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Dissecting phenotypic responses of 
the druggable targetome in cancers
Euna Jeong1, Choa Park2, Sung Ung Moon1, Juyeon Cho1, Mee Song1, Seungeun Ryoo2, 
Hyejeong Gu2, Yejin Lee2, Wooyoung Kim3 & Sukjoon Yoon1,2

Although a large amount of screening data comprising target genes and/or drugs tested against cancer 
cell line panels are available, different assay conditions and readouts limit the integrated analysis 
and batch-to-batch comparison of these data. Here, we systematically produced and analyzed the 
anticancer effect of the druggable targetome to understand the varied phenotypic outcomes of diverse 
functional classes of target genes. A library of siRNAs targeting ~4,800 druggable genes was screened 
against cancer cell lines under 2D and/or 3D assay conditions. The anticancer effect was simultaneously 
measured by quantifying cell proliferation and/or viability. Hit rates varied significantly depending on 
assay conditions and/or phenotypic readouts. Functional classes of hit genes were correlated with the 
microenvironment difference between the 2D monolayer cell proliferation and 3D sphere formation 
assays. Furthermore, multiplexing of cell proliferation and viability measures enabled us to compare 
the sensitivity and resistance responses to the gene knockdown. Many target genes that inhibited 
cell proliferation increased the single-cell-level viability of surviving cells, leading to an increase in 
self-renewal potential. In this study, combinations of parallel 2D/3D assays and multiplexing of cell 
proliferation and viability measures provided functional insights into the varied phenotypic outcomes of 
the cancer targetome.

Together with chemical and drug screening campaigns, functional screening of target genes using RNA interfer-
ence (RNAi) technologies has been widely carried out to identify and evaluate the therapeutic potential of diverse 
target genes against cancer cells1. Significant amounts of data have accumulated from forward screening using 
pooled short hairpin RNA (shRNA) or single-guide RNA (sgRNA) libraries against diverse cancer cell lines2–6. 
Although well-based reverse screening using a short interfering RNA (siRNA) library is relatively expensive and 
thus the amount of accumulated data is limited, it provides the advantage of employing multiplexed phenotypic 
assays for each of individual gene knockdown1,7. We thus attempted to generate well-based screening data for 
siRNA libraries against four cancer cell lines under two assay conditions with multiplexed readouts.

Most anticancer RNAi (or chemical) screening typically adapts cell viability assays measuring mitochondrial 
activity or ATP levels in live cells after treatment8–10. Specifically, ATP-dependent luminescence (Cell Titer-Glo 
assay in the Cancer Cell Line Encyclopedia study), fluorescent DNA-binding dyes (SYTO 60 assay in the Cancer 
Genome Project study) and anionic general biomass stain (SRB assay in the National Cancer Institute study) are 
used to assess drug inhibition11–14. These viability measures are assumed to be correlated with the mass change of 
cancer cells in the screen, thus representing the anticancer efficacy of treated RNAi. More recently, image-based 
direct cell counts in two-dimensional (2D) monolayer cultures or sphere counts in three-dimensional (3D) cul-
ture conditions have been multiplexed (or employed in parallel) with cell viability assays15. In particular, 3D 
sphere assays have become popular in target screening because they provide an enhanced physiologically rele-
vant microenvironment mimicking in vivo tumor formation16–22. In our previous study, we identified exclusive 
anticancer genes that were effective in inhibiting 3D sphere formation but not effective in inhibiting 2D cell 
proliferation15. In the present study, we systematically analyzed the functional diversity of hit genes between 2D 
and 3D anticancer screens.

