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All nucleated mammalian cells express major histocompatibility complex (MHC) proteins
that present peptides on cell surfaces for immune surveillance. These MHC-presented
peptides (pMHC) are necessary for directing T-cell responses against cells harboring non-
self antigens derived from pathogens or from somatic mutations. Alterations in tumor-
specific antigen repertoires — particularly novel MHC presentation of mutation-bearing
peptides (neoantigens) — can be potent targets of anti-tumor immune responses. Here
we employed an integrated genomic and proteomic antigen discovery strategy aimed at
measuring how interferon gamma (IFN-g) alters antigen presentation, using a human
lymphoma cell line, GRANTA-519. IFN-g treatment resulted in 126 differentially expressed
proteins (2% of all quantified proteins), which included components of antigen
presentation machinery and interferon signaling pathways, and MHC molecules
themselves. In addition, several proteasome subunits were found to be modulated,
consistent with previous reports of immunoproteasome induction by IFN-g exposure.
This finding suggests that a modest proteomic response to IFN-g could create larger
alteration to cells’ antigen/epitope repertoires. Accordingly, MHC immunoprecipitation
followed by mass spectrometric analysis of eluted peptide repertoires revealed exclusive
signatures of IFN-g induction, with 951 unique peptides reproducibly presented by MHC-I
and 582 presented by MHC-II. Furthermore, an additional set of pMHCs including several
candidate neoantigens, distinguished control and the IFN-g samples by their altered
relative abundances. Accordingly, we developed a classification system to distinguish
peptides which are differentially presented due to altered expression from novel peptides
resulting from changes in antigen processing. Taken together, these data demonstrate
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that IFN-g can re-shape antigen repertoires by identity and by abundance. Extending this
approach to models with greater clinical relevance could help develop strategies by which
immunopeptide repertoires are intentionally reshaped to improve endogenous or vaccine-
induced anti-tumor immune responses and potentially anti-viral immune responses.
Keywords: antigen presentation, IFN-g, MHC, cancer, HLA, mass spectrometry, ligandome, neoantigen
INTRODUCTION

Peptides presented on the cell surface by major histocompatibility
complex proteins (MHC; also known as human leukocyte antigen
(HLA) in humans) are a fundamental component of
immunological diseases, including infection, autoimmunity,
allergy, and cancer. Decades of seminal research established
robust mechanisms for antigen presentation by MHC-I and
MHC-II molecules (1–4). Due to their importance across the
span of human disease, intense efforts have built pMHC
prediction algorithms to suggest which of trillions of possible
peptides could have therapeutic utility (5). However, empirical
data generated by high-throughput mass spectrometry methods
have increasingly suggested large numbers of naturally processed
peptide ligands do not fit conventional models (6, 7). Potential
reasons behind these discrepancies include altered cell states,
proteasomal changes, post-translational modifications, and
modulation by antigen presentation-associated aminopeptidases,
which these models largely cannot consider.

Anticipating antigen presentation by MHC molecules has
been particularly desirable in the context of cancer-specific
mutations. Many neoplasms avoid immune detection by
altering their antigen presentation machinery through loss of
heterozygosity, and by modulating their responses to
inflammation and cytokine signaling (8, 9). If nonsynonymous
mutations occur in expressed proteins and are readily presented
by MHC molecules, they could serve as highly specific
antigens (neoantigens) against which potent T-cell based
immunotherapies could be targeted. However, dynamic cancer
cell states complicate neoantigen prediction. Although including
parameters trained on multiple empirical factors can improve
predictive models (10–14), they still focus on the intrinsic nature
of a given antigen’s potential for being presented by a MHC
molecule. A wide array of intracellular and extracellular variables
influences immunopeptide repertoires by changing protein
expression, modulating antigen presentation machinery, or
both (6, 7, 11). Modeling cell state-dependent changes in
antigen presentation machinery is difficult, but can be readily
assessed by routine proteomic surveys.

Knowledge of the tumor proteome can inform how changes
in cytokine signaling responses, antigen presentation machinery
levels, and cellular proteolysis, for example, can influence
how a tumor’s immunopeptide repertoire is distinct from the
surrounding healthy tissue. Regulated cellular proteolysis in
particular is known to play a major role in MHC Class I-
peptide repertoire generation. Inflammatory cytokines such
as IFN-g induce major shifts in antigen presentation
machinery and activate T cell responses through enhancement
org 2
of phagocytosis. IFN-g directly stimulates the expression
of several interferon-stimulated genes (ISGs) (15) having
antibacterial, antiviral and anticancer (16) activities.
Furthermore, IFN-g leads to several constitutive catalytic
proteasome subunits being replaced by the inducible subunits
PSMB9 (LMP2) and PSMB8 (LMP7), respectively. The resulting
“immunoproteasome” has been demonstrated to increase the
abundance and diversity of MHC class-I ligands (16–18).
In addition, prolonged IFN-g exposure inevitably leads
to increased availability of cytokine-induced translation
products for MHC-mediated presentation, and to differentially
expressed antigen presentation machinery such as ERAP proteins
(19). Consequently, if such responses were pharmaceutically
induced in vivo, they could alter global ligandome profiles or
change the abundances of specific neoantigens in ways that could
promote therapeutically beneficial immune responses. Numerous
studies have examined IFN-g’s transcriptome level effects (20),
but to our knowledge, few in-depth combined proteogenomic
and ligandome discovery profiling studies have been
reported (21).

We propose that analyzing changes in immunopeptidome
repertoires in the context of underlying protein expression
changes can give mechanistic contexts to innumerable disease-
specific candidates one might predict from DNA sequencing data
(22). To test this, we performed whole-exome sequencing and in-
depth mass spectrometric profiling of both the proteomes and
the MHC-I and -II antigen repertoires of a human mantle cell
lymphoma cell line (GRANTA-519) with and without exposure
to IFN-g. We mapped clear IFN-g-dependent changes measured
from the proteome to the corresponding immunopeptidome.
Importantly, a substantial number of immunopeptidome
changes had no apparent correlate at the protein level, and
therefore are likely to be best explained by altered antigen
presentation mechanisms. These data demonstrate that an
exogenous cytokine like IFN-g can qualitatively and
quantitatively reshape antigen repertoires beyond what would
be expected from expression changes alone. Furthermore, we
identified antigens containing single nucleotide polymorphisms
(SNPs; or neoantigens) on MHC-I and MHC-II only from IFN-
g-treated cells. This suggests that upregulated ISGs and changes
in antigen presentation machinery could be viable modes for
enhancing neoantigen presentation. This study demonstrates
that a combined genomic, proteomic, and immunopeptidomic
approach is a powerful way to discover novel presented antigens
and tumor associated antigens, particularly when exogenous
perturbations are applied. We believe this information will be
valuable for advancing in silico prediction algorithms and
therefore in developing and optimizing personalized and T-cell
April 2021 | Volume 12 | Article 662443
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based immunotherapies that take into consideration a patient’s
specific cytokine environment or drug treatment history.
MATERIALS AND METHODS

Cell Culture
We profiled the GRANTA-519 cell line that was originally
established from the peripheral blood at relapse of a high-
grade B-NHL (leukemic transformation of mantle cell
lymphoma, stage IV) diagnosed in a 58-year-old woman
(https://web.expasy.org/cellosaurus/CVCL_1818). GRANTA-
519 cells were maintained in RPMI 1640 medium with L-
glutamine (HyClone™ GE Healthcare Life Sciences, Logan,
Utah) with the addition of 10% fetal bovine serum
(BenchMark Gemini Bio-Products, Sacramento, CA) and 1x of
Penicillin-Streptomycin-L-Glutamine (Corning Mediatech Inc.,
Manassas, VA). Triplicate cell cultures were exposed to IFN-g
(carrier free; R&D Systems Inc., Minneapolis, MN) at a dosage of
10 ng/ml (initially reconstituted in sterile water to 0.2mg/mL and
then diluted in RPMI 1640 media) for 24 hours. Following the
IFN-g 24-hour treatment the cells were harvested and washed
twice with ice-cold PBS, snap-frozen in liquid nitrogen and then
stored at -80°C until further sample preparation.

Exome Sequencing of the GRANTA-519
Cell Line
Whole exome-sequencing was performed on GRANTA-519 cells
to generate a cell line-specific sequence database that could be
used for proteome and ligandome MS-analysis. In brief, paired-
end sequencing was performed using an Illumina HiSeq 2000 in
a 2 x 75 bp format resulting in a total of 87,463,304 read pairs
sequenced. Of these, 84,774,734 were assigned a quality score of
23 or higher (HTSeqGenie v4.0.1) and were subsequently
mapped to the reference GRCh38 genome (GSNAP ver. 2013-
11-01 with arguments –M2 –n 10 –B 2 -i 1 –pairmax-dna=1000
–terminal-threshold=1000 –gmap-mod=none –clip-overlap). Of
these, 84,708,444 could be aligned, and 72,494,993 aligned
uniquely and used for further analysis.

