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Abstract

Dysregulated metabolism is a hallmark of cancer that manifests through alterations in bioe-

nergetic and biosynthetic pathways to enable tumor cell proliferation and survival. Tumor

cells exhibit high rates of glycolysis, a phenomenon known as the Warburg effect, and an

increase in glutamine consumption to support the tricarboxylic acid (TCA) cycle. Renal cell

carcinoma (RCC) tumors express high levels of glutaminase (GLS), the enzyme required

for the first step in metabolic conversion of glutamine to glutamate and the entry of glutamine

into the TCA cycle. We found that RCC cells are highly dependent on glutamine for prolifera-

tion, and this dependence strongly correlated with sensitivity to telaglenstat (CB-839), an

investigational, first-in-class, selective, orally bioavailable GLS inhibitor. Metabolic profiling

of RCC cell lines treated with telaglenastat revealed a decrease in glutamine consumption,

which was concomitant with a decrease in the production of glutamate and other glutamine-

derived metabolites, consistent with GLS inhibition. Treatment of RCC cells with signal

transduction inhibitors everolimus (mTOR inhibitor) or cabozantinib (VEGFR/MET/AXL

inhibitor) in combination with telaglenastat resulted in decreased consumption of both glu-

cose and glutamine and synergistic anti-proliferative effects. Treatment of mice bearing

Caki-1 RCC xenograft tumors with cabozantinib plus telaglenastat resulted in reduced

tumor growth compared to either agent alone. Enhanced anti-tumor activity was also

observed with the combination of everolimus plus telaglenastat. Collectively, our results

demonstrate potent, synergistic, anti-tumor activity of telaglenastat plus signal transduction

inhibitors cabozantinib or everolimus via a mechanism involving dual inhibition of glucose

and glutamine consumption.

Introduction

Dysregulated metabolism is a hallmark of cancer, enabling tumor cells to sustain high rates of

proliferation, even under unfavorable conditions of limited oxygen and essential nutrients
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[1, 2]. Glycolysis is enhanced in cancer cells as a means to support the biosynthesis of meta-

bolic intermediates required for several pathways, including amino acid biosynthesis, the pen-

tose phosphate pathway (PPP), and folate metabolism [3]. An increased reliance on aerobic

fermentation—a phenomenon called the “Warburg Effect” whereby glucose is converted to

lactate—results in reduced bioavailability of pyruvate for fueling the tricarboxylic acid (TCA)

cycle [4, 5]. As a consequence, there is increased demand for an anapleurotic source of carbon

to fuel the TCA cycle. This demand for anapleurotic carbon is satisfied by glutamine, which is

converted to glutamate by the enzyme glutaminase (GLS) [6, 7]. Glutamate is further con-

verted to α-ketoglutarate for entry into the TCA and the generation of energy and biomole-

cules, including nucleotides, fatty acids, and amino acids [5, 6, 8–10]. The heightened

dependency on glutamine metabolism renders cancer cells sensitive to inhibition of GLS activ-

ity, making GLS an attractive target for cancer therapeutics.

In clear cell renal cell carcinoma (ccRCC), the most common histological variant of RCC,

the Von Hippel-Lindau (VHL) tumor suppressor gene is silenced, which leads to activation of

hypoxia inducible transcription factors, HIF-1α and HIF-2α. HIF-1α and HIF-2α drive meta-

bolic reprogramming in RCC cells, which is characterized by enhanced glycolysis and reduced

glucose oxidation, a compensatory increase in consumption of glutamine, increased flux of

glutamine-derived carbons into the TCA cycle [11], and a reliance on glutamine for growth

and proliferation [12–14]. Expression of HIF-2α has also been shown to promote reductive

carboxylation of α-ketoglutarate in RCC cells, diverting the dependency of the TCA cycle

away from glucose towards glutamine [13]. Compared to normal kidney, RCC cells express

higher levels of the more active isoform of GLS known as GAC, which is consistent with

increased glutamine utilization thereby creating a therapeutic vulnerability to GLS inhibition

[12, 15–17].

In addition to the VHL/HIFα axis, many cancers, including RCC, have aberrant activation

of signal transduction pathways dependent on the tyrosine kinases VEGFR, ALK, and MET.

While these pathways are well known to drive tumor cell proliferation and survival, they also

promote metabolic alterations via activation of the PI3K/AKT/mTOR pathway that result in

increased aerobic glycolysis [18–20]. Inhibitors of VEGFR or mTOR downregulate glycolysis,

limiting production of ATP and cellular building blocks [21–25]. Concordantly, inhibition of

signal transduction pathways with receptor tyrosine kinase inhibitors, such as cabozantinib, or

mTOR inhibitors, such as everolimus, have been associated with antitumor activity in a num-

ber of cancer types, including RCC [26, 27].

Telaglenastat (CB-839) is an investigational, first-in-class, selective, orally bioavailable,

small molecule inhibitor of both splice variants (KGA and GAC) of glutaminase, currently

under clinical investigation for the treatment of several cancers including RCC [28]. We

hypothesized that targeting of both glutamine and glucose utilization pathways via dual inhibi-

tion of GLS and tyrosine kinase signalling pathways would lead to synergistic suppression of

RCC tumor cell proliferation. Here we examined the anti-proliferative effects of telaglenastat,

alone and in combination with signaling inhibitors, in RCC cell lines and tumor xenograft

models in mice. We observed that dual inhibition of glutaminase and signal transduction path-

ways lead to synergistic anti-proliferative activity in vitro and enhanced anti-tumor activity in

vivo.