Furthermore, we attempted to dissect the phenotypic features in multiplexed readouts (i.e., cell viability vs. 
cell count measures) on a single-cell basis. The total viability measure per well has been widely used as a surro-
gate to measure the cell count because the change in the cell number is directly correlated with the total viability 
measure. However, the viability change in individual cells of the population might be highly varied depending 
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on the anticancer mechanism of the knocked-down gene. For example, the knockdown of cytotoxic genes such 
as LZTR1 and PLCD3 increased mitochondrial activity and self-renewal potential in the surviving population 
of cells, but the total cell count decreased15. Recent report demonstrated that the varied viability (i.e., mitochon-
drial mass) in surviving single cells was correlated to the resistant phenotype overcoming the effect of anticancer 
agents23. Thus, the multiplexing of cell count with the change in single cell viability will provide new insights for 
further dissecting functional classes of anticancer target genes. Here, we report an analytical overview of the func-
tional diversity of target genes displaying diverse outcomes in the multiplexed assays, together with the complete 
screening data.

Results
Inhibitory siRNAs against 2D vs. 3D cancer proliferation.  Two measures (i.e., readouts) and two 
culture conditions were combined for the screening of the siRNA library against 4,789 druggable genes in four 
different cancer cell lines (Table 1). As shown in Table 1, we observed that overall, 0.5–4% of siRNAs exhibited 
a significant cancer-inhibition effect (>2-fold change over the control (i.e., siNC) with p-value < 0.01) in the 
screenings. The measure of cell proliferation (i.e., cell counting) under the 2D monolayer culture conditions 
produced cancer-inhibitory hits in the range of approximately 2.49–4.07%, in comparison to the cell viability 
measure (approximately 0.56–0.84%) and/or the counting of 3D sphere formation (approximately 0.52–1.15%). 
We next asked whether the screen results were similar or different between three 2D cell count and two 3D sphere 
formation assays in Fig. 1. Among the three cell lines (A549, HT29 and U87) from different cancer lineages, the 
inhibitory hits identified by cell counting showed general consistency (spearman rank correlation: 0.4–0.5), while 
the consistency of hits inhibiting 3D sphere formation was relatively varied (spearman rank correlation: 0.16) 
between cell lines (U87 and OVCAR8) (Fig. 1a). The number of common hits between cell lines in each culture 
condition were 65 (A549 and HT29), 66 (HT29 and U87), and 87 (U87 and A549) for 2D cell count, 15 (A549 and 
HT29) for 2D viability, and 14 (U87 and OVCAR8) for 3D sphere count. In addition, the common inhibitory hits 
between 2D cell count and 3D sphere count of U87 was 45 and their spearman rank correlation was 0.35.

siRNA hits from each of three 2D cell count screening datasets and two 3D sphere formation screening 
datasets in Table 1 were analyzed with Gene Ontology biological process terms (GO; http://www.geneontology.
org) using DAVID (https://david.ncifcrf.gov/). The list of siRNA hits can be found in Supplementary Table 1. 
Genes belonging to transcriptional activities, such as terms “transcription” and “gene silencing”, were commonly 
enriched in all five screens (Fig. 1b). We also found cell line-specific enrichment of gene sets such as “transcrip-
tion”, “protein glycosylation”, “localization”, “protein import”, and “mitochondrial” in 2D screening against A549, 
HT29 and U87 cell lines. In the 3D screening, lipid metabolic categories such as “cholesterol biosynthetic process” 
and the protein kinase B signaling category were uniquely enriched in U87 and OVACAR8 cell lines, respectively.

We further compared the diversity of siRNA hits selected by 2D cell count and 3D sphere count (Fig. 2). 
The list of selected siRNA hits can be found in Supplementary Table 2. The inhibitory hits from 2D cell count-
ing of three cell lines were classified into two groups in terms of average and standard deviation (s.d.): (1) 
sample-independent common hits (18 genes) exhibiting a consistent reduction in cell count in all 3 cell lines 
(average >4-fold change with s.d. <1) and (2) sample-selective varied inhibitory hits (9 genes) (average >2-fold 
change with s.d. >1) (Fig. 2a). Among 18 sample-independent common hits from the 2D cell count, 15 (83%) and 
7 (39%) hits were also effective in inhibiting 3D sphere formation in either U87 or OVCAR8 cells (red in Fig. 2b as 
log2 (fold change) <−1), respectively, while the sample-selective hits from the 2D cell count generally had no effi-
cacy in 3D sphere formation (blue in Fig. 2b). In contrast, a total of 67 siRNA hits inhibiting 3D sphere formation 
distributed widely in the average vs. s.d. plot of 2D assays (Fig. 2c,d). About 76% of the 67 3D sphere-inhibiting 
hits were not effective in reducing the 2D cell count in any of the three cancer cell lines as log2 (fold change) ≥ −2. 
This result indicates that genes that inhibit 2D cell proliferation of diverse cell types were generally expected to 
be effective in reducing 3D sphere formation, while 2D cell proliferation sample-specific inhibitory hits were not 
effective in inhibiting 3D sphere formation. Only 24% of the 67 siRNA hits inhibiting 3D sphere formation were 
effective in inhibiting 2D cell proliferation, implying the existence of diversified mechanisms of cancer growth 
between 2D and 3D culture conditions.

