionic, and aromatic ring were denoted as A1, A2, A3, R1,
and P. Figures 2 and 3 represent the pharmacophore hypothesis
(AADDR for QSAR model I and AAARP for QSAR model II)
with all active molecules aligned to it. Further, the AADDR and
AAARP hypothesis for QSAR models I and II, respectively,
matched with all the molecules in the active set. For the
generation of MMP-9 QSAR models I and II, the AADDR and
AAARP pharmacophore hypothesis were used.
3D-QSAR studies (QSAR models I and II)

The 3D-QSAR studies for the HPSAs derivatives series were
carried out using PHASE module of Schrodinger molecular
modeling package to understand the effect of spatial arrangement
of structural features onMMP inhibition. In the 3D-QSARmodel
generation, moderately active or inactive (non-modeled) mole-
cules in the experimental dataset were aligned on the common
pharmacophore hypothesis based on a match with at least 3 of
the pharmacophoric features. For a QSAR study, the structural
diversity in both the training and test set was given a bias, in order
to form the standard 1:5 test set to training set ratio.
Tables 3 and 4 summarize the detailed statistics of the resulting

3D-QSAR models (I and II) based on random test set selection
method. Selection of best PLS model is based on an employed
statistical analysis which included the R2 versus root-mean-
square error (RMSE)/standard deviation (SD) plot. A minima is
observed in the RMSE/SD value and a best model was chosen to
be PLS factor model (PLS factor 3). For a reliable model, the
squared predictive correlation coefficient should exceed
0.60.33,34 In the selection of best model, criteria such as SD
and RMSE were also taken into consideration. The statistically
significant regression model was supported by the values of F
(13.9 and 23.6 for QSARmodels I and II, respectively), and small
values of P (variance ratio), which is an indication of a high
degree of confidence. Further, the small values of standard
deviation of regression (0.31 and 0.33 for QSAR model I and II)

http://www.portobiomedicaljournal.com


Figure 3. Pharmacophore model (AAARP) generated by PHASE for compounds 34 to 80. It illustrates hydrogen bond acceptors (A1, A2, A3; pink color), (P9; blue
color), and aromatic ring (R10; orange color) features. All ligands overlapped on the generated model AAARP.
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and RMSE (0.32 and 0.37 for QSAR models I and II,
respectively) make an apparent inference that the data used for
models generation are best for the QSAR analysis. It was further
supported by the higher value of the QSAR model stability (0.61
and 0.83 for QSAR models I and II, respectively). A 3-PLS factor
generated 3D-QSAR models with R2=0.61 for QSAR model I
and 0.63 for QSAR model II (random set selection), indicates a
good correlation for the pharmacological activity. Figures 4(A
and B) and 5(A and B) depict the linear plots of actual versus
predicted activity for the training and test sets. The validity of
each of the models was predicted from the calculated correlation
coefficient for the randomly chosen test set comprising of diverse
structures. The squared correlation for the test set (random
selection Q2=0.84 and 0.77 for QSAR models I and II,
respectively) also signifies the good predictability of the final
QSAR models for the test set. The Q2 was more reliable and
robust statistical parameter in comparison to R2 as it is obtained
Table 4

PHASE 3D-QSAR statistical parameters for compounds 34–80 (QSAR

Statistical parameters

R2 S.D. F value RMSE R2 cv R2 sc

0.63 0.33 23.6 0.57 0.64 �
Training set (N=37) and test set (N=10); F= the ratio of the model variance to the observed activity va
analogous to R2 but based on the test set predictions; R2= a coefficient of determination; RMSE= the RM
model predictions to changes in the training set composition; Pearson R value for the correlation betwe

Table 3

PHASE 3D-QSAR statistical parameters for compounds 1 to 33 (QSA

Statistical parameters

R2 S.D. F value RMSE R2 cv R2 sc

0.61 0.31 13.9 0.32 0.65 �
Training set (N=20) and test set (N=7).
3D-QSAR=3-dimensional quantitative structure–activity relationship, RMSE= root-mean-square error, S

6

by external validation method by randomly dividing the dataset
into training and test set. Both the developedmodels (I and II) will
be highly useful for predicting MMP-9 inhibitory activity of new
compounds and could help in designing better molecules with
enhanced anticancer activity.
Analysis of 3D-QSAR models (atom-based PHASE models)

The contribution of the substituents to the biological activity,
whether positive or negative, could be predicted by the
visualization of 3D characteristics of the all atom based QSAR
model. Figures 6 and 7 depict 3D characteristics of the PHASE
QSAR models and as the cubes represent the models and color
codes as their coefficient values according to the sign. By default
the blue color was for positive coefficients and red color was for
negative coefficients. Further, an increase in biological activity
was indicated by positive coefficients whereas a decrease in
model II)

(compounds 34–80)

ramble Q2 Stability Pearson R P

0.09 0.77 0.83 0.86 6.29e–07

riance; P= significance level of F when treated as a ratio of Chi-squared distributions; Q2=directly
S error in the test set predictions; SD= the standard deviation of regression; stability= stability of the
en the predicted activity and observed activity for the test set.

R model I).

(compounds 1–33)

ramble Q2 Stability Pearson R P

0.32 0.84 0.61 0.75 3.89e–05

D= standard deviation.



