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The increasing rate of autoimmune disorders and cancer in recent years has been a

controversial issue in all aspects of prevention, diagnosis, prognosis and treatment.

Among dietary factors, flavonoids have specific immunomodulatory effects that might be

of importance to several cancers. Over different types of immune cells, T lymphocytes

play a critical role in protecting the immune system as well as in the pathogenesis

of specific autoimmune diseases. One of the important mediators of metabolism and

immune system is mTOR, especially in T lymphocytes. In the current review, we assessed

the effects of flavonoids on the immune system and then their impact on the mTOR

pathway. Flavonoids can suppress mTOR activity and are consequently able to induce

the T regulatory subset.

Keywords: flavonoids, mTOR, autoimmunity, metabolism, T regulatory cells

INTRODUCTION

Nutrition and metabolism play an important and undeniable role in public health. Although genes
have specific importance in susceptibility to diseases, some environmental factors can affect a gene’s
ability to “switch on or off” (1). In fact, phenotypes are determined by a combination of genotypic
and environmental factors (2). Diet is one of the environmental factors that could be considered in
the prevention and treatment of several disorders (3), including some autoimmune diseases as MS
(3, 4) and type I diabetes (4). Chemo-preventive effects of diet on cancer (5, 6) and autoimmune
diseases have also been reported (7, 8).

The immune system plays a critical role in protecting the human body from infectious diseases
and cancer. Its two main contributors include innate and acquired immunity responses. The most
important feature of innate immunity is its lack of specific recognition. This arm of the immune
system responds to all pathogens regardless to their nature (9). In contrast to innate immunity,
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acquired immunity recognizes pathogens specifically and
responds to each pathogen according to its nature. Innate
immunity is composed of immune and non-immune
components, whilst acquired immunity has only immune
elements. The major functions of the acquired immune system
rely on immune cells, mainly B and T lymphocytes that recognize
pathogens based on their antigenic receptors and respond in
different ways. B cells produce antibodies to block pathogen
activity and opsonize them for phagocytes. T cells are divided
into two subsets: T cytotoxic cells (T CD8+) which kill cancer
cells directly and T helper cells (T CD4+) that secrete cytokines
and mediators that orchestrate other cells such as B lymphocytes
and macrophages (9–11). Th cells secrete a wide range of
cytokines, which can direct the type of antibodies produced by
B cells and also are able to activate and polarize monocytes and
macrophages. In light of this, Th cells play a central role in the
immune system (12).

One of the research areas of immunometabolism is to study
the effect of different metabolites on Th cell differentiation.
Many researches have focused on the effects of glucose (13),
oxygen (14), salt (3), fatty acids (1, 15–17), vitamins (18–
20), and amino acids (21, 22) on mechanisms involved in Th
cell differentiation. The importance of Th cell differentiation
becomes clear when we consider uncontrolled Teff activation
against self-antigen that triggers an immune response, through
which damages self-tissue and interrupts some organ functions.
One of the important dietary factors studied in terms of
immunomodulatory effects are polyphenols and their effects on
the level and composition of immunoglobulins, inflammation,
immune cell population content and also their antioxidant effects
on cancer cells have been investigated (23–25). Several studies
have reported immunomodulating effects of polyphenols (26,
27). However, it remains unknown whether Th cells and changes
in the ratio of inflammatory/regulatory cells can mediate such
effects of polyphenols. Inflammatory and regulatory subsets of
Th cells have different metabolic demands. In inflammatory
subsets of Th cells, the mTOR pathway is activated. This pathway
promotes glycolysis to supply their energy needs. This pathway is
inactive in regulatory cells. If the mTOR pathway is suppressed
in inflammatory subsets, they differentiate into the regulatory
subset. Therefore, activation or suppression of the mTOR
pathway determines Th cell differentiation into inflammatory
and regulatory subsets (Figure 1). It is still unknown if flavonoids
can suppress mTOR function and consequently induce Treg

subsets. The current study summarizes the effects of flavonoids
on the immune system and subsequently the role of specific
pathways like PI3k/Akt/mTOR on immunomodulation and
possible effects of polyphenols on this pathway.