We could thus classify siRNA hits from 2D and 3D screens into four groups as follows: 2D only hits, 3D only 
hits, 2D and 3D common hits, and selective 2D and 3D hits (Supplementary Table 3 and Fig. 3). A network 
analysis of these selected genes based on their functional association (see methods section for building network) 

Cell line Lineage

Number of inhibitory siRNAs

2D monolayer culture 3D culture

Cell viability Cell count Sphere formation

A549 Lung 40 (0.84%) 195 (4.07%) n/a

HT29 Colon 27 (0.56%) 119 (2.49%) n/a

U87 Glioblastoma n/a 141 (2.95%) 55 (1.15%)

OVCAR8 Ovary n/a n/a 25 (0.52%)

Sum of unique siRNA hits 302 (6.3%)

Table 1.  Summary of siRNA hits in diverse anticancer screens. A total of 4,786 siRNAs targeting druggable 
genes were screened in four cell lines. siRNA hits exhibiting significant anticancer effects (>2-fold change 
with p < 0.01 in the assay) were counted. The complete list of screening results is available at http://compbio.
sookmyung.ac.kr/~siTarget. n/a = Data not available (experiment was not conducted).
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highlighted the functional separation of the four groups. Out of the seven inhibitory siRNAs exclusively effective 
under 2D culture conditions, three genes (ITGAV, ITGB5, and PLAA) were found in extracellular exosome and 
cell-matrix interaction categories (green in Fig. 3). The requirement of cell-plate attachment in the monolayer 2D 
culture condition might enrich these genes as sensitivity inhibitors for cell proliferation, as they were not effective 
in inhibiting 3D sphere formation under the low plate attachment conditions. The six siRNA hits exclusively 
inhibiting 3D sphere formation (FASN, FECH, HMGCS1, LSS, PLOD1, and SCD) were found in cell communica-
tion and lipid metabolic process categories (blue in Fig. 3). This observation is consistent with our previous report 
demonstrating the importance of endogenous regulation of the lipid profile in 3D sphere formation and in the 
enrichment of cancer stem-like cells15. Common hits against both 2D and 3D growth were enriched in essential 
cellular functions such as transcription, translation and protein degradation (yellow in Fig. 3). Only five siRNA 
hits exhibited selective inhibitory effects depending on cell type and 2D/3D culture conditions. These selective 
target genes were found in diverse functional categories, implying the existence of unique anticancer mechanisms 
for given cancer samples (orange in Fig. 3).