Figure 4. A and B: Graphical presentation of actual versus predicted pIC50 of training set and test set molecules for QSAR model I. QSAR=quantitative structure–
activity relationship.
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biological activity was indicated by the negative coefficients. In
order to identify the characteristics of ligand structures whether
to facilitate the increase or to decrease the activity the
visualization of the coefficients was helpful. This might provide
evidence to which functional groups were advantageous or non-
advantageous at certain specific positions in a molecule. In 3D
plots of the 3D pharmacophore regions the blue color cubes refer
to ligand regions in which the specific attribute was important for
enhanced biological activity, whereas the red cubes demonstrated
that particular functional group or structural feature was not
necessary for the biological activity or possibly the reason for
decreased binding potency.

MMP-9 model (QSAR Model I). The volume occlusion maps
shown in Figure 6 for MMP-9 atom based PHASE 3D-QSAR
Figure 5. A and B: Graphical presentation of actual versus predicted pIC50 of traini
activity relationship.
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(QSAR model I) model (electronegative and hydrophobic) were
represented by color codes. The occlusion maps symbolize the
regions of favorable and unfavorable interactions.
The volume occlusion maps of electron-withdrawing groups

shown in Figure 6A indicated the suitable position of electron-
withdrawing groups attached on the C1 position of the phenyl
ring of the HPSAs moiety. The presence of large number of blue
cubes due to the presence of number of electron withdrawing
moieties such as oxygen, nitrogen, etc. further supported
the increase in activity. The analysis was suggestive that
the improvements in the MMP-9 inhibitor binding affinity can
be achieved by substituting electron-withdrawing groups on the
phenyl ring of HPSAs moiety at C1 positions. Also, the positive
potential of electron withdrawing attributes of the molecules and
was essential for the MMP-9 activity at this particular position.
ng set and test set molecules for QSARmodel II. QSAR=quantitative structure–

http://www.portobiomedicaljournal.com


Figure 6. (A and B): Visual representation of atom-based PHASE 3D-QSAR (MMP-9 QSAR model I). A: Hydrogen bond donor; electron withdrawing, and B:
hydrophobic. Blue color cubes indicate positive coefficient or increase in activity and red color cubes indicate negative coefficient or decrease in activity. QSAR=
quantitative structure–activity relationship.
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However, other positions were not favorable for the electron
withdrawing groups and probably will contribute to decrease in
the MMP-9 activity.
Hydrophobic volume occlusion maps (Fig. 6B) showed blue

colored cubes on C1 and C5 positions of phenyl ring
demonstrating that an increase in the hydrophobic character
in this region probably improved the activity of the HPSAs type
molecules. Also, at the C2 (ortho) position the rich density of
blue colored cubes was further suggestive of increase in activity.
The red colored cubes on C3 positions were not favoring the
assignment of hydrophobic groups.
Based upon analysis, the all atom QSAR model I generated by

PHASE depicts that substitution at C1 position of phenyl ring
played a vital role in the MMP-9 inhibitory activity. The
substitutions at other positions, that is, C3 and C6 were not
having any significant contribution in the biological activity.

MMP-9 model (QSAR Model II). The volume occlusion maps
shown in Figure 7 for MMP-9 atom based PHASE 3D-QSAR
(QSAR model II) model (hydrogen bond acceptor, hydrophobic)
Figure 7. (A and B): Visual representation of atom-based PHASE 3D-QSAR mod
Blue color cubes indicate positive coefficient or increase in activity and red color
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were represented by color codes. The occlusion maps symbolize
the regions of favorable and unfavorable interactions.
Visually, Figure 7A analysis illustrated the presence of the blue

color cubes near and around the hydrogen acceptor site (A1)
which positively contributed to MMP-9 inhibition. Further, the
presence of blue cubes at C2 position of the phenyl ring was also
suggestive of increase in activity. Also the presence of blue cubes
near to positive ionic feature described the favorable ionic
interactions. The availability of red color cubes at C1 position of
phenyl rings resulted in decreased activity.
Figure 7B illustrates the effect of hydrophobic groups on

MMP-9 inhibitory activity. Inference can be drawn from the
picture that hydrophobic groups (blue cubes) were well tolerated
near C1, C4, and C6 positions of the phenyl ring on HPSAs
moeity, whereas the substitution of hydrophobic groups at C2,
C3, C5 of the phenyl ring site were intolerable (red cubes) or may
hamper the binding of the molecules to the active site receptor
which resulted in decreased MMP-9 inhibition.
Based on above analysis, the all atomQSARmodel II generated

by PHASE depicted that substitution at C1 and C4 by different
el (MMP-9 QSAR model II). A: Hydrogen bond acceptor; and B: hydrophobic.
cubes indicate negative coefficient or decrease in activity.
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groups like hydrogen acceptor, positive ionic, and/or hydropho-
bic groups play an important role in the MMP-9 activity. The
substitutions at other positions, that is, C2, C3, and C5 were not
having any significant contribution in the biological activity.
Conclusion

The two atom-based pharmacophoric 3D-QSAR models (I and
II) were successfully developed for a set of MMP-9 inhibitory
activity of HPSAs derivatives. The obtained models exhibit good
fitness with the experimental data, with a maximum correlation
coefficient of 0.61 for QSARmodel I and 0.63 for QSARmodel II
and having hydrophobic and H-bond acceptor and H-bond
donor features as crucial parameters for MMP-9 inhibition.
Furthermore, cross-validation coefficient (Q2=0.84 and 0.77 for
QSAR models I and II, respectively) reflected good predictive
power of the models. Robustness of the models was indicated by
the higher degree of closeness between experimental and
predicted activity. Therefore, the developed 3D-QSAR models
(I and II) could be employed to predict MMP-9 inhibitory activity
of HPSAs derivatives. This will further add in designing better
molecules with enhanced MMP-9 inhibitory activity.
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