RNA Sequencing of the GRANTA-519
Cell Line
RNA sequencing was performed on the GRANTA-519 cell line
in a similar fashion to exome sequencing. Paired-end sequencing
was performed using an Illumina HiSeq 2000 in a 2 x 75 bp
format resulting in a total of 94,278,646 read pairs sequenced. Of
these, 88,247,894 were assigned a quality score of 23 or higher
(HTSeqGenie v4.0.1). Removing 2,269,277 rRNA contamination
reads yielded 85,978,617 post-processed reads which were
mapped to the reference GRCh38 genome (GSNAP ver. 2013-
11-01 with arguments –M2 –n 10 –B 2 -i 1 –N 1 –w 200000 –E 1
–pairmax-rna=200000 –clip-overlap). Of these, 85,780,285 could
be aligned, and 72,589,199 aligned uniquely and used for
further analysis.
Frontiers in Immunology | www.frontiersin.org 3
Variant Calling
Coding sequence variants were called using VariantTools
(v1.9.4) with default parameters. In total 853,170 transcript
variants were identified, 53,533 of which bore non-
synonymous coding variants (missense, frameshifts, stop gains
and in-frame indels), corresponding to 14,980 genomic variants.
Further, 19,905 transcript variants were also identified from
RNA-Seq data with a lenient threshold of at least one read
containing the variant. Transcript variants identified from
RNAseq were translated in-silico to make variant proteins,
without haplotype phasing. These were then added to the
sequence variants deduced from exome sequencing, as
described above. Thus, the fasta sequences acting as the search
space consisted of protein sequences containing non-phased
variants (19,905 variant protein sequences) plus all wild-type
proteins from the RefSeq database (71,867 wild type proteins).
Amino acid changes due to the variants were inferred using
Variant Effect Predictor (VEP) (23). Variant protein sequences
were constructed by replacing the wild type amino acids with the
variant amino acids, as inferred by VEP. The 19,905 variants
were selected such that any amino acid change was identifiable
by VEP. Variants for which an amino acid change could not be
inferred were not included among these 19,905 variants.

HLA Typing
HLA typing was performed by KASHI Transplant (Portland,
Oregon) by amplifying genomic DNA with HLA locus-based
typing and/or sequence specific primers and probes. The
major HLA-I alleles were determined to be HLA-A*02:01,
HLA-A*02:05, HLA-B*07:02, HLA-B*50:01, HLA-C*06:02 and
HLA-C*07:02. For HLA-II the alleles were determined to
be HLA-DRB1*11:03, HLA-DRB1*15:01, HLA-DRB3*02:02,
HLA-DRB5*01:01, HLA-DPA1*04:01, HLA-DPB1*04:01 and
HLA-DQA1*03:01, HLA-DQB1*06:02.

Total Proteome Sample Preparation, TMT
Labeling and High-pH Reversed Phase
Fractionation for Proteome Analysis
1 × 107 cells from each control and IFN-g treated culture were
used for protein extractions. In brief, cells were lysed in 8M urea,
150 mMNaCl, 5 mMDTT, 50 mM Tris pH 8 supplemented with
Complete Protease Inhibitor Cocktail tablet (Roche) and 1x
Halt™ Protease and Phosphatase Inhibitor Cocktail
(ThermoFisher Scientific). Resulting lysates were centrifuged at
13,200 rpm for 15 min. at room temperature. Supernatants were
transferred to fresh test tubes and underwent a second round of
centrifugation. The resulting clarified supernatant was reduced
with 5 mM DTT for 30 min at 37°C, then alkylated with 14 mM
iodoacetamide for 45 minutes at room temperature in the dark
and then quenched with 5 mM DTT for 20 min at room
temperature. Proteins were further isolated by methanol-
chloroform precipitation, and the protein pellet was washed
twice with acetone before being resuspended in 300 µl of 8M
urea, 50 mM Tris pH 8. Total protein concentrations were
determined using the Pierce™ BCA Protein Assay Kit (Pierce,
Rockford, IL) before being diluted to 1 M urea using 50 mM Tris
April 2021 | Volume 12 | Article 662443
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pH= 8 prior to digestion with Trypsin/Lys-C Mix (Promega,
Madison, WI) at a ratio of 1:25 enzyme: substrate (16 hours at
37°C). The reaction was quenched with formic acid and the
peptides desalted using a Sep-Pak C18 1 cc Vac Cartridge, 50 mg
(Waters, Milford, MA). Labeling with tandem mass tag (TMT)
reagents (Thermo Fisher Scientific) was performed as previously
described (24). In brief, the following six TMT-tags were used
from a ten-plex kit: TMT-126, TMT-127N, TMT-128C, TMT-
129N, TMT-130C and TMT-131. Each TMT reagent (0.8mg per
vial) was reconstituted in 40 ml of acetonitrile and incubated with
corresponding peptide sample for 1 hr. The reaction was
quenched with a final concentration of 0.3% (v/v)
hydroxylamine for 15 min at room temperature. Samples were
acidified with 25% formic acid to pH ~ 2. In order to assess the
labeling efficiency, we combined 5 ml (10%) from each sample,
desalted by StageTip (25) and then analyzed by LC/MS as
described below. Guided by these results, each individual
labeled sample was then mixed to deliver equal signal across
all reporter ion channels. The peptide mixture was then desalted
using a Sep-Pak C18 1 cc Vac Cartridge, 50 mg (Waters) and
resuspended in 10 mM ammonium formate, pH 10. Peptides
were then fractionated by high-pH reverse phase fractionation
(26, 27) using a 65 min + 15 min step-gradient (buffer A (10 mM
ammonium formate, pH 10) and buffer B (10 mM ammonium
formate, 90% ACN, 10% H2O, pH 10) using an Agilent 1200
HPLC (Agilent Technologies, Santa Clara, USA). In total 84
fractions were collected, concatenated and combined (27) into a
total of 12 fractions. These were then dried by vacuum
centrifugation and using a C18 based StageTip, dried down
and stored at -80°C until final LC-MS/MS measurement.

Mass Spectrometry Analysis of the
GRANTA-519 Proteome
Each peptide fraction was resuspended in 20 µl 0.1% formic acid,
of which 10% of the material was injected. Peptides were
separated on a 20 cm reverse-phase column (100 µm inner
diameter, packed in-house with ReproSil-Pur C18-AQ 3.0 m
resin (Dr. Maisch GmbH) over 160 min using a two-step linear
gradient with 4–25% buffer B (0.2% (v/v) formic acid, 5% DMSO,
and 94.8% (v/v) acetonitrile) for 120 min followed by 25-40%
buffer B for 30 min at a 400 nl/min flowrate on an Eksigent
Ekspert nanoLC-425 system (Sciex, Framingham, USA). The LC
system was coupled on-line with an Orbitrap Elite instrument
(Thermo Fischer Scientific, Bremen, Germany) via a nano-
electrospray source. For quantification runs we used a profiling
method applying the MultiNotch MS3 approach (28, 29). MS1
precursor ion scans were performed in the Orbitrap over the
mass range of 400-1300 m/z, and the resolution of 60,000. The
ten most intense ions (intensity above 500 counts) were selected
for CID fragmentation and detection in the ion trap with
precursor ion isolation width of 1.2 m/z, maximum ion time of
150 ms and normalized collision energy of 35% at activation time
of 10 ms. Following each MS2 analysis, the 5 most intense
fragment ions (intensity above 500 counts) were selected for
HCD MS3 fragmentation with isolation width of 2.5 m/z,
normalized collision energy of 50% at activation time of 2 ms.
Frontiers in Immunology | www.frontiersin.org 4
MS3 fragment ions were measured in the Orbitrap at a resolution
of 30,000. The AGC settings were set to 1E6, 5E4 and 5E3 for
FTMS1, FT MSn and IT MSn scans, respectively. Charge state
screening was disabled to allow fragment ions to be selected for
MS3. Dynamic exclusion was enabled with a repeat count of 1
with the repeat duration set to 55 seconds.

Computational Interpretation
of the GRANTA-519 Proteome
Raw data analysis was performed using ProteomeDiscover
v2.1.0.81 (Thermo Fischer Scientific, San Jose, CA). For
SEQUEST-HT searches the parent mass error tolerance was set
to 20 ppm and the fragment mass error tolerance to 0.6 Da. Strict
trypsin specificity was required allowing up to two missed
cleavages. Carbamidomethylation of cysteine was set as fixed
modification and oxidation of methionines as a variable
modification. The minimum required peptide length was set to
seven amino acids. Spectra were queried against a target-decoy
sequence database consisting of the Uniprot human database
(Aug-2015), GRANTA-519 cell line-specific sequences from the
exome sequencing results and common contaminants and
reversed versions of all the above sequences. A false discovery
rate of 0.01 was required at both the peptide level and protein
level. Known false positives (i.e. decoys) and contaminants were
removed. Peptide identifications with observed signals in at least
four of the six labeled channels were included for final statistical
analysis. In order to identify differentially expressed proteins
between the two groups of cells (control vs IFN-g treated) the
quantitative data was log-transformed followed by a t-test using
Qlucore Omics Explorer v3.2 (Qlucore AB, Lund, Sweden). The
criteria for being reported as differentially expressed were p<0.01
and a log2 fold-change of ≥1.2. These criteria were empirically
selected to exclude proteins without clear relevance to the IFN-g
treatment, as inferred from enriched gene ontologies (see below).
These criteria resulted in q-values < 0.197 when correction for
multiple hypothesis testing using Benjamini-Hochberg (30) was
applied. Pathway analysis of differentially expressed proteins
identified in the proteome was performed by using QIAGEN’s
Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City,
www.qiagen.com/ingenuity).