Varied outcome of target efficacy in cell proliferation vs. viability assays.  In the screen under 2D 
monolayer culture conditions, we measured the anticancer efficacy by simultaneously quantifying cell viability 
(NADPH activity by CellTiter Blue) and cell proliferation (i.e., cell count). Interestingly, the results from the 
viability measure and cell count showed a low correlation in either the A549 (spearman rank correlation: 0.59; 
Fig. 4a) or HT29 cell lines (spearman rank correlation: 0.38; Supplementary Fig. 1a). The discrepancy between 
measures was increased as the inhibitory effects increased (i.e., negative increase of the viability and cell count 
measure). Among 195 and 21 inhibitory hits obtained from the cell count, 55% and 48% of hits did not show a 
significant decrease in the viability measure (107 and 10 genes; red in Fig. 4a and Supplementary Fig. 1a), respec-
tively. This observation is consistent with the difference in hit numbers between the two measures in Table 1. Cell 
counting generated over four times more hits than the viability measure in both A549 and HT29 cell lines. We 
thus analyzed the change in viability per cell (i.e., average viability of individual cells) in comparison with the 
change in total cell count (Fig. 4b and Supplementary Fig. 1b). Although siRNA hits inhibiting cell proliferation 
(i.e., total cell count) exhibited decreased total viability per well (Fig. 4a), their viability per cell was increased 
(Fig. 4b). Our results indicated that most inhibitory (cytotoxic) siRNA hits in the cell count actually increased the 
viability of surviving cells in the well. This analysis also explains the observation of fewer hits from the viability 
measure than from the cell count in Table 1. For example, siRNA treatment against four target genes (CYP2A6, 
ONECUT2, EIF4A3, and EIF3G) resulted in a similar level of cell count decrease (1.5–2-fold, log-scale) in the 
A549 cell line screen (Fig. 4b). However, siRNAs against the same four genes showed a large variation (>1-fold, 

Figure 1.  Comparison of screen results from three 2D cell count and two 3D sphere count on four cell lines. 
(a) Screen results were comparatively plotted between samples. Gray circles are the 4,786 siRNAs. The scale 
of x- and y-axes is log2 (fold change) of cell count or sphere count against the control (siNC). Empty and filled 
dark circles represent siNC and siPLK1, respectively (see Methods section for the detail). The r value represents 
spearman rank correlation of siRNAs between screens. (b) Results of gene set analysis were compared among 
five screen datasets. siRNA hits were analyzed with GO biological process terms. Common and unique gene 
sets satisfying (two-sided) p-value < 0.05 were plotted. Gene ratio is the number of siRNA hits in each gene set 
divided by the total number of genes in the gene set.
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log-scale) in the measure of “viability per cell”. siONECUT2 and siCYP2A6 actually increased the viability of 
the remaining cells after 72 hours of treatment, while siEIF3G and siEIF4A3 treatment resulted in no significant 
change (p-value > 0.05, in comparison to the siNC treatment) in viability per cell.

To further understand the physiological meaning of the phenotypic disagreement between cell count and 
viability measure, we carried out a self-renewal assay using these four selected siRNAs in A549 cells. By moni-
toring the growth of remaining cells in fresh culture media after the treatment of selected siRNAs, we observed 
that cells treated with siONECUT2 or siCYP2A6 showed greater renewal ability than cells treated with siEIF3G 
and siEIF4A3 (Fig. 4c,d). This result indicates that the cell count and viability measure may represent different 
aspects of the anticancer effect. A measure of mitochondrial activity is widely used as a surrogate for the cell via-
bility measure in most cancer screening practices. To further analyze the differential aspects between cell count 
and viability, we checked the change in single-cell mitochondrial activity during the cell count decrease (Fig. 5) 
(see Methods section for details). Although the treatment of siCYP2A6 and siONECUT2 decreased the total 
cell number (Fig. 5b), the mitochondrial activity of individual cells increased significantly (2–4-fold over siNC; 
p-value < 0.001) (Fig. 5c). These opposing outcomes for measures of the anticancer efficacy represent the dual 
aspect of phenotypic responses (i.e., susceptibility and resistance) of the cancer cell population to the treatment 
of inhibitory (cytotoxic) siRNAs. This result is consistent with the previous report showing that cells with higher 
mitochondrial mass were more resistant to the apoptotic stress than cells with lower mitochondrial mass in the 
clonal cancer cell population23.