Th cell subsets are classified into Th1, Th2, Th17, and Treg.
Th1, Th2, and Th17 are effector subsets and trigger immune

Abbreviations:AD, Atopic Dermatitis; AhR, Aryl Hydrocarbon Receptor; AMPK,
AMP-activated, protein kinase; EGF, Epidermal Growth Factor; FICZ, 5,11-
Dihydroindolo 3,2 bcarbazole-6-carboxaldehyde; IFN, Interferon; IL, Interleukin;
LPS, Lipopolysaccharide; mTORC1&2,Mechanistic Target of Rapamycin Complex
1&2; PTEN, Phosphatase and Tensin homolog; T CD4+ or Th, T helper; T CD8+

or Tc, T cytotoxic; Teff, T effector cell; Treg, T regulatory cell; TCA, Tricarboxylic
Acid; TNF, Tumor Necrosis Factor; 2-DG, 2-deoxyglucose.

response to different pathogens (13, 28, 29) while Treg cells
restore homeostasis by suppression of Teff cell function after
termination of immune response (30, 31). Precise function of
the immune system is important for correct immune response,
otherwise two pathological types of responses might occur. On
the one hand, if the immune system fails to detect pathogens
or cancer cells for any reason, the risk of developing disease
increases (32). On the other hand, if the immune system cells
by mistake identify self-antigens as foreign agents, the response
of killer cells and/or antibody-producing cells interfering with
cytokine levels, can result in serious damages to the body (33).

Currently, there is only sketchy understanding of the factors
and mechanisms involved in autoimmunity. The loss of self-
tolerance is one of the important causes of disease. Although
the mechanism of loss of immune tolerance is not yet fully
understood, some behaviors like smoking may interfere with
tolerance and lead to autoimmunity disorders (34). For this
reason, other environmental factors like diet also play a critical
role in immune tolerance failure. In normal immune function,
both central and peripheral tolerance mechanisms do not allow
the immune system to respond against self-antigens (14). Treg

cells are one of these tolerance mechanisms, since Treg cell
suppress Teff cells and consequently is able to block unwanted
prolonged immune response (35). Depending on the types of
immune cells involved, symptoms, and treatment of this disease
differ.

In addition to the possible role of diet in immune tolerance
failure, this question arises whether the immune system and
various metabolites can interact with each other. In fact, not only
metabolites can affect the immune system, but also the function
of the immune system affects metabolic tissues. This mutual
interaction is referred as immunometabolism. Interestingly,
malnutrition has a negative impact on immune function. But
what is more, oversupply ofmetabolites is destructive as well (36).

As mentioned above, flavonoids generally have
immunomodulatory effects on the immune system. To
understand it better, at first we look at the effects of four common
flavonoids on immune system. Here we get general information
about the effects of flavonoids on different compartments of
immune system; function of innate and acquired immune
cells, antibody production, cytokine secretion, and nuclear
transcription factor activity. The entire data suggests that
flavonoids can suppress pro-inflammatory immune response.

FLAVONOIDS AND THEIR EFFECTS ON
IMMUNE SYSTEM

Flavonoids are considered as plant secondary metabolites
that numerous pharmacological functions are attributed to
them including antioxidant, anti-mutagenic, antibacterial,
anti-angiogenic, anti-inflammatory, anti-allergic, enzyme
modulation, and anti-cancer (37, 38). They are defined as
phytochemicals which exist either as free aglycones or glycosidic
conjugates (39). Flavonoids are polyphenolic with a wide range
of structures (37). Based on this diversity, they are categorized
mainly into flavones, flavanols, isoflavones, flavonols, flavanones,
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FIGURE 1 | The central role of T lymphocytes in acquired immunity. Acquired immune cells, notably lymphocytes, recognize pathogens specifically and respond to

them, according to their nature. T helper lymphocytes secrete various cytokines which are able to activate different immune cells including acquired and innate cells.

The various Th subsets rely on different signaling pathways, but all effector subsets upregulate glycolysis. Among differentiated Th cells, T regulatory cells are the only

non-glycolytic cells; effector subsets use different signaling molecules, however, all are glycolytic.

flavanonols, and chalcones (39). The diverse structures of
flavonoids have resulted in many properties including anti-
cancer and anti-inflammatory effects (37, 39, 40). Recently, it has
been shown that flavonoids can affect immune system response
and might have immune-modulator effects.