Materials and methods

Cell lines

Cell lines, A-704, 786-O, Caki-1, A498, 769-P, Caki-2, ACHN and G401 were obtained from

ATCC; RCC-JW, RCC-JF, RCC-MF, RCC-GH, RCC-FG1, WT-CLS1, RCC-ER and RCC-FG2
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were obtained from Cell Line Service (CLS); CAL-54 and BFTC-909 were obtained from the

German Collection of Microorganisms and Cell Cultures (DSMZ); VMRC-RCZ,

VMRC-RCW, JMU-RTK-2, KMRC-20, KMRC-1 and KMRC-3 were obtained from JP Cell

Bank and TUHR10TKB, OS-RC-2 and RCC-10RGB were obtained from Riken. Cells were

maintained in RPMI-1640 media supplemented with 2 mM glutamine and 10% fetal bovine

serum. Cell lines were purchased from vendors that perform routine authentication of their

human cell lines and were used at low passage number.

Cell viability assays

For viability assays, cell lines were treated with vehicle (DMSO), telaglenastat, everolimus,

cabozantinib, or the indicated combinations for 72 hours in triplicate wells and analyzed for

proliferation using CellTiter-Glo (CTG; Promega). For all cell lines, the results presented are

representative of at least two independent experiments. IC50 values were calculated using a

four parameter curve fit (GraphPad Prism). Relative cell loss or proliferation in the presence of

1 μmol/L telaglenastat or in glutamine-free media was determined by comparing the CTG sig-

nals measured at time (t) = 72 hours under experimental conditions (CTGexp_72) with both the

CTG signal at t = 72 hours for vehicle (0.5% DMSO) treated cells (CTGDMSO_72) and the CTG

signal measured at t = 0, the time of telaglenastat addition or glutamine withdrawal (CTG0),

using the following equations: % cell loss (when CTGexp_72 < CTG0) = 100 × (CTGexp_72

− CTG0)/CTG0; % cell proliferation (when CTGexp_72 > CTG0) = 100 × (CTGexp_72 − CTG0)/

(CTGDMSO_72 − CTG0). Combination indices were calculated by the method of Chou–Talalay

using Calcusyn software [29].

Metabolite analysis

Glutamine, glutamate, malate, citrate, and glutathione were measured in ACHN and

TUHR10TKB cell lines. Cells were homogenized in methanol:water (80:20) containing

10 μmol/L of the following internal standards: L-glutamine-15N2, 13C5; L-glutamic acid-13C5,
15N; L-malic acid-13C4; and glutathione-(glycine-13C2, 15N). Metabolite levels were analyzed

by liquid chromatography-tandem mass spectrometry (LC/MS-MS) using a SCIEX API4000

mass spectrometer (Applied Biosystems), and statistical analyses were conducted using t tests.

Cell culture media metabolites and seahorse experiments

For experiments quantifying metabolite consumption or production in tissue culture media,

cells were incubated in DMEM with 5 mmol/L glucose and 0.5 mmol/L glutamine (no serum)

for 24 hours. Media concentrations of glucose, lactate, glutamine, and glutamate were quanti-

fied using the YSI 2900 Biochemistry Analyzer (YSI Life Sciences).

To quantify rates of oxygen consumption and extracellular acidification, cells were seeded

(20,000 cells/well) in RPMI medium containing 5% FBS on XF96 V3 PET plates (Seahorse Bio-

sciences). After the cells were attached overnight, the medium was exchanged with DMEM (5

mmol/L glucose with or without 0.5 mmol/L glutamine, no FBS, no bicarbonate) and the

plates were immediately loaded onto the Seahorse Biosciences XF96 Bioanalyzer for quantifi-

cation of oxygen consumption rates (OCR). To determine effects on extracellular acidification

rate (ECAR), compounds were added sequentially (telaglenastat and/or everolimus [Selleck

Chemicals, #S1120], cabozantinib [Selleck Chemicals, #S1119], DMSO, or the indicated com-

binations, 80 mM glucose, 9 μM oligomycin, and 500 mM 2-deoxyglucose) for 24 hours.

Statistical analyses were conducted using Brown-Forsythe and Welch 1-way ANOVA with

Dunnett’s test for multiple comparisons.
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Immunohistochemical staining

RCC tumors were purchased from Indivumed (Hamburg, Germany). Immunohistochemical

staining was performed at Covance Laboratories Inc. (Greenfield, USA), as previously

described [30]. Tumors were fixed in 10% neutral-buffered formalin, embedded in paraffin,

and cut into 4 μm sections, which were then dried, deparaffinized, and rehydrated. Heat-

induced antigen retrieval was performed for 10 minutes (Antigen Retrieval Solution, Leica,

AR9661). Endogenous peroxidase activity was quenched with peroxidase block. Sections were

incubated with primary antibody (rabbit anti-human GLS, Abcam, ab156876, 1:200 dilution)

for 15 minutes at room temperature. Immunohistochemical reactions were visualized using

Dako Rabbit Envision+HRP with DAB+ for use with rabbit primary antibodies (K4011,

Dako). Sections were counterstained with hematoxylin.