Purification of MHC-I and MHC-II
Presented Peptides
In order to assess the ligandome sampling depth, pMHC-I and
pMHC-II immunopeptidomes were extracted from different
amounts of GRANTA-519 cells using 1x106, 1x107, 1x108 and
1x109 cells. Furthermore, to address the effects of IFN-g, three
biological replicate samples of IFN-g treated vs untreated cells (a
total of 5x108 cells per replicate) were prepared. The MHC class-I
or MHC class-II molecules were isolated and the associated
peptides extracted as previously described (31–35) with some
modifications. In brief, cells were lysed for 20 min on ice in 20
mM Tris-HCl (pH8), 150 mM NaCl, 1% (w/v) CHAPS, 0.2 mM
PMSF, 1x Halt™ Protease and Phosphatase Inhibitor Cocktail
(ThermoFisher Scientific) supplemented with Complete Protease
Inhibitor Cocktail (Roche, Mannheim, Germany). The lysate was
April 2021 | Volume 12 | Article 662443
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centrifuged (2x30 min, 13,200 rpm at 4°C) and the resulting
supernatant was precleared for 30 min using rProtein A
Sepharose fast-flow beads (GE Healthcare, Uppsala, Sweden).
For all HLA-1 immunoprecipitations, the precleared lysate was
incubated with the pan HLA-A-, B-, and C- antibodyW6/32 (36)
coupled to rProtein A Sepharose fast-flow beads for 5h at 4°.
Following the immune-capture of HLA-1, the supernatant was
transferred to new tubes, precleared for 1 hour using rProtein A
Sepharose fast-flow beads (GE Healthcare, Uppsala, Sweden) and
then incubated with the HLA-DR specific antibody L243 (37)
(produced and purified by Genentech from hybridoma) coupled
to rProtein A Sepharose fast-flow beads overnight at 4°C.
Following the serial immune-captures of MHC-I and MHC-II,
the beads were washed with TBS (pH 7.4) and peptides were
eluted from the purified MHC molecules using 10% acetic acid.
Peptides eluted from both immunocaptures were passed through
a 10 kDa MWCO size filter, followed by a concentration step
using vacuum centrifugation before being desalted on C18-based
StageTips (25) and stored at -80°C until LC-MS/MS analysis.

AQUA Peptide Quality Control
In total 30 synthetic peptides covering a total of 22 SNP sites and
two potential neoantigens, were purchased from CPC Scientific
(Sunnyvale, CA) with a purity of >70%, dissolved in 0.1% FA and
quality checked at a concentration of 250 fmol by mass
spectrometry. One pool of 25 MHC-I peptides (a total of 23
SNP peptides covering 19 sites and two neoantigens) and one
pool of 5 MHC-II peptides (covering 3 SNP sites) were then
spiked into the purified immunopeptidome preparations from
the GRANTA-519 cell line cultures together with retention time
standard peptides (Pierce, Rockford, IL).

Mass Spectrometry Analysis of
Immunopeptidomes
For MS analysis of the HLA ligandomes, isolated peptides were
reconstituted in 12 µl 0.1% FA and analyzed on an LTQ Orbitrap
Elite mass spectrometer (Thermo Fischer Scientific, Bremen,
Germany) as previously described (34). Samples were
separated by capillary reverse phase chromatography on a
20 cm reversed phase column (100 µm inner diameter, packed
in-house with ReproSil-Pur C18-AQ 3.0 m resin (Dr. Maisch
GmbH)) over a total run time of 160 min using a two-step linear
gradient with 4–25% buffer B (0.2% (v/v) formic acid, 5% DMSO,
and 94.8% (v/v) acetonitrile) for 120 min followed by 25-40%
buffer B for 30 min using the Eksigent Ekspert nanoLC-425
system (Sciex, Framingham, USA). Three injections were made
per sample with different instrument methods: higher energy
collisional dissociation (HCD) and collision induced dissociation
(CID) including single-charged species, and CID excluding
single-charged species. Acquisition was executed in data
dependent mode with the full MS scans acquired in the
Orbitrap mass analyzer with a resolution of 60000 and m/z
scan range 340-1600. The top ten most intense ions with masses
ranging from 700-1800 Da for all pMHC-I samples and from
700-2750 Da for pMHC-II samples were then selected for
fragmentation and the fragmented ions were analyzed in the
Frontiers in Immunology | www.frontiersin.org 5
Orbitrap mass analyzer at a resolution of 15,000 (FWHM). The
ions were fragmented with a normalized collision energy of 35%
and an activation time of 5 ms for CID and 30 ms for HCD.
Dynamic exclusion was enabled with repeat count of 2, repeat
duration of 30 s and exclusion duration of 30s. The minimal
signal threshold was set to 500 counts. Furthermore, for samples
containing AQUA peptides, a precursor mass inclusion list was
utilized in the collision induced dissociation (CID) including
single-charged species.

Computational Identification and
Quantification of Immunopeptides From
Mass Spectra
All tandem mass spectra were queried against a “target-decoy”
sequence database (38) consisting of the human proteome
Uniprot database (Aug-2015), GRANTA-519 cell-specific
sequences from the exome sequencing results and common
contaminants and reversed versions of all the above sequences.
All spectra were searched using both SEQUEST (39) and PEAKS
DB search engines (40). Spectra were also interpreted by de novo
sequencing (PEAKS Studio 7, Bioinformatics Solutions Inc.) to
improve high-confidence peptide identification. The parent mass
error tolerance was set to +/-10 ppm and the fragment mass error
tolerance to 0.02 Da. Enzyme specificity was set to none and
oxidation (M), deamidation (N,Q), cysteinylation (C), and
phosphorylation (S, T, Y) were considered as variable
modifications. High-confidence peptide identifications were
selected at a 1% false discovery rate with the Percolator
algorithm (41). We optimized Percolator ’s input for
proteogenomic immunopeptide analysis (35). These
modifications include denoting whether the de novo sequence
matches database assignments; the magnitude of scores assigned
by all three search algorithms; the source of the identified peptide
(Swiss-Prot, TrEMBL, or our own sequencing); and the presence
of one or more post-translational modifications in the identified
peptide. Unlike conventional proteome analysis, false discovery
rates were not evaluated at the level of assembled proteins, as this
would unnecessarily penalize proteins identified by just one
peptide. Quantitative abundance values (MS1 peak areas) were
calculated as previously described (42). Skyline (43) and Xcaliber
(Thermo Fisher Scientific, San Jose, CA) were used to determine
the absolute abundance of the AQUA-peptides.

Evaluation of Core Epitopes and Predicted
Affinity Values
Immunopeptidome datasets were evaluated with the PLAtEAU
script (44) to identify core binding epitopes. Only peptides
reported in all three biological replicates (with the criteria of at
least observed in one of the three technical replicate injections)
were considered for further PLAtEAU analysis. The minimum
epitope length was set to 9 for the MHC-I and both 9 and 13 for
the MHC-II. The default option of impute with lowest measured
value in each run was enabled. Both the entire set of peptides
from the ligandome analysis and the subsequently defined core
epitope output from PLAtEAU were used as input for affinity
prediction using NetMHCpan 4.1 (45) for MHC-I data and
April 2021 | Volume 12 | Article 662443
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NetMHCIIpan 4.0 (10) for the MHC-II data set. The predicted
rank threshold for strong binding peptides were 0.500 or a rank
threshold for weak binding peptides of 2.000 for MHC-I and a
rank threshold of 10 for MHC-II were included for analysis. The
highest affinity allele across the six GRANTA-519 alleles which
met the above criteria was considered for further analysis.