Quercetin
Quercetin is an abundant polyphenol in nature. It is an aglycone
form of a number of other flavonoid glycosides such as rutin
and quercitrin which can be found in variety of foods and
plants, including apples, berries, Brassica vegetables, capers,
grapes, onions, shallots, tea, and tomatoes, as well as different
seeds, nuts, flowers, barks, and leaves (41, 42). Biosynthesis of
Quercetin starts with phenylalanine in plants (41). It has been
shown that Quercetin can affect lipid and glucose metabolisms
by reducing oxidative stress and enhancing β-oxidation (43). In
addition, some studies have examined the effects of Quercetin
on the immune system. In an experimental study, dendritic
cells (DCs) obtained from mouse bone marrow were treated
by Quercetin. This flavonoid could effectively decrease the
production of pro-inflammatory cytokines/chemokines and the
expression levels of MHC class II and co-stimulatory molecules.
These conditions inhibit the LPS-induced activation of DCs.
Furthermore, endocytosis of DCs and the LPS-induced DC
migration are decreased by Quercetin treatment (43). Quercetin
also diminishes Ag-specific T cell activation by reducing the
activity of LPS-stimulated DC’s (44). In another experimental
study, the effects of Quercetin-loaded micro-emulsion (QU-ME)
were examined in a model of airway allergic inflammation.
Mice received daily oral doses of QU-ME (3 or 10 mg/kg)

over the course of 22 days. Compared with control group,
QU-ME reduced inflammatory factors including IL-5 and IL-
4. However, no change was observed in CCL11, IFN-gamma,
and LTB levels. In addition, the nuclear transcription factor
kappa B (NF-kappa B) activation, P-selectin expression and the
mucus production in the lung were inhibited by oral treatment
of QU-ME (41). In a study on peripheral blood mononuclear
cells (PBMC) isolated from multiple sclerosis (MS) patients
and from normal healthy subjects, Sternberg et al. showed that
Quercetin decreased the proliferation of PBMC and modulated
the level of IL-1beta and TNF-alpha released by PBMC in
a dose-dependent manner. In this study, the modulation of
TNF-alpha increased when Quercetin combined with human
interferon-beta (IFN-beta) (45). In anothermouse asthmamodel,
Gupta et al. examined the potential of Quercetin to relieve
asthma aggravation. This study revealed anti-asthmatic potential
of Quercetin. Treatment with Quercetin significantly resulted
in a reduction of specific immunoglobulin E (sIgE) production
and anaphylaxis signs. Furthermore, Quercetin modulated the
expression of Th2 cytokines including IL-4 and IL-5. These
cytokines play a role in switching IgE class and suppressing
the degranulation/secretion of different chemical mediators
(PGD2, mMCPT-1 Cys-L, and TSLP) from activated mast
cells (46). Other studies on the effects of Quercetin on the
immune system showed inhibitory effects of Quercetin on
cytotoxic lymphocyte function (47), IL-6 production in LPS-
stimulated neutrophils (48), and anaphylactic contraction in
guinea pig ileum smooth muscle (49). Moreover, it has been
observed that Quercetin can regulate leukocyte biology with a
stimulus-specific action and affects the balance of Th1/Th2 in
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a murine model of asthma (50, 51). Based on these findings,
Quercetin has a potential role in modulating immune system
responses.

Luteolin
Luteolin (3′,4′,5,7-tetrahydroxyflavone) and its glycosylated form
luteolin-7-glucoside (L7G) belong to the flavone subclass of
flavonoids and are among the most common flavonoids present
in aromatic plants and other plant-based foods mostly consumed
in the Mediterranean diet. Also, It is well distributed in many
medicinal plants and some common fruits and vegetables
including green leafy plants such as parsley, sweet peppers
and celery (52–54). Although, glycosylated forms are the most
common in nature it has been reported that Luteolin is absorbed
in the aglycone form only. Apart from the antioxidant and
anticarcinogenic properties, other features as anti-inflammatory
and anti-allergic have also been reported for Luteolin (55–
58). In an experimental study, treatment of asthmatic models
of rats by Luteolin over 8 weeks resulted in a reduction in
the total cell count, neutrophil count, eosinophil count and
levels of IL-4 in comparison to a control group (59). In
another mouse study, the effect of Luteolin on experimental
autoimmune thyroiditis (EAT) showed that Luteolin treatment
decreased lymphocytic infiltration and follicle destruction in
thyroid glands. In addition, Luteolin inhibited the interferon-
γ-induced increase in cyclooxygenase 2, and the secretion of
the pro-inflammatory cytokine tumor necrosis factor-α (60). In
an experimental study on human and murine auto-reactive T
cells, Verbeek et al. reported that luteolin was a strong inhibitor
for both murine and human T-cell responses. In this study, T-
cell proliferation, and antigen-specific IFN-gamma production
were significantly reduced in response to luteolin treatment.
In addition, luteolin appears to be a strong inhibitor of mast
cell histamine secretion (61). Moreover, anti-bacterial and anti-
parasite properties of luteolin have been reported in recent
studies (62, 63). The effects of Luteolin on the immune system
and inflammation have also been assessed in vivo (64). Topical
application of Reseda luteola extract, which is high in Luteolin,
was as effective as hydrocortisone in decreasing inflammation
following skin irradiation with Ultraviolet-B light (64). Overall,
it seems that luteolin has beneficial effects on the modulation
of immune responses. However, the mechanisms of this action
might be variable and are not clearly known. Further studies are
needed to shed light on these mechanisms.