Western blot analysis

Lysates were prepared from tumor cell line pellets by sonication in cell homogenization buffer

(50 mM Tris-Acetate pH 8.6, 150 mM K2HPO4, 0.25 mM EDTA, 1 mM DTT, 1X complete

protease inhibitors) using a Bioruptor sonication device (Diagenode) for 5 minutes at 4˚C on

high power (30 seconds on/30 seconds off per 1 minute cycle). The homogenates were gel fil-

tered on spin columns equilibrated in cell homogenization buffer supplemented with 0.01%

Triton X-100. Gel-filtered lysates were quantified for total protein (Pierce), snap frozen in liq-

uid nitrogen, and stored at -80˚C. Lysates (20 μg/lane) were denatured by boiling in SDS-sam-

ple buffer, resolved on Tris-acetate gels together with Novex sharp pre-stained molecular

weight standards (Life Technologies), and transferred to nitrocellulose membranes. Nitrocel-

lulose-immobilized proteins were probed with the following antibodies, all purchased from

Cell Signaling Technology, unless indicated otherwise: phospho-S6 (#5364), S6 (#2217), phos-

pho-AKT (Ser473, #4060), AKT (#4691), phospho-Erk1/Erk2 (Tyr187/Tyr204, #5726S), Erk

(#9102), phospho-4E-BP1 (Ser65, #9456), and 4E-BP1 (#9644), and β-actin (1:10,000; A5441,

Sigma-Aldrich) followed by horseradish peroxidase-coupled anti-rabbit or anti-mouse anti-

bodies (1:5,000; NA934V and NA931V, GE Healthcare). Bands were revealed by chemilumi-

nescence (Thermo Scientific) and images were captured with a FluorChem HD2 system

(Protein Simple).

Animals

Protocols for animal use were reviewed and approved by Calithera’s Institutional Animal Care

and Use Committee (IACUC; protocol #CAL-003). Animals were cared for as described in

Guide for the Care and Use of Laboratory Animals (National Research Council, Washington,

DC, National Academy Press). Mice were housed within Calithera’s onsite vivarium where the

environmental conditions were as follows: between 68˚ and 79˚F, 30% to 70% humidity, and

12-hour light-dark cycles. Mice were group housed in polycarbonate cages with appropriate

bedding to keep the animals clean and dry. Cages were placed in ventilated racks providing

HEPA filtered air. Water and pelleted rodent food were provided ad libitum. Environmental

enrichment items (nestlets or puff squares) were provided at each cage change. Immunocom-

promised animals were handled in a biosafety cabinet.

Procedures were followed to ensure that discomfort and injury to animals were limited to

that which was unavoidable to conduct the studies. Mice were observed daily and tumors were

measured with calipers 3 to 4 times per week. Mice were euthanized if tumors reached 2000

mm3. Per IACUC protocol, mice were to be euthanized if any of the following clinical signs

were observed: body weight loss of 20% compared to vehicle-matched controls, diarrhea more

than 48 hours in duration, self-induced trauma, bleeding from any orifice, neurological signs
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incompatible with maintenance of normal life functions (e.g., inability to eat, drink, ambulate),

hyper- or hypothermia for more than 24 hours, respiratory difficulties, nonresponsiveness to

stimuli, moribund condition, or tumors with discharge. None of these clinical signs were

observed in any animals on study and no mice died before they could be euthanized. Mice

were euthanized by carbon dioxide asphyxiation followed by exsanguination or cervical

dislocation.

In vivo studies

Mice (female SCID/beige) were purchased from Charles River Laboratories. N = 160 mice

were used for the studies. Mice were implanted subcutaneously with 2.5x106 Caki-1 RCC cells

plus Matrigel per mouse. When tumors reached an average of ~400 mm3, mice in the everoli-

mus combination studies were randomized into the following 4 treatment groups: (i) vehicle,

(ii) telaglenastat at 200 mg/kg and dosed orally twice daily (BID), (iii) everolimus at 1 mg/kg

dosed orally once daily (QD), and (iv) telaglenastat and everolimus (Selleck Chemicals,

#S1120) at 200 mg/kg and 1 mg/kg, respectively. For the cabozantinib (and other TKI combi-

nation studies), mice were randomized into the following 4 treatment groups: (i) vehicle, (ii)

telaglenastat at 200 mg/kg and dosed orally BID, (iii) cabozantinib at 1 mg/kg dosed orally

QD, and (iv) telaglenastat and cabozantinib (Selleck Chemicals, #S1119). Sunitinib (Selleck

Chemicals, #51042) was dosed orally at 20mg/kg QD and axitinib (MedChemExpress, #HY-

10065) at 25mg/kg QD. Statistical analyses were conducted using Ordinary ANOVA with

Tukey’s multiple comparison tests.

Results

RCC cell lines are sensitive to glutaminase inhibition with telaglenastat

To determine the extent to which RCC cell lines are dependent on glutamine, we first evalu-

ated the effect of glutamine withdrawal in a panel of 27 kidney tumor cell lines, including 20

ccRCC, 3 papillary RCC (pRCC), 3 rhabdoid tumor of the kidney, and 1 kidney transitional

cell carcinoma cell line. RCC cell lines displayed a cytotoxic or strongly cytostatic response to

glutamine withdrawal in 18 of 20 ccRCC cell lines and in all 3 pRCC cell lines (Fig 1A, right

panel; S1 Table). Rhabdoid kidney and transitional kidney cell lines were largely insensitive to

glutamine withdrawal (Fig 1A; S1 Table). RCC cell lines were next evaluated for the ability to

proliferate in the presence of 1 uM telaglenastat (Fig 1A, left panel). Treatment with telaglena-

stat was found to induce cell death in 16 out of 20 ccRCC cell lines, with reductions in cell

number ranging from –88% to –9% relative to the start of drug treatment (Fig 1A). Teleglena-

stat also showed pronounced cytostatic effects in 2 additional ccRCC cell lines and 3 pRCC cell

lines, with cell numbers ranging from 3% to 17% of the control-treated cultures. Using the

same cell line panel, the anti-proliferative effect of glutaminase inhibition was assessed using a

dose titration of telaglenastat (from 0.15 nM to 1 μM) to determine an EC50 after three days of

growth. Generally consistent with the effects of glutamine withdrawal, 18 out of 20 ccRCC cell

lines and all 3 pRCC were sensitive to telaglenastat treatment, whereas the kidney rhabdoid

and transitional cell carcinoma cell lines were resistant (S1 and S2 Figs).