Analysis of Immunopeptide Gene
Ontologies With Respect to Underlying
Proteome
A computational strategy was developed to assess changes at the
immunopeptidome level upon treatment with IFN-g with respect
to changes in the underlying proteome. This uses as input the
abundance rank of each peptide in the control state and IFN-g
state as well as the rank of 126 differentially expressed proteins at
the proteome level. Peptides were included in the analysis if they
were found in at least 2 biological replicates, and the mean
Frontiers in Immunology | www.frontiersin.org 6
abundance was used for final input. Peptides that were uniquely
presented in the IFN-g state that could not be explained by
changes in the underlying proteome were subject to GO Term
analysis using The Database for Annotation, Visualization and
Integrated Discovery (DAVID) v6.8 (46, 47).
RESULTS

Rationale and Experiment Design
Our experimental approach (Figure 1) combines genomic,
proteomic and immunopeptidomic analyses to discover IFN-g
-induced pMHC and neoantigens. To better understand how
IFN-g alters pMHC repertoires, we developed a categorization
scheme which distinguishes pMHC resulting from differential
expression versus from differential presentation.
A

B

FIGURE 1 | Overview of the study workflow for whole exome sequencing, proteome, and immunopeptidome analyses. (A) Schematic of the study design and
experimental workflow. See main text for additional details. (B) Summary of output from 1. exome and RNA-seq, 2. proteome analysis, 3. Cell input vs
immunopeptidome sampling depth evaluation, 4. immunopeptidome of control vs IFN-g treated samples.
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Exome and RNA Sequencing Uncovers
Potential Neoantigens From GRANTA-519
Cell Line
Obtaining specimen-matched, deep genomic sequencing is an
essential prerequisite for most neoantigen discovery efforts. We
performed exome sequencing of the GRANTA-519 cell line. We
identified 4,863 high-confidence non-synonymous sequence
deviations from the GRCh38 reference genome (Figure 1B).
Of these, 4,435 genomic variants were already described in
dbSNP (48), leaving 428 novel mutation candidates. Although
an untransformed parental genome was not available for this cell
line, we estimate that 8.8% of these non-synonymous sequence
variants could be cancer-specific, as they bear no similarity to
any SNPs catalogued within the COSMIC database (49).
However, for the purpose of this report, we consider both
putative SNPs and mutations as candidate neoantigen sources
(Figure 1).

Interferon Gamma Affects Global
Protein Expression and Antigen
Processing Machinery
IFN-g induces the expression of about 200 interferon-stimulated
genes (ISGs) (15, 20, 50, 51) which could promote novel antigen
presentation in two ways: most obviously, newly expressed ISGs
are available for novel antigen presentation. Alternatively, IFN-g
could expand antigen repertoires by regulating antigen
presentation machinery (16, 18). Under both possibilities,
entirely new protein sources could be made available for
presentation by MHC molecules. However, where the former
might be predicted from conventional expression analyses, the
latter possibility may require empirical pMHC measurements.
To distinguish these two possibilities for individual proteins, we
first surveyed the GRANTA-519 global proteome with and
without IFN-g stimulation. Our analysis yielded 63,954 unique
peptides derived from 7,235 proteins (1% FDR at both peptide
and protein levels) (Figure 1B.2). Of 6,740 proteins that were
quantified with high confidence (Supplemental Table 1,
Supplemental Figure 1), just 126 (1.94%) surpassed fairly lax
criteria for differential expression (Figure 2A).

Nevertheless, known interferon signaling, and antigen
presentation pathway components were significantly enriched
among 78 proteins upregulated by IFN-g (Figures 2B, C). These
include key STAT-family transcription regulators (STAT1 and
STAT3) and interferon regulatory factor family members (IRF1,
IRF8 and IRF9). Furthermore, 43 differentially expressed
proteins were reported to be direct IFN-g targets (Figure 2C).
These include several members of the guanylate-binding protein
family (GBP1, GBP2 and GBP4) which mediate potent antiviral
and antimicrobial responses while restraining inflammation-
induced cellular proliferation (52). In addition, programmed
cell death 1 ligand 1 (PDL1/CD274) demonstrated a 1.55 fold
increase following IFN-g exposure (p < 0.0089) (Figure 2A).
PD-L1, a widely publicized immunotherapy target (53), has
previously been reported to be regulated by JAK-STAT
signaling pathways downstream of IFN-g receptor activation
(54, 55). While these findings support our cell culture model
Frontiers in Immunology | www.frontiersin.org 7
and proteomic profiling measurements, they point to specific
ISGs we might expect to be differentially presented upon IFN-
g stimulation.

In addition to expected interferon-pathway components, we
identified that several essential antigen presentation pathway
components were differentially expressed. These include
proteasome subunits that were either down regulated (PSMB5
and PSMB6) or upregulated (PSMB9 and PSMB10) (Figure 2C),
consistent with previous reports of immunoproteasome
induction by IFN-g (16, 17). We further observed an
upregulation of ERAP2, the caspase inhibitor CARD16, and
TAP1 (Figure 2A), all of which have well-characterized roles in
refining antigen presentation by HLA-I (19, 56); their differential
expression is therefore expected to alter MHC Class I
immunopeptidome repertoires. Of note, our exome sequencing
data indicates that GRANTA-519 cells possess the K392N variant
of ERAP2 (fasta file available at www.ebi.ac.uk/pride/archive
under accession number PXD020750). This is one of two major
alleles of this gene within the population (19, 57), yet is not
expressed under most circumstances due to nonsense-mediated
mRNA decay. We further observed a 1.55 fold increase in HLA-B
expression (p<0.009) increase following IFN-g exposure, (Figure
2B), which is expected to have an overall effect on the presented
immunopeptidome pool by increasing presentation of peptides
specifically with affinity for the HLA-B alleles. The effect of IFNs
on HLA-B is well established (58–61). In terms of proteins related
to the class II machinery, we observed an upregulation of the
MHC class II transactivator (CIITA) with a 1.33 fold increase
following IFN-g exposure, (Figure 2B). CIITA is essential for
transcriptional activity of the HLA class II promoter. These data
collectively indicate that in our model system, a short IFN-g
exposure caused a modest but identifiable change in protein
expression levels of key molecules within both the interferon
regulated network and the antigen presentation machinery. These
proteome-level changes led us to suspect that IFN-g could induce
much larger changes to the MHC-presented ligand repertoires,
potentially enhancing tumor-associated antigen and neoantigen
presentation. Based on these data, we hypothesized substantial
changes to the MHC-I immunopeptidome – such as increased
diversity of unique MHC-I ligands – could occur.

Establishing an Immunopeptidome
Workflow for Detecting SNPs and
Neoantigens
We and others demonstrated that rare somatic mutation-bearing
cancer neoantigens can be presented by MHC and measured by
mass spectrometry (34, 35, 62–64). However, we subsequently
showed that this type of neoantigen was difficult to detect,
particularly in cancers with low-mutation burden. Thus,
detecting IFN-g-induced SNPs and neoantigens could hinge on
the pMHC assay’s sensitivity. Hence, prior to measuring the effect
of IFN-g stimulation on the GRANTA-519 immunopeptidomes,
we set out to evaluate the performance of our profiling platform
by performing a single preparation of MHC-I and MHC-II
ligandome analyses with a range of 1 x 106 – 1 x 109

GRANTA-519 cells as input (Figure 1B). The MHC-I and
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A

C

B

FIGURE 2 | Induced proteome changes in GRANTA-519 after 24 hours of IFN-g exposure. (A) Volcano-plot for all the 6,740 quantified proteins over the three
biological replicate experiments. In order to identify differentially expressed proteins between the IFN-g and controls a t-test (p-value <0.01, q-value < 0.196 and a
fold-change of 1.2) was applied. (B) Hierarchical clustering was performed (using the agglomerative clustering algorithm) and grouped based on molecular functions
(from IPA-mapping). In total 126 differentially expressed proteins were identified. The clustered data was color-visualized using standard z-score over all variables for
each sample. (C) Biological relevance of differentially expressed proteins between controls and IFN-g treated cells determined using IPA. The 126 proteins identified
as significantly differentially expressed proteins between the control and interferon gamma treated proteomes were analyzed in Ingenuity Pathway analysis software
using core-analysis. The top five canonical pathways are listed. The schematic graph includes proteins from the antigen presentation pathway and the interferon
signaling pathway. The gray arrows are linked to proteins within the antigen presentation pathway and blue arrows associated with the interferon signaling. Log2-
ratios were imported into IPA; red denotes up-regulation, and blue denotes down-regulation in the interferon-gamma treated state. Upstream regulator analysis of
these differentially expressed proteins with Ingenuity Pathway Analysis (IPA) predicted IFN-g -dependent activation with a z-score of 6.375 (p-value 3.3e-23).
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–II ligandomes we measured with these experiments adhered to
expected length distributions (Supplemental Figure 2A).
Furthermore, 99% of all unique pMHC we identified were
restricted to each corresponding MHC-I (8,615 out of 8,836) or
MHC-II (6,662 out of 6,883) isolation experiment (Supplemental
Figure 2B) and not identified in both. Both observations support
the validity and specificity of our overall immunopeptidome
methodology. Of more than 15,000 unique pMHC-I and
pMHC-II identified, just 40 (20 MHC-I and 20 MHC-II)
contained a SNP which was exclusively attributed to exome
sequencing (Supplemental Figure 2C). No overlap among SNP
peptides or the associated SNP source proteins between the
MHC-I presented and the MHC-II presented peptides was
observed. The number of identified SNP-containing peptides
ranged from 3-18 per analysis for MHC-I, and 1-18 for MHC-
II (Supplemental Figure 2C). Within this dilution series of cell
input we identified one putative neoantigen (ALGPPPFGL) from
tapasin isoform 1 TAPBP (not a previously known SNP);
presented by MHC-I in the 1 x 109 cell preparation. Based on
the acquired immunopeptidome sequence depth we decided that
5 x 108 cells per replicate would give a reasonable depth for the
triplicate biological replicate immunopeptidome measurements
with and without IFN-g stimulation.