Apigenin
Apigenin, or 40,5,7-trihydroxyflavone, is a common dietary
flavonoid which is found in many fruits, vegetables, and
herbs, such as orange, grapefruits, onion, wheat sprouts,
parsley, celery, and chamomile tea (65, 66). Properties of
Apigenin include anti-proliferative, anti-cancer antioxidant and
anti-inflammatory activities (67). Apigenin exhibits anti-tumor
effects by decelerating growth and inducing apoptosis through
activation of pentose phosphate pathway-mediated NADPH
generation in HepG2 human hepatoma cells, induction of
apoptosis via the PI3K/AKT and ERK1/2 MAPK pathways,
decreasing the viability, adhesion, and migration of cancer

cells and modulating angiogenesis and metastasis (68). The
effects of Apigenin on the immune system or modulation
of immune responses have been assessed in recent studies.
In an experimental study, Cardenas et al. reported Apigenin
significantly modulated NF-κB activity in the lungs. This finding
showed the ability of Apigenin to exert immune-regulatory
activity in an organ-specific manner (69). In another study on
models of rat colitis, administration of apigenin K, a soluble
form of Apigenin, resulted in reduced inflammation as well
as lower colonic damage scores and colonic weight/length
ratio (68). In addition, administration of Apigenin K could
normalize the expression of some colonic inflammatory markers
[e.g., TNF-α, transforming growth factor-β, IL-6, intercellular
adhesion molecule 1 or chemokine (C-C motif) ligand 2]
(70). In another experimental study on asthma in mice, Li
et al. reported that Apigenin administration (5 mg/kg or 10
mg/kg) inhibited OVA-induced increases in eosinophil count
and also in Th17 cells. Therefore, Apigenin administration
might effectively ameliorate the progression of asthma (71).
Furthermore, it has been shown that Apigenin in combination
with Quercetin and Luteolin has a protective effect on pancreatic
beta-cells injured by cytokines during inflammation (72). The
inhibitory effect of Apigenin on mast cell secretion has also
been observed in recent studies (51). Apigenin combined with
Luteolin are strong inhibitors for murine and human T-cell
responses, in particular auto-reactive T cells (61). In sum, it
seems that apigenin can be considered as a modulator of immune
system.

Fisetin
Fisetin (3, 3′, 4′, 7-tetrahydroxy flavone) is a type of flavonoid
commonly found in plants like the smoke tree and numerous
types of fruits and vegetables including strawberries, grapes,
onions, and cucumbers (51, 73–75). Some properties of
Fisetin include anti-cancer, anti-angiogenic, neuroprotective,
neurotrophic, antioxidant, anti-inflammatory, anti-proliferative,
and apoptotic effects (76). However, the powerful antioxidant
property of Fisetin is due to the presence of phenolic hydroxyl
group in the flavonoid structure (77). A few studies have
examined the effects of Fisetin on the immune system. Song
et al. assessed the immunosuppressive effects of Fisetin against
T-cell activation in vitro and in vivo. Findings of this study
showed that Fisetin significantly inhibited Th1 and Th2 cytokine
production, cell cycle and the ratio of T CD4+/CD8+ cells in
vitro. Furthermore, Fisetin suppressed mouse T lymphocytes
through the suppression of nuclear factor kappa B activation
and nuclear factor of activated T cells signaling in a dose-
dependent manner. The in vivo finding showed that Fisetin
also inhibited delayed-type hypersensitivity reactions in mice
(76). One study on the effects of Fisetin on human mast cells
(HMC-1) showed that Fisetin could down-regulate mast cell
activation (73). In addition, two studies have reported that
the anti-asthma properties of Fisetin are due to reduction
of Th2 response as well as suppression of NF-κB (75, 78).
In an experimental study using a mouse model of atopic
dermatitis (AD), Kim et al. investigated the effects of Fisetin
on AD-like clinical symptoms. They showed that Fisetin
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administration inhibited the infiltration of inflammatory cells
including eosinophils, mast cells, and T CD4+ and T CD8+