Sensitivity of RCC cells to telaglenastat strongly correlated with dependence on glutamine,

indicating that RCC cells use glutamine to support glutaminolysis through the activity of GLS

(r = 0.7, P< 0.0001; Fig 1B). In contrast, most of the non-RCC cell lines (i.e., rhabdoid and

transitional cell kidney tumors) were less sensitive to telaglenastat, showing only partial cyto-

static effects or complete resistance. Therefore, RCC cells appear to be highly sensitive to inhi-

bition of GLS compared to non-RCC kidney tumor cells.
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Given the dependency on GLS in RCC cell lines, we looked at GLS expression in RCC

tumors. Across all tumor types in The Cancer Genome Atlas (TCGA) database [31–33], RCC

had the highest median expression level of GLS; within RCC, the highest levels were found in

pRCC, followed by ccRCC (S3 and S4 Figs). Immunohistochemical staining in 5 primary

human ccRCC tumors revealed high GLS expression (Fig 1C). These data suggest that, like

RCC cell lines, RCC tumors have an elevated dependency on GLS and glutamine metabolism.

To confirm the anti-proliferative effects of telaglenastat resulted from GLS pathway inhibi-

tion, we measured changes in the levels of intracellular metabolites downstream and upstream

of GLS in cells treated for 4 hours with telaglenastat. Telaglenastat treatment led to a mean

~5-fold increase in glutamine levels, while intracellular levels of glutamate, glutathione, malate,

and aspartate showed marked decreases compared with control-treated cells (Fig 1D). These

data are consistent with an on-target mechanism of action of telaglenastat in RCC cell lines

(Fig 1E) [28].

Telaglenastat synergizes with everolimus to inhibit proliferation of RCC

cells

Previous studies have shown amino acid starvation suppresses activation of mammalian target

of rapamycin (mTOR) pathways, which in turn, enables the autophagy response to nutrient

deprivation [34, 35]. To determine whether telaglenastat could suppress mTOR pathway activ-

ity in RCC, we measured phosphorylation of S6 and 4E-BP1, markers of mTOR activation,

across 6 ccRCC cell lines. Incubation of cells in the presence of telaglenastat resulted in

decreased phosphorylation of S6 and 4E-BP1, compared with the DMSO control (Fig 2).

These findings demonstrate that telaglenastat may indirectly inhibit mTOR signaling by

depriving cells of metabolites produced by the breakdown of glutamine by GLS, consistent

with previous findings [36].

Everolimus is a potent mTOR inhibitor that is approved for the treatment of advanced/met-

astatic RCC [37]. Metabolic effects of inhibiting mTOR with everolimus in patients include

hyperglycemia, attributed to suppression of key glycolytic enzymes and the pentose phosphate

pathway [37, 38]. Given our observations of telaglenastat’s inhibitory effect on mTOR signal-

ing, we explored the combined antiproliferative effects of telaglenastat with everolimus in RCC

cells. ACHN cells were incubated for 72 hours with a range of concentrations of telaglenastat,

everolimus, or the combination. Dose-dependent decreases in cell survival were observed with

both single agent treatments, and the combination of telaglenastat with everolimus showed

synergistic antiproliferative effects, with combination indices [29] ranging from 0.19 to 0.38

(Fig 3A). Similar results were observed in TUHR10TKB cells (S5 Fig).

To evaluate the mechanism of the antiproliferative effect of telaglenastat and everolimus on

RCC cells, we first measured consumption of glucose and glutamine from cell culture media of

ACHN cells treated for 24 hours with telaglenastat, everolimus, or the combination (Fig 3B).

As expected, telaglenastat reduced glutamine consumption by more than 80% compared to the

vehicle control, but did not alter glucose consumption. Conversely, everolimus reduced

Fig 1. Sensitivity of ccRCC and pRCC cells to telaglenastat correlates with glutamine dependency and is associated with reduced metabolites

downstream of glutamine. (A) Relative cell growth or cell death across a panel of kidney cancer cell lines following incubation with telaglenastat

(1 μM; left panel) or glutamine withdrawal (right panel) for 72 hours. (B) Correlation between telaglenastat sensitivity (1 μM) and response to

glutamine withdrawal at 72 hours. Each data point on the bivariate plot depicts an individual cell line. (C) Immunohistochemical staining of

glutaminase in primary ccRCC tumors. (D) Intracellular metabolite levels of glutamine and its downstream metabolites following 1 μM telaglenastat

treatment for 4 hours. Graphs represent two independent experiments (left panel: ACHN cell line; right panel: TUHR10TKB cell line) performed in

duplicate. (E) Schematic representation of glutamine metabolism showing experimentally observed changes to levels of glutamine-derived metabolites

following treatment with telaglenastat. For (A) and (B), data represent result of 2 or 3 independent experiments, each performed in triplicate. Error

bars represent standard error of the mean. For (D), statistical analyses were conducted using t tests: �P� 0.05; ��P� 0.01; ���P� 0.001.

https://doi.org/10.1371/journal.pone.0259241.g001
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Fig 2. Telaglenastat inhibits the mTORC1 pathway in RCC cells. (A) Western blot of phospho-S6, total S6,

phospho-4E-BP1 and total 4E-BP1 in RCC cell lines after 24 hours of telaglenastat treatment (1 μM) or DMSO control.
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glucose consumption to 63% of the control. Combination of telaglenastat with everolimus

inhibited both glucose and glutamine consumption by ACHN RCC cells.