Interferon Gamma Stimulation Reshapes
MHC-I and MHC-II Immunopeptidomes
Triplicate biological replicate measurements were performed to
isolate ligands presented by MHC-I and MHC-II with and
without IFN-g stimulation (Figure 1). The replicates
demonstrated a high degree of analytical consistency, with 49%
of pMHC-I and 45% of pMHC-II consistently identified among
biological replicates (Figure 1B and Supplemental Figure 3A).
In order to increase our confidence in defining an IFN-g-induced
immunopeptidome from GRANTA-519 cells, we restricted the
majority of our subsequent analysis to the pMHC that were
identified in all three biological replicates. When applying this
strict filter, we found 951 unique pMHC-I that were only
identified and presented in all three replicates in the IFN-g
state and were never identified in the control-treated state
(Supplemental Figure 3B). Conversely, 733 unique pMHC-I
were identified from all three control state experiments, and
never from IFN-g state. Unique pMHC-II repertoires were
reproducibly observed in the control or IFN-g states in the
same manner as for pMHC-I. For example, 582 unique
pMHC-II were identified and presented in all three replicates
in the IFN-g state and not in the control state (Supplemental
Figure 3B). The majority of pMHC-I were found to be
distributed fairly evenly among the four HLA-A and HLA-B
alleles while the pMHC-II repertoire was dominated by those
predicted to bind a single locus and allele (HLA-DRB1*11:03).
Of note, we found a clear distinction in HLA preference among
pMHC-I exclusively identified following IFN-g treatment: just
36.3% were predicted to bind HLA-A while over half (52.2%)
were predicted to bind HLA-B. This contrasts with the pMHC-I
exclusively identified in the control state, in which over half
(51.3%) were predicted to bind HLA-A while 41.4% were
predicted to bind HLA-B. These values are significantly
Frontiers in Immunology | www.frontiersin.org 9
different from the proportion of all pMHC-I expected to bind
either locus (41.7% HLA-A; 49.5% HLA-B; p=2.5e-5 (control);
p=5.4e-4 (IFN-g); chi-squared test) (Supplemental Figure 3C).
Similar studies have shown larger increases in the HLA-B specific
immunopeptidomes in response to IFN-g (61, 65). The more
modest difference in HLA-B response we observed here may
be due to shorter incubation times as well as lower doses of
IFN-g. Additionally, both previous studies were performed in
epithelial cells, whereas this study was performed in a lymphoma
cancer cell line which may have higher basal levels of
IFN-g signaling.

Interpreting MHC-I and MHC-II Presented
Core Epitopes
Given that different pMHC could span a single binding core in
multiple length and register configurations, we sought to simplify
our analysis by condensing multiple pMHC into single core
antigenic sequence they have in common. Applying the recently
developed PLAtEAU algorithm (44) to our immunopeptidome
datasets enabled this simplification, and helped us consolidate
overlapping pMHC intensities into individual binding core
epitope representations. Considering only ligands that were
both identified and quantified (9,790 pMHC-I and 8,489
pMHC-II; Supplemental Table 2), our analysis yielded 4,732
core epitopes extracted from pMHC-I (Figure 3A, Figure 4A,
Supplemental Table 3A) and 1,337 core epitopes extracted from
pMHC-II (Figure 3B, Supplemental Figure 4, Supplemental
Table 3B). We found 437 (9.4%) of pMHC-I core epitopes were
differentially presented between the IFN-g and control states
(Figure 3A). Core epitopes from proteins like STAT1, ERAP2,
IRF1 that increased with IFN-g in our proteome data (Figure 2)
also demonstrated increased MHC-I presentation (Figure 3A). In
addition, several regions from PSMB9 and PSMB10 were among
pMHC-I that increased in the IFN-g state, further supporting
immunoproteasome induction by interferon, and consistent with
our proteomics data. Considering the core epitopes identified
from pMHC-II, 186 (13.9%) were differentially presented between
the IFN-g state and the control state (Figure 3B). Interestingly,
pMHC-II core epitopes derived from HLA-B, HLA-C, Beta-2-
microglobulin (B2M) and JAK were among those which increased
with IFN-g. Given that the JAK/STAT is the major, but not the
only, pathway linked to the IFN-g response, it is not surprising we
observed a significant increased presentation of HLA-B and two
JAK derived epitopes on MHC-II.

We note that while most pMHCwe identified were represented
to similar extents with and without IFN-g treatment, several
appeared to be restricted to the control or IFN-g states
(Supplemental Figure 3B). To explore whether these differences
corresponded with amino acid biases within the binding epitopes,
we deduced MHC-I and MHC-II core epitopes with PLAtEAU
and then extracted sequence motifs from each of these three
categories (unchanged, enriched in control, enriched with IFN-g
treatment). We found multiple amino acid and positional
restrictions from both pMHC-I (Figure 4B) and pMHC-II
(Supplemental Figure 4B) repertoires, as determined by
GibbsCluster analysis. While pMHC-I restrictions were largely
consistent regardless of their IFN-g specificity, they seemed far
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more variable among pMHC-II (Supplemental Figure 4B). To
further refine these directly inferred motifs, we first assigned all
epitopes to the GRANTA-519 cells’ MHC-I and MHC-II alleles
with NetMHCpan (see Materials and Methods). We next
produced empirically-derived motifs from the set of pMHC
which did not change between control and IFN-g states with
GibbsCluster: each motif elucidation analysis was restricted to the
set of core epitopes NetMHCpan assigned to each of GRANTA-
519’s MHC-I (Figures 4C, D) and MHC-II (Supplemental
Figures 4C, D) alleles.

We found the consensus binding motifs deduced from bulk
pMHC assignments (Figure 4B) were particularly consistent
with the known motifs extracted from each MHC-I allele (Figure
4D), whereas strong MHC-II motifs were less discernable
(Supplementary Figures 4B–D). Despite their consistency in
composition across the experimental conditions we tested, we
note that pMHC-I motif frequencies were markedly different
between those enriched in either control or IFN-g states (Figure
4B). For example, pMHC-I epitopes with prolines at the second
position (Figure 4B, Cluster 2), were depleted in the control
versus the IFN-g state (16.2% versus 36.9%; Figure 4E). This
dominant proline motif is most similar to that deduced from
epitopes assigned to the HLA-B*07:02 allele (Figure 4D).
Conversely, motifs reminiscent of HLA-A*02 alleles (Figure
4B, Cluster 1) were enhanced in the control versus IFN-g state
(61.3% versus 39.5%; Figure 4E). We further note that sequences
matching a HLA-C*06:02 motif, with arginine at the second
position, likely contributed to this cluster, as supported by the
direct NetMHC allele assignment (Figure 4D). Taken together,
Frontiers in Immunology | www.frontiersin.org 10
these data demonstrate that IFN-g-dependent presentation is not
uniform across all MHC-I alleles.

While we were unable to discern IFN-g-dependent changes
among MHC-II motifs, we note several IFN-g-specific MHC-II
core epitopes derived from unusually short 9-mer peptides that
originated from ribosomal subunit proteins. By scoring the
underlying 9-mer peptides against all GRANTA-519 cells’
MHC I and MHC II allele-specific binding motifs (66), we
found most were predicted to bind HLA-A or HLA-B alleles
more so than the HLA-DR alleles (Supplemental Figure 5). This
led us to conclude that these peptides are likely contaminants
from the MHC-I immunoprecipitation since MHC-I and MHC-
II immunoprecipitations (Materials and Methods) were serially
performed from the same cell lysates (67). We point out,
however, that these 9-mers could nevertheless be of biological
significance since these peptides were only found in the IFN-g-
treated MHC-II peptides and not in the control state (68).