cells. Furthermore, Fisetin was able to suppress the expression
of cytokines and chemokines associated with dermal infiltrates
in AD-like skin lesions. In a dose-dependent manner, Fisetin
decreased the T CD4+ cell-induced production of interferon-
gamma and interleukin-4, and in contrast, increased the anti-
inflammatory cytokine such as interleukin-10 (79). Based on
these findings, Fisetin is able to significantly affect immune
system responses.

As mentioned, T CD4 + cells play a central role in
orchestrating immune response. Moreover, while regulatory
effects of flavonoids on T CD4+ have been observed, the
exact mechanisms are under investigation. Here we elaborate
why metabolism can play an important role in Th cells fate.
What happens to metabolic machinery of Th cells when they
get activated? Studies show that metabolic status of naive and
activated Th cells is different, because of their different energetic
demands.

METABOLISM OF Th CELLS

Resting and naive Th cells don’t need great amount of energy.
Hence, their metabolic status is generally at baseline. These cells
use autophagy and catabolism of fatty acids to supply their
housekeeping demands (80). When these cells are activated,
they undergo rapid and excessive clonal expansion. Activated
Th cells use anabolism to synthesize different types of essential
macromolecules for proliferation, which is highly energetically
costly. In fact, activated Th cells switch from catabolism to
anabolism, a process known as metabolic reprogramming (80).

The hallmark of Th cell metabolic reprogramming is the
use of glycolysis in the presence of sufficient oxygen (81). If
following activation, Th cells are not able to induce metabolic
reprogramming, they become anergic, and are not able to
respond to pathogens (82). Therefore, the metabolism of these
cells plays a critical role in Th cell activation. However, the main
question is why activated Th cells use glycolysis instead of TCA
for ATP production? Why do they prefer to use a low yield
pathway (2 ATP) instead of high-yield cycle (32 ATP)? Although
clonal expansion requires energy, it also relies on protein, DNA,
and lipid synthesis for cell size augmentation, for which glycolysis
provides the energetic drive. Otto Warburg in 1931 found that
cancer cells grow in acidic conditions, as they use glycolysis and
produce lactic acid (Figure 2).

Below, we discuss how metabolism and immune signals are
linked together. Some immunological signals are integrated into
metabolic pathways. One of the most important pathways which
plays key role in Th cell differentiation is PI3K/Akt/mTOR
pathway. The activation status of this pathway is affected
by different immunologic signals. PI3K/Akt/mTOR pathway
promotes glycolysis and it is necessary to be increased as
it activates glycolysis pathway significantly and also increases
the expression of a range of proteins including enzymes
and transporters. The PI3K/Akt/mTOR pathway mediates up-
regulation of glycolysis and prepares cells for proliferation.

mTOR; MECHANISTIC TARGET OF
RAPAMYCIN

mTOR is a highly conserved molecule in mammalian cells
(83), coded as a unique single gene but translated into two
different proteins, mTOR complex 1 and 2 (mTORC1 and
mTORC2) (82). These two complexes have different functions.
Activation of mTORC1 results in enhancement of translation,
cell size and lipogenesis in white fat tissue, whilst mTORC2
activation promotes glucose uptake in tissue, enhancement
of glucose synthesis and reduction of gluconeogenesis in
liver (83).

Levels of several metabolites [amino acids (83, 84) and
glucose], growth factors, energy level (cytosolic AMP:ATP
ratio), stress, and immunological signals [CD28, IL-2 (82)]
regulate mTOR function (Figure 3) (83). At the same time,
mTOR controls expression of several nutrition transporters (80).
Different cytokines also regulate mTOR activity; IL-7 activates
mTOR and inhibits autophagy, IL-4 promotes proliferation
through mTOR activation and decrease apoptosis, IL-12 and
IFN-γ also promote continuous mTOR activity (82).