In the functional gene set analysis of siRNA hits from A549 screening, the cell count assay enriched target 
genes in DNA replication and cell cycle categories, while the viability measure was less sensitive in prioritizing 

Figure 2.  Distribution of inhibitory siRNAs selected by 2D cell count and 3D sphere count. Inhibitory siRNA 
hits were classified into two groups: sample-independent common hits and sample-selective hits. For the 2D cell 
count, the average cell count decrease in three cell lines is plotted against the variation of the counts in (a,d). The 
results from the 3D sphere counts are plotted between U87 and OVCAR8 samples in (b,c). The x- and y-axes 
represent the same as in Fig. 1a in (b,c). 2D sample-independent (red) and sample-selective (blue) hits are 
highlighted on the 2D cell count plot in (a) and the 3D sphere count plot in (b). 3D sample-independent (gold) 
and sample–selective (green) hits are highlighted on the 3D sphere count plot in (c) and the 2D cell count plot 
in (d). Empty dark circles represent siNC in (a,c). To avoid overplotting, siNC was not drawn in (b,d).

https://doi.org/10.1038/s41598-019-48989-2


5Scientific Reports |         (2019) 9:12513  | https://doi.org/10.1038/s41598-019-48989-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

these hits (Fig. 6a). The functional categories of gene expression and silencing were observed to be relatively 
more enriched by the viability measure than the cell count. The analysis of hits from HT29 screening showed the 
enrichment of common function gene sets with A549 (Supplementary Fig. 2 and Fig. 6b). These results show that 
multiplexing the cell count and viability measures provides a useful strategy for better evaluation of anticancer 
efficacy in target screening.

Discussion
Using multiple screening data from the siRNA library of 4,786 druggable target genes, we systematically analyzed 
the functional classes of anticancer targets based on readouts, assay conditions and sample variation. The screen-
ing result and Z’-factor QC data are illustrated in Supplementary Fig. 2. The Z’-factors of 3D assays were lower 
than that of 2D assays because the number of spheres in 3D were less than the number of cells in 2D assays, result-
ing in the greater variation among siPLK (control) repeats. The results of functional analysis in Fig. 1b showed 
that screenings 3D sphere formation enriched differential functional classes of target genes from those in the 
conventional 2D monolayer screen. Hit variation was significant between 2D and 3D assays, more than between 
samples in the same assay. Although it has been reported that 3D culture conditions harbor enhanced physiologi-
cal relevance over 2D conditions15, many previously validated target genes were preferentially enriched in the 2D 
screens rather than the 3D screens in this study. Physiological relevance has critical importance in developing in 
vitro assays for screening anticancer targets. The present study implies that the assay method should be selected 
based on the functional class (i.e., anticancer mechanism) of target genes.

We also demonstrated that multiplexed assays provided another insight into evaluating the anticancer efficacy 
of diverse target genes. Convenient cell viability assays are widely used as surrogates for the measurement of cell 
proliferation in anticancer screening. However, the correlation of a viability measure with cell count was observed 
to be greatly varied among genes depending on the nature of their anticancer mechanism. The measurement of 
single cell-based viability (i.e., viability per cell) might represent the resistance response of cancer cells to the 
anticancer treatment, thus making it too noisy to predict the change of cell mass (i.e., cell proliferation) from the 
viability measure of total cells in the well. When single-cell-level viability was quantified from the multiplexed 
(i.e., cell count plus viability) screens, it provided information on both the susceptibility and resistance response 
of cancer cells to druggable target knockdowns such as CYP2A6 and ONECUT2 genes.

Methods
Cells and culture conditions.  Four cancer types, including the non-small-cell lung cancer line A549, colon 
cell line HT29, glioblastoma cell line U87, and ovarian cell line OVCAR8, were used for targetome screening. 
All cell lines were purchased directly from the National Institutes of Health, National Cancer Institute (NCI, 
Frederick, MD, USA), except for U87 (American Type Culture Collection, Manassas, VA, USA). All cells were 
grown in RPMI 1640 (HyClone Laboratories, Logan, UT, USA) supplemented with 10% fetal bovine serum 
(HyClone Laboratories, Logan, UT, USA) and 1% antibiotics (ThermoFisher, Carlsbad, CA, USA). The cells were 
cultured at 37 °C under a humidified atmosphere of 5% CO2 and 95% air. The culture medium was refreshed every 
two to three days. We optimized cell seeding number and incubation time based on the previous study7.