Extracellular acidification rate (ECAR) and oxygen consumption rates (OCR) are fre-

quently used as measures of glycolysis and mitochondrial respiration, respectively [39]. Con-

sistent with the suppressive effects of everolimus on glycolysis, both ECAR and OCR

decreased with everolimus treatment in all 8 RCC cell lines tested (Fig 3C, S6 Fig). Telaglena-

stat, on the other hand, primarily reduced OCR, but not ECAR, demonstrating its specificity

in inhibiting GLS and entry of glutamate into the TCA cycle. A combined inhibitory effect was

observed with telaglenastat plus everolimus in OCR, but not ECAR. The dual effect of the com-

bination of telaglenastat and everolimus on both ECAR and OCR may explain the anti-prolif-

erative synergy we observed and is consistent with other groups’ findings showing enhanced

activity of mTOR inhibtiors when combined with GLS inhibition [36, 40, 41].

Telaglenastat synergizes with cabozantinib to inhibit proliferation of RCC

cells

Cabozantinib is an orally administered tyrosine kinase inhibitor approved for treatment of

advanced/metastatic RCC. Cabozantinib inhibits growth factor receptors, VEGFR, MET, and

AXL, and has downstream effects on the PI3K-AKT-mTOR pathway, leading to decreased glu-

cose utilization [25]. To evaluate the combined effect of inhibiting glutamine and glucose meta-

bolic pathways in RCC cells, we measured cell survival of Caki-1 cells after 72 hours of treatment

with telaglenastat, cabozantinib, or both agents in combination. While telaglenastat and cabozan-

tinib each exhibited dose-dependent single agent reduction in cell survival, the combination

showed synergistic activity, with combination indices ranging from 0.25 to 0.54 (Fig 4A).

Next, to understand the effect of telaglenastat and cabozantinib on cell signaling, we investi-

gated activation of Akt and Erk, which lie downstream of c-Met. Western blot analysis showed

reduced phospho-Akt in the presence of cabozantinib and reduced phospho-Erk in the pres-

ence of either cabozantinib or telaglenastat, compared with the DMSO control (Fig 4B). A

greater decrease in phosphorylation was observed with both phospho-Akt and phospho-Erk in

the presence of both agents, further supporting the combined effect of telaglenastat with cabo-

zantinib on growth factor signaling pathways.

Findings of OCR inhibition in RCC cells with telaglenastat and cabozantinib were similar

to those of telaglenastat plus everolimus, with the combination exhibiting a greater decrease in

OCR than either agent alone (Fig 4C). This decrease in OCR may be a result of reduced glu-

cose and glutamine consumption. To that end, we evaluated the downstream metabolic effects

of telaglenastat plus cabozantinib on glucose and glutamine consumption by Caki-1 cells.

Cabozantinib inhibited glucose consumption and lactate production, while telaglenastat inhib-

ited glutamine consumption and glutamate production (Fig 4D). The anti-proliferative syn-

ergy observed with the combination of telaglenastat plus cabozantinib may be explained by the

dual blockade of both glucose and glutamine consumption.

RCC xenografts: Telaglenastat + everolimus, cabozantinib, sunitinib or

axitinib

Given the pronounced synergy observed when combining telaglenastat with everolimus or

cabozantinib in vitro, we next tested telaglenastat for anti-tumor activity in a Caki-1 mouse

(B) Relative phospho-S6 and phospho-4E-BP1 levels normalized to total S6 and 4E-BP1, respectively, quantified by

densitometry. Representative blots of at least two independent experiments are shown.

https://doi.org/10.1371/journal.pone.0259241.g002
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Fig 3. Synergistic anti-proliferative activity and disruption of glutamine and glucose metabolism by telaglenastat

and everolimus in RCC cells. (A) Viability of ACHN cells treated with telaglenastat, everolimus, or a combination of

both inhibitors for 72 hours. Dotted line indicates the baseline CellTiter-Glo signal at the time of compound addition.

(B) Measurements of glucose or glutamine consumption from media of ACHN cells treated with 75 nM telaglenastat,

PLOS ONE Telaglenastat in renal cell carcinoma models

PLOS ONE | https://doi.org/10.1371/journal.pone.0259241 November 3, 2021 10 / 20

https://doi.org/10.1371/journal.pone.0259241


xenograft model of ccRCC. Treatment of tumor-bearing mice with telaglenastat led to a slower

rate of tumor growth than mice treated with the vehicle control (Fig 5). Similar decreases in

the rate of tumor growth were observed with single agent treatments of everolimus, cabozanti-

nib, sunitinib, or axitinib. Antitumor activity was significantly greater when telaglenastat was

combined with everolimus, cabozantinib, sunitinib, or axitinib (P< 0.05; Fig 5). All combina-

tions were well tolerated in mice, with no notable changes in body weights compared with

vehicle control (S7 Fig).