From the immunological point of view, two signals are
needed for successful activation of Th cells. The first signal
is TCR recognition of antigens and the second is additional
signals produced by co-stimulator molecules. If the first signal
is not accompanied by the second signal, Th cells will not
be able to react (anergy). Anergic T cells are metabolically
oxidative. They use oxidative phosphorylation to supply their
energy demands (84) and it seems that inhibition of glycolysis
is sufficient for induction of anergy. For example, 2-DG which
blocks glycolysis, inhibits Th17 differentiation even under Th17-
polarizing conditions (13, 84). Interestingly, mTOR inhibition
using Rapamycin promotes the induction of anergy in Th cells,
even in the presence of second signal (82, 85). This phenomenon
is explained by the fact that mTOR is downstream of the second
signaling pathway, hence its inhibition attenuates the up-stream
signal.

All reports suggest thatmTOR is amediator in T cells, between
immunologic signals and metabolic demands. Further studies
show that mTORC1 promotes Th1 and Th17 differentiation
and mTORC2 induces Th2 differentiation. Suppression of both
complexes results in Treg induction. The effect of Rapamycin as
an antibiotic and immunosuppressive medicine, which blocks
mTOR activation, sheds light on an incredible connection
between metabolism and immune function. Earlier studies
showed that using Rapamycin and knocking out mTORC1 have
similar effects (85). However, the exact mechanism of mTOR in
determining Th cell fate is not well understood. It seems that
mTOR plays an important role in metabolic reprograming of
activated Th cells (21).

In addition to mTOR, the protein kinase AMPK also plays a
critical role in metabolism and differentiation of Th cells. Similar
to mTOR, AMPK is highly conserved in eukaryotic cells as well
(85). AMPK and mTOR play important roles in metabolism and
immunity. Their function in immunity is also against together
(15, 86). By mTOR activation, glucose metabolism is promoted,
especially glycolysis, and mTOR suppression by Rapamycin
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FIGURE 2 | Differences between glycolysis and the tricarboxylic acid cycle. The energy obtained from glucose oxidation and glycolysis is very different, even in

oxygen-activated Th cells which use glycolysis. The same situation also is observed in cancer cells. Because of this, the tumor environment is acidic. Activated Th and

cancer cells use glycolysis to supply protein, DNA, and lipids to support proliferation.

FIGURE 3 | Different signaling pathways are activated by different stimuli. PI3K/Akt/mTOR and AMPK pathways act in contrasting fashion in metabolism and

immunity. Several factors like IL-2 and CD28 signaling and growth factors activate the PI3K/Akt/mTOR pathway, resulting in survival, and proliferation of different cells.

Naïve T cells use lipid β-oxidation to supply their low demands, but after activation, these cells generate a large amount of energy using glycolysis, through changing

their metabolic machinery.
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results in the suppression of glycolysis and corresponding
increase in fatty acid oxidation (15, 36, 85). Previous studies
have shown that induction of AMPK activation has similar
results to the suppression of mTOR (15, 36, 85), by activation of
AMPK consequently fatty acid oxidation promotes and mTOR
function is suppressed. Induction of fatty acid oxidation through
mTOR suppression and/or AMPK activation in activated Th
cells, as mentioned above, results in Treg differentiation (36,
85).

Rapamycin inhibits mTORC1 and mTORC2 function and
induces Treg as well. Although the inhibitory effects of
Rapamycin on mTORC2 was unclear for several years, Powell,
and Delgoffe in their investigation in 2010 indicated that specific
doses of Rapamycin might inhibit mTORC1 and mTORC2 in
T-cells (82). They claimed that Rapamycin might also promote
induction of Treg cells (87).

One of the questions that arises is the possibility of induction
of Th subsets in vitro and in vivo through specific metabolites
in precise doses by activation and suppression of mTOR. Some
previous investigations have shown this effect (88, 89). These
studies help us to understand how our diet influences immune
system function. Furthermore, they provide explanations for
autoimmune diseases and possible key points to treat them. For
example, short chain fatty acids are able to induce intestinal Treg

in mice. The imbalance of Th17/Treg is responsible for several
diseases, like inflammatory bowel diseases (IBD) (16).