Figure 3.  Functional network analysis of selected hit genes from siRNA screens. Gene-gene correlations were 
plotted using Tanimoto score for 77 siRNA hits. The hits were classified into 2D only hits, 3D only hits, 2D and 
3D common hits, and 2D and 3D selective hits. These four classes are colored green, blue, yellow, and orange, 
respectively. The thickness of the lines between two hit genes represents the extent to which the genes share GO 
functional terms.
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High-throughput siRNA screening.  The siRNA screen was performed using four pooled On-Target Plus 
siRNAs to target each of the 4,786 genes in the human drug target library (SmartPools; GE Dharmacon, Lafayette, 
CO, USA). Screening was performed in triplicate for three and five days in a 384-well plate format for 2D mon-
olayer and 3D culture assays, respectively. Each plate was supplemented with negative control siRNAs (siNC; GE 

Figure 4.  Comparative analysis of siRNA hits between cell count and viability assays. (a) 2D cell count vs. 
2D cell viability plot of siRNA screens in the A549 cell line. Empty and filled dark circles represent siNC and 
siPLK1, respectively. Cell count hits, viability hits, and common hits are represented in red, green, and yellow, 
respectively. The criteria were log2-fold-change <−1 and log2-fold-change <−0.6 with p < 0.01 for cell count 
hits and viability hits, respectively. (b) The total cell count was plotted against the viability per cell using A549 
screen data. Two siRNAs (siCYP2A6, siONECUT2) in blue and two siRNAs (siEIF4A3 and siEIF3G) in red 
were selected for further experiments. (c,d) Self-renewal ability of A549 cells pretreated with selected siRNAs.

Figure 5.  Single-cell-based analysis of mitochondrial activity and cell proliferation. (a) Fluorescence image 
analysis of A549 cells after indicated treatments. Cells were stained with Hoechst 33342 (nuclei, blue) and 
MitoTracker Deep Red (mitochondria, red). (b) Knockdown effect of siCYP2A6 and siONECUT2 in cell 
proliferation. (c) Measurement of single cell viability by MitoTracker DeepRed after treatment with siCYP2A6 
and siONECUT2.
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Dharmacon) and positive control siRNAs (siPLK1; GE Dharmacon) to confirm distinguishing sequence-specific 
silencing from non-specific effects and efficiency of knockdown, respectively. Reverse transfections were per-
formed using a MultiFlo-microplate dispenser (BioTek Instruments, Winooski, VT, USA) with siRNAs (final 
concentration 10 nM) and Lipofectamine RNAiMax (0.05 μl per well; ThermoFisher Scientific, CA, USA) diluted 
in Opti-MEM I (Thermo Fisher Scientific) in black 384-well plates (Corning, Corning, NY, USA). After incuba-
tion, the cells were stained with CellTiter-Blue for the Cell Viability Assay (Promega, Madison, WI, USA) and 
Hoechst 33342 for cell counting. The control experiment using siPLK1 against PLK1 (Polo-Like Kinase 1), a gene 
important for the cell cycle showed that the assay was appropriate for identifying essential genes24.

2D cell viability and cell counting assay.  After high-throughput siRNA screening, the cells were assayed 
using the CellTiter-Blue Cell Viability Assay kit (Promega) according to the manufacturer’s protocol for the cell 
viability assay. Hoechst 33342 staining was used to calculate the cell count after fixing cells with 4% paraformalde-
hyde. The plates were imaged on a Cytation™ 3 (BioTek Instruments) in 2 × 2 montage mode with a 4x objective 
to capture the entire well.

3D sphere formation assay.  3D spheres were cultured in serum-free conditioned medium contain-
ing 20 ng/ml epidermal growth factor (EGF), 20 ng/ml fibroblast growth factor (FGF) and B27 supplement in 
DMEM/F12 (all from Invitrogen, Grand Island, NY, USA). After three days, the cells were stained with Hoechst 
33342. The plates were imaged using the same method as the 2D cell viability and cell counting assays. The num-
ber of cell spheres with diameters greater than 80 μm and 100 μm was counted using Gen5 data analysis software 
(BioTek Instruments) for OVCAR8 and U87, respectively.