Discussion

The rationale for glutaminase inhibition as a therapeutic strategy for RCC is based on extensive

studies of the Warburg effect and glutamine addiction in RCC cells. The Warburg effect is

characterized by enhanced glucose uptake and glycolytic flux that enables pyruvate to bypass

the TCA cycle and undergo reduction to lactate in proliferating cancer cells [4, 5]. In many

cancers, including RCC, anaplerosis of the TCA cycle is sustained via the conversion of gluta-

mine to α-ketoglutarate, the first step of which is mediated by GLS [6]. Several lines of evi-

dence have pointed to RCC being a metabolically active tumor. First, fluorodeoxyglucose-

positron emission tomography (FDG-PET) studies have shown that metastatic RCC lesions

are FDG avid, meaning RCC tumors consume high amounts of glucose, with high levels of

FDG uptake correlating with poor prognosis [42–48]. In addition, in vivo isotope tracing

experiments in patients with ccRCC have shown high flux of 13C-glucose into glycolysis and

high production of lactate. These findings are accompanied by low glucose flux into the TCA

cycle and low levels of aspartate and glutamate in tumors compared to adjacent normal kidney

tissue [49]. The tumor-specific enrichment in glycolytic intermediates coincides with decreases

in glucose-derived TCA cycle intermediates, consistent with the Warburg effect. Diversion of

glucose-derived metabolites away from the TCA cycle in ccRCC tumors thereby creates a

dependency on alternative pathways for sustaining the levels of TCA cycle intermediates.

Glutamine utilization in tumors has been observed in both clinical and preclinical studies.

PET scanning of cancer patients injected intravenously with the radiolabeled glutamine ana-

log, fluoro-glutamine (18F-FGln), showed high uptake into tumors harboring mutations in

metabolic genes, including an RCC patient with a germline mutation in the SDHB gene, which

encodes a subunit of succinate dehydrogenase [50]. In another study, 18F-FGln uptake was

observed across multiple tumor types, including patients with RCC and non-small cell lung

cancer (NSCLC) who, upon treatment with telaglenastat, decreased their uptake of 18F-FGln

[51]. Several nonclinical studies have also demonstrated elevated glutamine utilization in RCC

tumors [16, 17, 52–55]. These studies characterize glutamine as a required substrate for gener-

ating glutathione to maintain redox balance [16, 53], for entering the TCA cycle [54], and for

driving lipogenesis via reductive carboxylation [13, 55]. More recently, glutamine-derived

aspartate was identified as a precursor for nucleotide biosynthesis [12, 56]. Taken together,

these data indicate that glutamine fuels diverse metabolic pathways essential for cancer cells in

ccRCC and other tumor types, both in vitro and in cancer patients.

Glutamine dependency is increased under conditions of hypoxia or upon activation of HIF

transcription factors that upregulate enzymes that drive reductive carboxylation of glutamine

25 nM everolimus, or the combination of both inhibitors for 24 hours. (C) Measurements of ECAR and OCR in

ACHN cell cultures. ACHN cells were treated with DMSO, telaglenastat (75 nM), everolimus (25 nM), or the

combination of both inhibitors for 24 hours and analyzed using the Seahorse Metabolic Analyzer. All experiments

were performed in triplicate or quadruplicate. Error bars represent standard error of the mean. Statistical analyses were

conducted using Brown-Forsythe and Welch 1-way ANOVA with Dunnett’s test for multiple comparisons:
���P� 0.001; ����P� 0.0001; ns = nonsignificant.

https://doi.org/10.1371/journal.pone.0259241.g003
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Fig 4. Synergistic anti-proliferative activity of telaglenastat and cabozantinib in ccRCC cells. (A) Viability of Caki-1

cells treated with telaglenastat, cabozantinib, or a combination of both inhibitors for 72 hours. The dashed line

indicates the baseline CellTiter-Glo signal at the time of compound addition. (B) Western blots of total Akt and
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in RCC [57]. VHL loss drives the metabolic phenotype in RCC by creating a pseudo-hypoxic

state. Activation of HIF in response to loss of VHL leads to upregulated expression of glucose

transporters (i.e., GLUT) and glycolytic enzymes (e.g., HK1, HK2, GPI, ALDOA/C, TPI1,

GAPDH, PGK1, PGM, ENO1, and PKM2), and enzymes in the PPP (G6PD, TKT, TKTL2)

[58]. Increased lactic acid production has also been observed, confirming that the Warburg

effect in RCC is driven by VHL loss [58]. Although there is little evidence that HIF increases

expression of glutaminolysis genes, several studies have shown that VHL loss increases expres-

sion of PKD1, thereby decreasing the activity of PDH, leading to lower utilization of glucose in

the TCA cycle and an increased dependence on glutaminolysis for anapleurosis [58]. Increased

expression of HIF may explain increased rates of glutaminolysis to fuel the TCA cycle in VHL-

deleted tumors. These observations motivated our efforts to test the efficacy of glutaminase

inhibition in RCC cells [13, 14].

phospho-Akt and total Erk and phospho-Erk. A representative blot of at least two independent experiments is shown.