A Strategy for Interpreting MHC-Presented
Antigens With Respect to the
Underlying Proteome
To further understand the cells’ response to IFN-g and effects at
the immunopeptidome level, we developed a computational
strategy to categorize pMHCs into discrete categories based on
the how pMHC repertoires and corresponding proteomes
changed following IFN-g treatment (Figure 5). These
categories involved qualitative and quantitative changes
measured from the pMHC sequences we identified (Figure
5A) and by integrating data from both proteome and pMHC
A B

FIGURE 3 | Induced immunopeptidome epitope changes in GRANTA-519 after 24 hours of IFN-g exposure. (A) Volcano-plot for all the MHC-I core epitopes
quantified by peptide landscape antigenic epitope alignment utility (PLAtEAU) (44). The number of differentially presented epitopes between the IFN-g and controls
(with a p-value <0.05 and a log2 fold-change of >1) resulted in 236 core epitopes which were increased in the IFN-g state (red) and 201 that were higher in control
state (blue data points). Adjusting for multiple hypothesis testing (p<0.05, Benjamini-Hochberg) resulted in 44 core epitopes that were increased in the IFN-g state
and 8 that were increased in the control state. A selected set of these core epitopes are labeled with their protein names in the plot. (B) Volcano-plot for all the
MHC-II core epitopes quantified by PLAtEAU. Sixty core epitopes were increased in the IFN-g state, and 126 were increased in the control (non-Benjamini-Hochberg
corrected p-value <0.05; log2 fold-change >1). Adjusting for multiple hypothesis testing (Benjamini-Hochberg) resulted in 45 core epitopes which were increased in
the IFN-g state and 65 that were increased in the control state. A selected set of these core epitopes are labeled with their protein names in the plot.
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analyses (Figures 5B–C). We found that most (85% of pMHC-I,
81% of pMHC-II) pMHCmirrored their corresponding protein’s
abundance across control and IFN-g states (Figures 5B, C, tan
wedge). As expected from our proteomic analysis (Figure 2A),
the vast majority (>99.5%) of these pMHC showed no
abundance change following IFN-g treatment. However, we
found 16 pMHC-I and 14 pMHC-II were presented in an IFN-
g-dependent manner (Figures 5D, E, top bar charts). These 16
pMHC-I derived from 10 proteins which demonstrated both
induced protein expression and induced presentation. Not
surprisingly, they originated from IFN response genes,
including proteasome subunit beta type-10 (PSMB10), antigen
Frontiers in Immunology | www.frontiersin.org 11
peptide transporter 1 (TAP1), NF-kappa-B inhibitor alpha
(NFKBIA), guanylate binding protein 4 (GBP4), E3 ubiquitin-
protein ligase TRIM21, signal transducer and activator of
transcription 1-alpha/beta (STAT1), E3 ubiquitin-protein ligase
RNF213 (RNF213), poly [ADP-ribose] polymerase 14 (PARP14)
and Protein NLRC5 (NLRC5) (Supplemental Table 4).

We found 16 pMHC-II derived from 5 proteins which
changed in abundance consistent with the underlying protein
measurements. Of note, eight of these pMHC-II were derived
from Complement C4-A (C4A). Increased mRNA stability
leading to increased C4A synthesis after IFN-g stimulation has
previously been reported (69).
A
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FIGURE 4 | IFN-g exposure does not uniformly affect antigen presentation across all alleles. B-allele presented core epitopes induced after 24 hours of IFN-g
exposure are supported by MHC binding predictions and ab initio motif discovery. (A) A total of 4,732 MHC-I core epitopes were inferred by PLAtEAU with a
minimum epitope length of 9, and presence in all three biological replicate experiments. (B) Independent GibbsCluster analysis of all core epitopes. All core epitopes
for the three cohorts (non-significant (grey box), increased in control state (blue box) and increased in the IFN-g state (red box)) were analyzed with GibbsCluster
(version 2.0) with MHC-I default parameters. The three top-reported clusters for each condition are presented and the Kullback-Leibler Distance (KLD) score is listed
in brackets. (C) Evaluation of the predicted binding affinities for all observed core epitopes. Epitopes showing no significant abundance difference between IFN-g and
control states (“Unchanged”, grey); increased abundance in the control state (“Up in control”, blue); and increased abundance in the IFN-g state (“Up in IFN-gamma”,
red) were assigned to one of GRANTA-519’s six HLA-I alleles by NetMHCpan 4.1. Epitopes were scored as weak (rank binding score <2.000) or strong binders
(rank binding score <0.500) per allele, and the lowest-scoring (predicted strongest binding) was plotted for each epitope-allele assignment. Cases of equal rank
binding score values <2.000 between multiple alleles, were reported as a binder for all the corresponding alleles. (D) The largest core epitope group (“unchanged”)
was used to determine sequence motifs specific to this data set. GibbsCluster was performed on epitopes predicted to bind each allele (NetMHC pan), and the
resulting motifs were created with Seq2Logo. (E) The relative proportion of MHC I epitopes in clusters 1-3 in part (B) with their likely HLA-type are shown.
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FIGURE 5 | Interpreting MHC-presented antigens with respect to the underlying proteome. pMHC were categorized with respect to the manner in which their
abundances and their underlying protein abundances changed between control and IFN-g-treated samples. Only pMHCs identified with high-confidence, and which
demonstrated low variance (fractional rank difference <0.2) across replicates were considered. (A) Schematic of three major peptide categories comparing peptides
identified in the control state (dashed lines) or IFN-g state (solid lines), both mapped onto the underlying protein’s primary amino acid sequence arranged from the
N- to C-terminus. (B, C) pMHC-I (B) and pMHC-II (C) were classified in 3 categories: pMHC changed in abundance between control and IFN-g states in a manner
that mirrored changes measured at the proteome level (tan), pMHC which were derived from proteins not measured from the parallel proteome analysis (green), and
pMHC demonstrating abundance profiles (changed or unchanged) that did not correspond with the abundance of the underlying protein (unchanged or changed)
(purple). (D, E) pMHC-I (D) and -II (E) can be further categorized based on whether they showed no substantial abundance change between control and IFN-g
states (black), or were consistent with the three categories described in (A).
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We found substantial numbers of pMHC-I (9.1%) and
pMHC-II (13.1%) that were derived from proteins that were
not found in the proteome data set (Figures 5B, C, green wedge).
While most (91.4%) of these pMHC did not change with IFN-g
exposure (Figures 5D, E, middle bar charts), 46 (pMHC-I) to 74
(pMHC-II) did, most of which were induced by IFN-g. It is
possible that the surprisingly large proportion of pMHC we
identified that were not reflected in our proteome analysis
could be attributed to class I and class II antigen presentation
pathways to sample from low-abundant proteins. These proteins
may have fallen below our detection threshold for proteomic
identification, but may be disproportionately represented in
the immunopeptidome. Relatedly, defective ribosome products
(DRiPs) and other types of unstable proteins might not
contribute to the measurable proteome, but would be expected
to be well-represented in immunopeptidome repertoires.

Finally, we found that 6% of pMHC changed in a manner
independent of the proteome (Figures 5B, C, purple wedge). Of
these, most were novel peptides exclusively identified in the
control or IFN-g conditions. 253 pMHC-I in this category were
derived from 208 proteins. Of these, 12 pMHC-I from 12
different proteins were present in both control and IFN-g
conditions but were substantially upregulated after IFN-g
stimulation. Further, 101 of these independent pMHC-I from
97 proteins were identified only in the IFN-g treated samples. GO
term analysis of the proteins from which these novel pMHC-I
were derived indicated that they reflected the same biological
pathways, cellular components, and molecular functions as the
other pMHC-I described in this study (Supplemental Figure
6A). We found 87 pMHC-II exclusively in the IFN-g state that
did not correspond to changes in the underlying proteome. GO
term analyses revealed no significant or substantial differences
between these novel IFN-g pMHC-II relative to all pMHC-II
identified here (Supplemental Figure 6B). We note, however
that 26 of these were 9-mer peptides and likely to be bound by
contaminating MHC-I molecules (Supplemental Figure 5).

Two clear differences between the MHC-I and MHC-II
immunopeptidomes were apparent from evaluating the categories
noted in Figure 5, and accounting for the effects of IFN-g
treatment. First, the frequency of novel pMHC (as defined in
Figure 5A) was higher in the MHC-I immunopeptidome (101
novel pMHC in the IFN-g state, 60 novel pMHC in the control
state) compared to only 61 novel pMHC-II in the IFN-g state
(excluding 9-mers) and 77 novel pMHC-II in the control state
(Figure 5, Supplemental Tables 4B, C). Furthermore, while there
were just 6 pMHC-I found in the IFN-g state that overlapped with
or were nested within pMHC-I found in the control state, there
were 22 such pMHC-II (Figure 5, Supplemental Tables 4B, C).
This may be due to HLA-DR’s ability to bind a broader range of
peptides lengths compared toMHC-I alleles. In summary, there are
more novel pMHC-I and more overlapping pMHC-II upon IFN-g
exposure. Ultimately, while these data demonstrate that most
changes in pMHC repertoires might be predicted from the
underlying proteome, a strategy like the one shown here could be
useful for illuminating neoantigens that are presented under certain
cell states. Such pMHC may be of particular interest if they would
largely evade immune selection under steady-state conditions.
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Are SNPs Passengers Along for the Ride?
One potential benefit of the approach described above is the ability
to discover treatment-specific pMHCs bearing tumor neoantigens.
In order to more precisely evaluate potential neoantigen
presentation induced by IFN-g, we synthesized 25 isotopically
labeled peptides corresponding with two putative neoantigens
and spanning 19 SNP sites identified from our initial pMHC-I
analysis (Figure 1B). Following an initial validation by LC-MS
(data not shown), these heavy labeled peptides were spiked into the
purified ligandome samples for two of the biological replicates we
collected (Figure 1A). The majority of the targeted SNP sites
demonstrated no differential expression. However, three
endogenous pMHC-I SNP peptides demonstrated significant
differential presentation after IFN-g treatment (Figure 6).
Furthermore, one neoantigen peptide ALGPPPGL from tapasin
isoform 1 was identified to be significantly down-regulated after
the IFN-g treatment (Figure 6A) while the second neoantigen
peptide was not found to be statistically differentially presented.
MS/MS spectrum validation supported the identities of two
neoantigen peptides and the three differentially presented
pMHC-1 SNP-peptides. (Figure 6B and Supplemental Figure 7).
However, the infrequency of SNP- and mutation-containing
peptides among both unstimulated and stimulated cells potentially
suggests their large-scale discovery by current mass spectrometry
methods still may be difficult to achieve.
DISCUSSION

Here we showed that combining transcriptomics, proteomics, and
immunopeptidomics can be a powerful strategy for uncovering
treatment-specific effects on antigen presentation. Specifically,
using an IFN-g-treated cancer B cell line, we demonstrate a
classification strategy designed to provide focus to pMHC
presentation that would not be predicted based on expression
data alone.We found that this category was more apparent among
pMHC-I than pMHC-II, although it was substantially represented
in both. We attribute this difference to the induction of the
immunoproteasome by IFN-g and the changes in expression of
various components of MHC-I the antigen presentation
machinery. These data support our recommendation that
comparative immunopeptidomics experiments be accompanied
by matched proteome analysis in order to uncover treatment
effects that alter antigen presentation pathways without having a
substantial impact on global transcription or translation.