Screening data analysis.  The inhibitory effect of each siRNA was calculated as the log2-transformed 
of readouts: cell count, sphere count, and cell viability compared to the negative controls per plate. After nor-
malization, a negative value means that a readout is more decreased than negative controls. All data units are 
log2-transfomed, unless stated otherwise. Statistical significance was calculated by the one-sided two-sample 
Student’s t-test because siRNA hits were tested for statistical significance in the decrease direction. Viability per 
cell was calculated by total viability divided by total cell count per well (i.e. per gene). Single-cell-level viability 
means viability per cell in this study.

Figure 6.  Dissecting functional categories of selected siRNA hits from cell count vs. viability measure. (a) We 
applied Gene set enrichment analysis (GSEA)25 to the cell count hits to identify significantly cell count enriched 
and viability enriched gene sets in the A549 cell line. Genes are ranked by decreasing order of viability per cell 
measure. Two-sided p-value is used for this plot. (b) Common gene sets with p-value < 0.05 from results of 
GSEA are plotted between A549 and HT29 samples. The scale of x- and y-axes is normalized enrichment score 
(NES) from GSEA result.
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Hit selection.  Inhibitory siRNA hits were selected by 2D cell count and 3D sphere count assays. The average 
inhibitory effect and corresponding variation of three cell line screens (A549, HT29, and U87) were used for 
selection of 2D count hits. For 3D screens, because there are no specific patterns in terms of average and variation, 
the screen results of two cell lines were used for analysis. Totally 77 siRNA hits are selected from 2D cell count 
and 3D sphere count screens. Then, we classified 77 siRNA hits into four groups: 2D only hits, 3D only hits, 2D 
and 3D common hits, and selective 2D and 3D hits (Supplementary Table 3). From the 2D screens, we selected 
seven genes that had less than −1 mean cell count and more than 1 standard deviation as 2D only hits. We defined 
3D only hits as siRNAs specifically inhibitive in two cell lines (U87 and OVCAR8) and observed 16 genes with a 
difference between 3D sphere counts greater than 1, and a p-value less than 0.01. 2D and 3D common hits were 
genes with both strong siRNA inhibition in 2D and 3D screens but not sample-specific inhibition. We identified 
49 genes as 2D and 3D common hits. Among the three group hits, five functionally unrelated genes were classified 
as selective 2D and 3D hits.

Functional analysis and network visualization of hit genes.  For the 77 siRNA hits from the 2D and 
3D screens, we calculated the functional similarity between every pair of genes based on the Gene Ontology 
annotations of genes, called the Tanimoto score. We first defined two data sets each of which consists of GO 
biological process terms annotated to each gene. The Tanimoto score between two genes is simply the ratio of an 
interaction over a union between two sets. The functional similarity between genes was graphically organized into 
a network using Cytoscape (http:/www.cytoscape.org/), and functional annotation for each cluster in the network 
was analyzed using DAVID (https://david.ncifcrf.gov/).

Validation screen.  A validation screen was performed to identify false positives. siRNAs from SMARTpools 
were rescreened using the same transfection protocol of 10 nM by reverse transfection using Lipofectamine RNAi 
Max (Thermo Fisher Scientific) according to the manufacturer’s instructions. Moreover, to achieve mitochondrial 
activity for fluorescence imaging, cells were incubated with 100 nM MitoTracker Red (ThermoFisher, Carlsbad, 
CA, USA) in growth medium for 30 min. The plates were imaged using a Cytation™ 3 (BioTek Instruments) with 
a 20x objective.

Analysis of functional categories.  Gene set enrichment analysis (GSEA)25 was used to identify signifi-
cantly enriched functional gene sets using 2D viability per cell measure for A549 and HT29 screening. For the 
195 and 109 genes with strong siRNA inhibition in the 2D cell count assay (>2-fold decrease with p-value < 0.01), 
respectively, significantly enriched terms were analyzed using GO biological process terms.

Data Availability
The screening results of the siRNA library are available at http://compbio.sookmyung.ac.kr/~siTarget.
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