(C) Measurement of OCR in Caki-1 cells treated for 24 hours with the indicated compounds. (D) Glucose and

glutamine consumption and lactate and glutamate production, collected in media from Caki-1 cells after 24 hours of

treatment with the indicated compounds. For parts (B)-(D), Caki-1 cells were treated with DMSO, telaglenastat (1 μM),

cabozantinib (6 μM) or the combination of both inhibitors for 24 hours. Sample sizes were n = 5 or 6 for each

condition. Error bars represent standard deviations. Statistical analyses were conducted using Brown-Forsythe and

Welch 1-way ANOVA with Dunnett’s test for multiple comparisons: �P� 0.05; ��P� 0.01; ����P� 0.0001.

https://doi.org/10.1371/journal.pone.0259241.g004

Fig 5. Telaglenastat enhances the antitumor activity of mTOR, VEGFR, or receptor tyrosine kinase inhibitors in vivo. Tumor volumes were

measured in mice implanted subcutaneously with Caki-1 RCC cells and treated with either vehicle, telaglenastat (200 mg/kg, dosed orally BID),

or (A) everolimus (1 mg/kg, dosed orally QD), (B) cabozantinib (1 mg/kg dosed orally QD), (C) sunitinib (20 mg/kg dosed orally QD), or (D)

axitinib (25 mg/kg dosed orally QD) alone or combinations of telaglenastat with each. Statistical analyses were conducted using Ordinary 1-way

ANOVA with Tukey’s multiple comparison tests: �P� 0.05; ��P� 0.01; ����P� 0.0001.

https://doi.org/10.1371/journal.pone.0259241.g005
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In this study, we showed that RCC cell lines are sensitive to glutamine withdrawal and that

this sensitivity correlated with sensitivity to glutaminase inhibition with telaglenastat. Telagle-

nastat had single agent anti-proliferative activity in RCC cell lines, consistent with previously

published reports showing sensitivity of RCC cell lines to glutaminase inhibition [12, 13, 16].

Telaglenastat was more potent in ccRCC compared to pRCC cell lines, with the caveat that

only 3 pRCC cell lines were available for testing. An on-target mechanism of action of telagle-

nastat in RCC cell lines is supported by our results that teleglenastat treatment resulted in

reduced levels of glutamate and its direct downstream metabolites. Telaglenastat treatment of

RCC cells decreased production of glutathione, the TCA cycle intermediate malate, and the

amino acid asparate, confiming previous observations that glutamine fuels glutathione pro-

duction and TCA cycle function [13, 28]. In addition, we showed that treatment with telagle-

nastat resulted in decreased glutamine consumption in the ACHN and Caki-1 cell lines. OCR,

a measure of TCA cycle function, was decreased in all RCC cell lines treated with telaglenastat,

indicating that this finding is generally observed in RCC cell lines. In vivo, telaglenastat con-

trolled tumor growth in Caki-1 cells, consistent with observations of BPTES-based GLS inhibi-

tion in mouse models of RCC [12, 17].

After establishing the antitumor activity of telaglenastat as a single agent in ccRCC cell

lines, we determined whether the effect of telaglenastat could be enhanced by combination

with agents that target other metabolic pathways. Glucose consumption and lactate production

are inhibited in RCC cells by everolimus and other mTOR inhibitors, thus representing a sec-

ond targetable metabolic pathway [21]. Telaglenastat was previously shown to decrease mTOR

activity in triple-negative breast cancer cell lines, demonstrating synergy with mTOR inhibi-

tion in the latter [36]. Similarly, we found that telaglenastat downregulated the PI3K/mTOR

pathway in RCC cells and that the combination of everolimus with telaglenastat had synergis-

tic antitumor effects in these cells. ECAR, a surrogate marker for glycolysis, was decreased in

all 8 RCC cell lines tested following treatment with everolimus alone or in combination with

telaglenastat. Exploration of the mechanism of action of the drug combination in ACHN cells

showed decreases in both glucose and glutamine consumption, leading to decreased rates of

ECAR and OCR in vitro. When combined in vivo, we observed enhanced antitumor activity

in a Caki-1 xenograft model of RCC. Other groups have reported that mTOR inhibition

increases GLS expression, thus increasing tumor dependency on glutamine as a potential resis-

tance mechanism to mTOR inhibition [40, 41]. Although investigating the resistance mecha-

nisms to mTOR inhibition was beyond the scope of this study, our data are consistent with a

potential antitumor effect by telaglenastat in mTOR inhibitor-resistant tumors.

The rationale to combine cabozantinib with telaglenastat was based in part on observations

that cabozantinib decreases glucose uptake measured via FDG-PET (coinciding with

decreased expression of GLUT1/3) in thyroid cancer cells [24] and in animal models of colo-

rectal cancer [25]. Other tyrosine kinase inhibitors, including apatinib and sunitinib, have also

been associated with decreases in glycolysis, both in preclinical and clinical studies; metastatic

RCC patients receiving sunitinib showed metabolic responses by FDG-PET as early as 2 weeks

posttreatment [23]. Our results show that cabozantinb plus telaglenastat synergized to inhibit

RCC cell proliferation in vitro and combined effectively to reduce both glucose and glutamine

consumption, lower OCR, and suppress signal transduction pathways downstream of VEGFR,

MET and AXL [59]. These three receptor tyrosine kinases signal via PI3K/AKT/mTOR and

RAS/RAF/MEK/ERK [25], and are known, in part, to control the metabolism of glucose [5].