Is it possible that accumulation of metabolites in the cells
and excessive dietary uptake also modulate mTOR activity? Does
this modulation of mTOR activity result in changes in the fate
of immune responses? Both answers are yes. Not only specific
metabolites like glucose (36, 90), NaCl (3), fatty acids (1, 16, 17,
91), amino acids (21), all-trans retinoic acid (18, 92), cholesterol
(93, 94) and vitamins (19) affect mTOR function, but also mTOR
regulates expression ofmetabolite transporters (84). For example,
after Th cell activation, since glucose is the main source of
energy for these cells, mTOR activation results in up-regulation
of glucose transporters. Additionally, the presence of cytosolic
leucine and glutamine is essential for mTOR function (21).

The metabolic reprogramming in activated Th cells is the
same as that of cancer cells (36, 82). This similarity may seem
logical, as both cells must undergo rapid proliferation and this
process is highly demanding for both energy and metabolic
substrates. The difference between Th cells clonal expansion and
cancer cells growth is that cancer cells proliferate uncontrollably.
Some molecules like mTOR play a crucial role both in the
metabolism of cancer cells and activated Th cells, which has been
investigated earlier (Figure 4) (82).

EFFECTS OF FLAVONOIDS ON
PI3K/Akt/mTOR AXIS BASED ON STUDIES
IN CANCER CELLS

As mentioned, cancer cells and activated Th cells have similar
metabolisms. Both use glycolysis to supply their demands.
Although previous studies about the effects of flavonoids on
the immune system might provide some new information for

nutritionists, they are incompletely understood from molecular
immunology point of view. In addition, findings from these
studies are heterogeneous, for instance regarding the effect of
flavonoids on some inflammatory cytokines like TNF-α (23, 95–
97). Detailed data are available about the impacts of different
flavonoids on cancer cell proliferation. Because of metabolic
similarity between cancer cells and activated Th cells and lack
of sufficient data about flavonoids effects on Th cells or the
PI3K/Akt/mTOR axis, here we will focus on results from the
cancer field.

Flavonoids also have specific effects on this axis in
cancer cells (Table 1). Curcumin, a yellow-pigment substance
and component of turmeric, significantly increases mTOR
suppression and induces apoptosis in renal cancer cells (105).
Curcumin is also able to arrest melanoma cells in G2/M
and induce autophagy in these cells. In vitro investigations
showed that Curcumin inhibits Akt, mTOR, and P70S6K activity.
Moreover, Curcumin was shown to suppress tumors in BALB/c
mice, though this effect was not significant (106). In breast
and prostate cancer cell lines, Curcumin inhibits Akt and
mTOR function even in the presence of EGF, a ligand of
the EGF receptor. The Akt/PI3K/mTOR axis is one of the
most important down-stream signaling pathways after EGFR
activation (107). The suppression of the Akt/PI3K/mTOR axis,
even in the presence of EGF, could be a promising finding in
the field of cancer therapy research. Both ligand-dependent and
independent activation of EGFR can cause resistance to current
therapies, a major problem in cancer treatment (108). All results
confirm that Curcumin induces apoptosis and inhibits tumor cell
growth and it is also able to block metastasis (101).

Another attractive polyphenol, fisetin inhibits mTOR
complexes, PI3K (25, 98), and Akt activity in prostate cancer
cell lines (25, 98, 109). It also activates AMPK and PTEN in
non-small lung cancer cells (25, 98). As mentioned before,
AMPK and mTOR play contrary roles in metabolism. In cancer
cells, AMPK activation and mTOR suppression result in both
survival and proliferation failure (110).

Quercetin inhibits the Akt/PI3K/mTOR and Wnt/catenin
pathways in lymphoma cells (111). mTOR inhibition and
induction in apoptosis after Quercetin treatment in Burkitt’s
lymphoma cells has been observed (112). In a cervix cancer cell
line, G2/M arrest was observed in the cell cycle. It also triggers
release of cytochrome-C which is an indicator of apoptosis (113).