Our analyses of pMHC following IFN-g treatment revealed
101 pMHC-I that could not be predicted by changes at the
proteome level. These peptides were derived from proteins that
were not significantly different from most other proteins
contributing to the pMHC-I repertoire in terms of GO term
categories or peptide length, but NetMHC analysis and core
epitope analysis using PLAtEAU revealed a sizeable distinction
in B-allele presented core epitopes after 24 hours of IFN-g
exposure between control and treatment (Figure 4).
Furthermore, the consensus binding motifs of putative MHC-I
(and to a lesser-extent, MHC-II) alleles generated motifs that
matched known ones.
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The impact of IFN-g on cancer cells is complex and being
heavily investigated. Taken together, we show here that a low-
dose IFN-g treatment can lead to increased numbers of unique
pMHC I and II, and that these novel pMHC are not strongly
biased towards any particular subset of the proteome. Therefore,
Frontiers in Immunology | www.frontiersin.org 14
IFN-g exposure shows promise as a way to improve outcomes of
immunotherapy in a variety of clinical contexts. While this study
indicates the potential therapeutic use of IFN-g, it should be
noted that systemic dosing with IFN-g could upregulate the
presentation of antigens in healthy tissue as well. Therefore,
A

B

FIGURE 6 | Validation and absolute quantification of pMHC-I bearing SNPs and two neoantigens. Isotopically labeled synthetic peptides were used to evaluate the
abundance of two endogenous neoantigens and 19 SNP sites presented on MHC-I. (A) Four of 25 SNP and neoantigen pMHCs demonstrated differential
abundance (p-value <0.05 and q-value <0.49). One of these four peptides was a potential neoantigen originated from tapasin isoform 1 (ALGPPPFGL) and had a
proline to leucine amino acid change at position 2 (amino acid variants indicated in red; isotopically labeled amino acid in standard peptide indicated in bold). The
second neoantigen peptide originated from a spindle and kinetochore-associated protein (KENIPSHLP) with a valine to isoleucine substitution but no significant
abundance difference between control and IFN-g states (p-value 0.1047). Heatmap: The mean for three technical replicate injections per biological replicate (n=2
biological replicates) was used in a t-test between the control state and interferon-gamma state. Heatmap depicts a standard z-score calculated from the four
averaged values (two control treatment means, green) versus two IFN- g means, orange) per pMHC. pMHC are sorted by q-values (Benjamini-Hochberg corrected).
Peptide-specific abundance plots: endogenous peptide quantified based on abundance measured relative to isotopically labeled standard spiked into specimen (see
Materials and Methods). (B) MS/MS spectrum of both the endogenous and heavy synthetic AQUA peptides for the two neoantigen peptides.
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further studies in a more complex model system are necessary
before IFN-g can be considered for clinical use. We believe this
approach can extend to innumerable other treatments, including
commonly prescribe first-line interventions following an
initial diagnosis.
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Bramoullé A, et al. Deletion of immunoproteasome subunits imprints on the
transcriptome and has a broad impact on peptides presented by major
histocompatibility complex I molecules. Mol Cell Proteomics (2010) 9
(9):2034–47. doi: 10.1074/mcp.M900566-MCP200

19. Chen H, Li L, Weimershaus M, Evnouchidou I, van Endert P, Bouvier M.
ERAP1-ERAP2 dimers trim MHC I-bound precursor peptides; implications
for understanding peptide editing. Sci Rep (2016) 6:28902. doi: 10.1038/
srep28902

20. Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H, et al.
Interferome v2.0: an updated database of annotated interferon-regulated
April 2021 | Volume 12 | Article 662443

https://www.ebi.ac.uk/pride/archive/
https://www.ebi.ac.uk/pride/archive/
https://www.frontiersin.org/articles/10.3389/fimmu.2021.662443/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.662443/full#supplementary-material
https://doi.org/10.1038/nri3084
https://doi.org/10.1038/nri2368
https://doi.org/10.1038/35008096
https://doi.org/10.1016/j.ceb.2008.09.005
https://doi.org/10.1007/s00251-008-0341-z
https://doi.org/10.1016/j.immuni.2017.02.007
https://doi.org/10.1038/s41587-019-0322-9
https://doi.org/10.1038/s41587-019-0322-9
https://doi.org/10.1056/NEJMoa1609279
https://doi.org/10.1016/j.humimm.2012.10.003
https://doi.org/10.1016/j.humimm.2012.10.003
https://doi.org/10.1021/acs.jproteome.9b00874
https://doi.org/10.1038/s41587-019-0280-2
https://doi.org/10.1016/j.immuni.2019.08.012
https://doi.org/10.1016/j.cels.2018.05.014
https://doi.org/10.1158/2326-6066.CIR-19-0464
https://doi.org/10.1158/2326-6066.CIR-19-0464
https://doi.org/10.1189/jlb.0603252
https://doi.org/10.1016/j.coi.2012.11.004
https://doi.org/10.1038/s41467-020-14639-9
https://doi.org/10.1074/mcp.M900566-MCP200
https://doi.org/10.1038/srep28902
https://doi.org/10.1038/srep28902
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Olsson et al. IFN-g Shifts MHC Immunopeptidome Landscape
genes. Nucleic Acids Res (2013) 41(Database issue):D1040–6. doi: 10.1093/
nar/gks1215

21. Chong C, Marino F, Pak H, Racle J, Daniel RT, Müller M, et al. High-
throughput and Sensitive Immunopeptidomics Platform Reveals Profound
Interferong-Mediated Remodeling of the Human Leukocyte Antigen (HLA)
Ligandome. Mol Cell Proteomics (2018) 17(3):533–48. doi: 10.1074/
mcp.TIR117.000383

22. Marcu A, Bichmann L, Kuchenbecker L, Backert L, Kowalewski DJ,
Freudenmann LK, et al. The HLA Ligand Atlas. A resource of natural HLA
ligands presented on benign tissues. BioRxiv (2019). doi: 10.1101/778944

23. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The
ensembl variant effect predictor. Genome Biol (2016) 17(1):122. doi: 10.1186/
s13059-016-0974-4

24. Zhang L, Elias JE. Relative protein quantification using tandem mass tag mass
spectrometry. Methods Mol Biol (2017) 1550:185–98. doi: 10.1007/978-1-
4939-6747-6_14

25. Rappsilber J, Ishihama Y, Mann M. Stop and go extraction tips for matrix-
assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample
pretreatment in proteomics. Anal Chem (2003) 75(3):663–70. doi: 10.1021/
ac026117i

26. Gilar M, Olivova P, Daly AE, Gebler JC. Orthogonality of separation in two-
dimensional liquid chromatography. Anal Chem (2005) 77(19):6426–34. doi:
10.1021/ac050923i

27. Wang Y, Yang F, Gritsenko MA, Wang Y, Clauss T, Liu T, et al. Reversed-
phase chromatography with multiple fraction concatenation strategy for
proteome profiling of human MCF10A cells. Proteomics (2011) 11
(10):2019–26. doi: 10.1002/pmic.201000722

28. Ting L, Rad R, Gygi SP, Haas W. MS3 eliminates ratio distortion in isobaric
multiplexed quantitative proteomics. Nat Methods (2011) 8(11):937–40. doi:
10.1038/nmeth.1714

29. McAlister GC, Huttlin EL, Haas W, Ting L, Jedrychowski MP, Rogers JC, et al.
Increasing the multiplexing capacity of TMTs using reporter ion
isotopologues with isobaric masses. Anal Chem (2012) 84(17):7469–78. doi:
10.1021/ac301572t

30. Benjamin Y, Hochberg Y. Controlling the false discovery rate - a practical and
powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol
(1995) 57(1):289–300.

31. Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michel H, Sevilir N,
et al. Characterization of peptides bound to the class I MHC molecule HLA-
A2.1 by mass spectrometry. Science (1992) 255(5049):1261–3. doi: 10.1126/
science.1546328

32. Hunt DF, Michel H, Dickinson TA, Shabanowitz J, Cox AL, Sakaguchi K, et al.
Peptides presented to the immune system by the murine class II major
histocompatibility complex molecule I-Ad. Science (1992) 256(5065):1817–20.
doi: 10.1126/science.1319610

33. Olsson N, Schultz LM, Zhang L, Khodadoust MS, Narayan R, Czerwinski DK,
et al. T-Cell Immunopeptidomes Reveal Cell Subtype Surface Markers
Derived From Intracellular Proteins. Proteomics (2018) 18(12):e1700410.
doi: 10.1002/pmic.201700410

34. Narayan R, Olsson N, Wagar LE, Medeiros BC, Meyer E, Czerwinski D, et al.
Acute myeloid leukemia immunopeptidome reveals HLA presentation of
mutated nucleophosmin. PloS One (2019) 14(7):e0219547. doi: 10.1371/
journal.pone.0219547

35. Khodadoust MS, Olsson N,Wagar LE, HaabethOAW, Chen B, Swaminathan K,
et al. Antigen presentation profiling reveals recognition of lymphoma
immunoglobulin neoantigens. Nature (2017) 543(7647):723–7. doi: 10.1038/
nature21433

36. Barnstable CJ, Bodmer WF, Brown G, Galfre G, Milstein C, Williams AF, et al.
Production of monoclonal antibodies to group A erythrocytes, HLA and other
human cell surface antigens-new tools for genetic analysis. Cell (1978) 14
(1):9–20. doi: 10.1016/0092-8674(78)90296-9

37. Lampson LA, Levy R. Two populations of Ia-like molecules on a human B cell
line. J Immunol (1980) 125(1):293–9.

38. Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in
large-scale protein identifications by mass spectrometry. Nat Methods (2007)
4(3):207–14. doi: 10.1038/nmeth1019

39. Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass
spectral data of peptides with amino acid sequences in a protein database.
Frontiers in Immunology | www.frontiersin.org 16
J Am Soc Mass Spectrom (1994) 5(11):976–89. doi: 10.1016/1044-0305(94)
80016-2

40. Zhang J, Xin L, Shan B, Chen W, Xie M, Yuen D, et al. PEAKS DB: de novo
sequencing assisted database search for sensitive and accurate peptide
identification. Mol Cell Proteomics (2012) 11(4):M111.010587. doi: 10.1074/
mcp.M111.010587

41. Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ. Semi-supervised
learning for peptide identification from shotgun proteomics datasets. Nat
Methods (2007) 4(11):923–5. doi: 10.1038/nmeth1113

42. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, et al. Systematic
and quantitative assessment of the ubiquitin-modified proteome. Mol Cell
(2011) 44(2):325–40. doi: 10.1016/j.molcel.2011.08.025

43. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B,
et al. Skyline: an open source document editor for creating and analyzing
targeted proteomics experiments. Bioinformatics (2010) 26(7):966–8. doi:
10.1093/bioinformatics/btq054
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57. López de Castro JA. How ERAP1 and ERAP2 Shape the Peptidomes of Disease-
Associated MHC-I Proteins. Front Immunol (2018) 9:2463. doi: 10.3389/
fimmu.2018.02463

58. Burrone OR, Kefford RF, Gilmore D, Milstein C. Stimulation of HLA-A,B,C by
IFN-alpha. The derivation of Molt 4 variants and the differential expression of
April 2021 | Volume 12 | Article 662443

https://doi.org/10.1093/nar/gks1215
https://doi.org/10.1093/nar/gks1215
https://doi.org/10.1074/mcp.TIR117.000383
https://doi.org/10.1074/mcp.TIR117.000383
https://doi.org/10.1101/778944
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1007/978-1-4939-6747-6_14
https://doi.org/10.1007/978-1-4939-6747-6_14
https://doi.org/10.1021/ac026117i
https://doi.org/10.1021/ac026117i
https://doi.org/10.1021/ac050923i
https://doi.org/10.1002/pmic.201000722
https://doi.org/10.1038/nmeth.1714
https://doi.org/10.1021/ac301572t
https://doi.org/10.1126/science.1546328
https://doi.org/10.1126/science.1546328
https://doi.org/10.1126/science.1319610
https://doi.org/10.1002/pmic.201700410
https://doi.org/10.1371/journal.pone.0219547
https://doi.org/10.1371/journal.pone.0219547
https://doi.org/10.1038/nature21433
https://doi.org/10.1038/nature21433
https://doi.org/10.1016/0092-8674(78)90296-9
https://doi.org/10.1038/nmeth1019
https://doi.org/10.1016/1044-0305(94)80016-2
https://doi.org/10.1016/1044-0305(94)80016-2
https://doi.org/10.1074/mcp.M111.010587
https://doi.org/10.1074/mcp.M111.010587
https://doi.org/10.1038/nmeth1113
https://doi.org/10.1016/j.molcel.2011.08.025
https://doi.org/10.1093/bioinformatics/btq054
https://doi.org/10.3389/fimmu.2018.00872
https://doi.org/10.3389/fimmu.2018.00872
https://doi.org/10.1093/nar/gkaa379
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1093/nar/gkn923
https://doi.org/10.1093/nar/28.1.352
https://doi.org/10.1093/nar/gku1075
https://doi.org/10.1093/nar/gku1075
https://doi.org/10.1146/annurev-immunol-032713-120231
https://doi.org/10.1073/pnas.95.26.15623
https://doi.org/10.3389/fimmu.2019.03139
https://doi.org/10.1007/s10147-016-0959-z
https://doi.org/10.1016/j.celrep.2017.04.031
https://doi.org/10.1016/j.celrep.2017.04.031
https://doi.org/10.1111/cas.13424
https://doi.org/10.1016/j.clim.2017.01.011
https://doi.org/10.1016/j.clim.2017.01.011
https://doi.org/10.3389/fimmu.2018.02463
https://doi.org/10.3389/fimmu.2018.02463
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Olsson et al. IFN-g Shifts MHC Immunopeptidome Landscape
HLA-A,B,C subsets. EMBO J (1985) 4(11):2855–60. doi: 10.1002/j.1460-
2075.1985.tb04014.x

59. Girdlestone J, Milstein C. Differential expression and interferon response of
HLA class I genes in thymocyte lines and response variants. Eur J Immunol
(1988) 18(1):139–43. doi: 10.1002/eji.1830180121

60. Girdlestone J. Regulation of HLA class I loci by interferons. Immunobiology
(1995) 193(2-4):229–37. doi: 10.1016/S0171-2985(11)80548-6

61. Javitt A, Barnea E, Kramer MP, Wolf-Levy H, Levin Y, Admon A, et al. Pro-
inflammatory Cytokines Alter the Immunopeptidome Landscape by
Modulation of HLA-B Expression. Front Immunol (2019) 10:141. doi:
10.3389/fimmu.2019.00141

62. Newey A, Griffiths B, Michaux J, Pak HS, Stevenson BJ, Woolston A, et al.
Immunopeptidomics of colorectal cancer organoids reveals a sparse HLA class I
neoantigen landscape and no increase in neoantigens with interferon or MEK-
inhibitor treatment. J Immunother Cancer (2019) 7(1):309. doi: 10.1186/s40425-
019-0769-8

63. Bassani-Sternberg M, Bräunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S,
et al. Direct identification of clinically relevant neoepitopes presented on native
human melanoma tissue by mass spectrometry. Nat Commun (2016) 7:13404.
doi: 10.1038/ncomms13404

64. Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, et al.
Predicting immunogenic tumour mutations by combining mass spectrometry
and exome sequencing. Nature (2014) 515(7528):572–6. doi: 10.1038/
nature14001

65. Komov L, Kadosh DM, Barnea E, Milner E, Hendler A, Admon A. Cell Surface
MHC Class I Expression Is Limited by the Availability of Peptide-Receptive
“Empty” Molecules Rather than by the Supply of Peptide Ligands. Proteomics
(2018) 18(12):e1700248. doi: 10.1002/pmic.201700248

66. Rapin N, Hoof I, Lund O, Nielsen M. MHC motif viewer. Immunogenetics
(2008) 60(12):759–65. doi: 10.1007/s00251-008-0330-2
Frontiers in Immunology | www.frontiersin.org 17
67. Zhang L, McAlpine PL, Heberling ML, Elias JE. Automated ligand
purification platform accelerates immunopeptidome analysis by mass
spectrometry. J Proteome Res (2021) 20(1):393–408. doi: 10.1021/
acs.jproteome.0c00464

68. Wei J, Kishton RJ, Angel M, Conn CS, Dalla-Venezia N, Marcel V, et al.
Ribosomal proteins regulate MHC class I peptide generation for
immunosurveillance. Mol Cell (2019) 73(6):1162–1173.e5. doi: 10.1016/
j.molcel.2018.12.020

69. Mitchell TJ, Naughton M, Norsworthy P, Davies KA, Walport MJ, Morley BJ.
IFN-gamma up-regulates expression of the complement components
C3 and C4 by stabilization of mRNA. J Immunol (1996) 156(11):4429–34.
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