This phenomenon is consistent with findings that other receptor tyrosine kinases, such as

EGFR [60], FGFR [61], FLT3 [62], AXL [63], PDGFR [64], IGF1R [65], ROS [66], and MET

[67], have been shown to regulate glucose metabolism. We observed that the combination of

telaglenastat plus cabozantinib in RCC tumor-bearing mice was well tolerated and led to
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enhanced anti-tumor activity. From our in vitro experiments, we surmise that the enhanced

anti-tumor activity of cabozantinib plus telaglenastat is due to the dual inhibition of glucose

and glutamine, but we cannot rule out other complementary mechanisms at play. For example,

it is well established that treatment with TKIs such as cabozantinib lead to decreased tumor

vascularity, which can further decrease the availability of oxygen and glucose, hence exacerbat-

ing the need for alternative fuels, such as glutamine. Under these conditions, the combination

of anti-angiogenic therapies with telaglenastat is hypothesized to have a profound anti-tumor

effect, as was empirically observed in this study. More work will be needed to fully characterize

this in vivo mechanism of drug synergy.

Conclusion

Recently, a number of new therapies have been approved for the treatment of advanced/meta-

static RCC. These treatments generally fall into two mechanisms of action, checkpoint inhibi-

tors and TKIs. However, given that current standard of care therapies are not curative in the

advanced/metastatic setting for the vast majority of patients, there continues to be a high

unmet need for therapies with new mechanisms of action [68]. RCC is a very metabolically

active tumor that is highly reliant on glutamine and glutaminolysis for growth and prolifera-

tion. Targeting glutamine metabolism has been previously explored with other allosteric GLS

inhibitors, such as BPTES and compound 968; however, these compounds lack the potency

and bioavailability to be evaluated in clinical settings [69, 70]. Telaglenastat is a highly potent

and selective, orally bioavailable GLS inhibitor with anti-proliferative activity in ccRCC and

pRCC tumor-derived cell lines. The on-target inhibitory effect on GLS is supported by telagle-

nastat’s suppression of glutamate and glutamate-dependent metabolic products.

Dual inhibition of glutamine and glucose metabolism represents a promising therapeutic

strategy for this highly metabolic tumor. Given that there are no approved agents that directly

inhibit glucose metabolism, indirectly targeting glycolysis with signal transduction inhibitors

in combination with glutaminase inhibition represents an attractive therapeutic strategy for

RCC. Our work builds on prior studies that have demonstrated enhanced glucose utilization

and glutamine dependency in RCC. In our study, we showed that combinations of telaglena-

stat with everolimus or cabozantinib lead to synergistic antiproliferative effects in vitro and tel-

eglenastat enhanced anti-tumor effects of everolimus, cabozantinib, sunitinib, or axitinib in

vivo. Collectively, our findings support targeting of key metabolic pathways, namely glutami-

nolysis and glycolysis, as a novel therapeutic strategy for RCC.

As with any preclinical study, whether these findings will translate to the clinical setting can

only be determined in a clinical trial. The findings presented herein were relevant to ccRCC,

but very few papillary or other histological types were studied, so generalization to other sub-

types is currently unknown.

These preclinical data supported the initiation of ENTRATA, a phase 2, double-blind, ran-

domized, placebo-controlled trial of telaglenastat plus everolimus in patients with RCC, which

showed encouraging efficacy and safety data [71]. Data within also supported CANTATA, a

double-blind, randomized, placebo-controlled trial of telaglenastat plus cabozantinib in

patients with advanced/metastatic clear cell RCC. Findings from the clinical studies will be

reported in another publication.
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tional kidney cancer cell lines. The dashed line indicates the relative CellTiter-Glo signal at

the time of telaglenastat addition. EC50 values and histology for each line are noted.
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S4 Fig. Expression of GLS in tumor vs. normal kidney. mRNA levels were obtained from Com-

pendia Bioscience™ Translational Bioinformatics Services (Life Technologies, Ann Arbor, MI).

mRNA expression levels are plotted as the log2 RNA normalized values. Whiskers span the 5th to

95th percentile with data outside this range shown as individual data points. Statistics were performed

using Mann-Whitney t test to generate P values: �P� 0.05, ���� P� 0.0001, ns (not significant).
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S5 Fig. Synergistic anti-proliferative activity of telaglenastat and everolimus in

TUHR10TKB cells. Viability of TUHR10TKB cells treated with telaglenastat, everolimus, or a

combination of both inhibitors for 72 hours. All experiments performed in triplicate or qua-

druplicate. Error bars represent standard deviations.
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S6 Fig. Telaglenastat plus everolimus decreases ECAR and OCR in RCC cell lines. Cells were

treated with 1 μM telaglenastat and 100 nM everolimus for 24 hours prior to measurement. Determi-

nation of extracellular acidification rate and oxygen consumption rate using the Seahorse Metabolic

Analyzer. Statistical significance was determined using RM 1-way ANOVA with Dunnett’s test for

multiple comparisons: �P< 0.05; ��P< 0.01; ���P< 0.001; ����P< 0.0001; ns = nonsignificant.
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S7 Fig. Body weights of mice implanted with Caki-1 RCC cells and treated with vehicle, tela-

glenastat (200 mg/kg, dosed orally BID), or (A) everolimus (1 mg/kg, dosed orally QD), (B)

cabozantinib (1 mg/kg dosed orally QD), (C) sunitinib (20 mg/kg dosed orally QD), or (D)

axitinib (25 mg/kg dosed orally QD), or combinations of telaglenast with each.
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S8 Fig. ECAR and OCR curves for telaglenastat combination studies in RCC cell lines ana-

lyzed in the seahorse metabolic analyzer. (A) Telaglenastat +/- everolimus in ACHN cells;

(B) Telaglenastat +/- cabozantinib in Caki-1cells; (C) Telaglenastat + everolimus in RG2 cells;
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