Other studies have shown that pomegranate polyphenols
not only suppress Akt and mTOR expression and function,
but also reduce IGF expression in colon cancer cells (100).
In 2015 Zhang et al. showed that Aqueous Allspice Extract
(AAE), which contains many different flavonoids, was able
to activate autophagy signaling in breast cancer cells and
induce cell death. AAE acts synergistically with Rapamycin and
enhances autophagy and cell death. Akt and mTOR signaling are
suppressed by AAE (114).

Another similar pathway that is active in tumor cells (102)
as well as in Th cells (115) is aryl hydrocarbon receptor (AhR).
It plays a central role in the differentiation of Th cells. If AhR
is activated by dioxin or kynurenine, Treg cells differentiate in
vivo and in vitro, whilst its other ligand, FICZ, induces the
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FIGURE 4 | Cancer cells and activated Th cells use similar metabolic programs. Normal and cancer cells use distinct metabolic pathways, because of their different

energy demands. Resting and activated Th cells also have different energy demands, because activated Th cells need to growth rapidly. Although cancer and

activated Th cells are different, in general, they share a similar feature, their metabolism. The Warburg effect characterizes both cell types.

TABLE 1 | Examples of different flavonoids targeting PI3k/Akt/mTOR pathway in different cell lines.

Flavonoid Duration Cell line Effect References

Fisetin 24/48 h Lung carcinoma cell line Inhibition of tumor cell growth

Increased activation of PTEN, AMPK, and TSC2

Decreased activity of PI3K, Akt, and mTOR

(25)

Fisetin 24/48 h Prostate cell line Induction of apoptosis

Induction of caspase 3, 8, and 9 activity

Decreased activity of Cyclins, CDKs, PI3K, Akt

(98)

Gelam honey and ginger 24/48 h Colon cell line Inhibition of cell viability (99)

Pomegranate 24 h Colon cell line mTOR, Akt and PI3k activity suppression and decreased

expression

(100)

Curcumin 2 h Colorectal cell line Decreased mTOR and Akt expression (101)

Quercetin 24/48 h Prostate cell line Suppression of mTOR and Akt activity (102)

Baicalein 72 h Prostate cell line
Induction of apoptosis in cancer cells

mTOR and Akt activation decreased

(103)

Butein 24 h Cervical cell line Induction of G2/M arrest

Induction of caspase 3, 8, and 9 activity

Decreased activity of PI3K, Akt, and mTOR

(104)

Th17 subset (115). In prostate tumor cells, AhR shows aberrant
expression and its deletion or inhibition results in the inhibition
of tumorgenesis and tumor growth. By suppression of AhR,
G0/G1 cell cycle arrest occurs in prostate cancer cells. It can
be concluded that AhR is necessary for induction of cell cycle
arrest and apoptosis by Quercetin in prostate cell line (102).
However, the exact mechanism of involvement of AhR in cancer
cell apoptosis mediated by Quercetin is not well understood yet.
Previous studies show that AhR can activate the Akt/PI3K/mTOR

pathway, and AhR inhibition results in low PI3K activity and also
restores sensitivity to apoptosis in the mouse hepatoma cell line
(116).

Because of similar metabolisms in active Th cells and
cancer cells, described in detail above, it is expected that the
polyphenols can suppress mTOR activity in Th cells. Hence, it
can be concluded that polyphenols also induce Treg cells and
these differentiated regulatory cells suppress unwanted immune
response against self-antigens.
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CONCLUSION

Before activation of naïve Th cells, they are catabolic.
However, after activation and differentiation into effector
subsets they become anabolic. If T effector cells are not
able to change their metabolic status, they will be unable
to respond to pathogens. The PI3k/Akt/mTOR pathway is
up-regulated after Th activation, and its suppression results
in anergy. By considering the important role of metabolism
in the differentiation of Th cells, it seems reasonable that
accumulation of specific metabolites may induce Th subsets.
Indeed, flavonoids have been investigated for their effects on
immune system. Flavonoids are able to modulate immune
response, though the exact molecular mechanisms involved in
these changes are not well understood. Flavonoids also have

anti-proliferative effects on cancer cells through suppression
of the PI3k/Akt/mTOR pathway in these cells. As cancer
cells and activated Th cells use glycolysis and the PI3k/
Akt/mTOR pathway plays a crucial role in both cells, it can
be concluded that flavonoids also suppress this pathway in
Th cells. By suppression of the PI3k/AKT/mTOR pathway, T
effector differentiation is reduced and T regulatory cells are
induced.
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