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Abstract 17 

Like other brain circuits, the brainstem respiratory network is continually modulated by 18 

neurotransmitters that activate slow metabotropic receptors. In many cases, activation of these receptors only 19 

subtly modulates the respiratory motor pattern. However, activation of some receptor types evokes the arrest of 20 

the respiratory motor pattern as can occur following the activation of µ-opioid receptors. We propose that the 21 

varied effects of neuromodulation on the respiratory motor pattern depend on the pattern of neuromodulator 22 

receptor expression and their influence on the excitability of their post-synaptic targets. Because a 23 

comprehensive characterization of these cellular properties across the respiratory network remains challenging, 24 

we test our hypothesis by combining computational modelling with ensemble electrophysiologic recording in 25 

the pre-Bötzinger complex (pre-BötC) using high-density multi-electrode arrays (MEA). Our computational 26 

model encapsulates the hypothesis that neuromodulatory transmission is organized asymmetrically across the 27 

respiratory network to promote rhythm and pattern generation. To test this hypothesis, we increased the strength 28 

of neuromodulatory connections in the model and used selective agonists in situ while monitoring pre-BötC 29 

ensemble activities. The model predictions of increasing slow inhibition were consistent with experiments 30 

examining the effect of systemic administration of the 5HT1aR agonist 8-OH-DPAT. Similarly, the predicted 31 

effects of increasing slow excitation in the model were experimentally confirmed in pre-BötC ensemble 32 

activities before and after systemic administration of the µ-opioid receptor agonist fentanyl. We conclude that 33 

asymmetric neuromodulation can contribute to respiratory rhythm and pattern generation and accounts for its 34 

varied effects on breathing. 35 

Introduction 36 

Neuromodulation is essential for adaptive function in brain circuits (1–4). Neuromodulatory transmitters 37 

act via metabotropic receptors coupled to intracellular signaling cascades to slowly modify synaptic and 38 

membrane properties thereby altering circuit computations mediated by fast synaptic neurotransmission (5). For 39 

example, phasically active midbrain dopaminergic neurons encode a reward prediction error signal that 40 

modulates excitability, and hence, activity-dependent plasticity in their target populations (1).  41 
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Given the coordination of breathing with other orofacial behaviors including swallowing, vocalization 42 

and autonomic regulation, it is not surprising that many neuromodulators influence the breathing motor pattern 43 

through their actions on the brainstem respiratory network including, but not limited to serotonin, dopamine, 44 

acetylcholine, opioids, histamine, substance P and somatostatin (6–9). Neurons which express pre- and post-45 

synaptic receptors for neuromodulatory neurotransmission are highly distributed across the respiratory network. 46 

However, the effects of neuromodulation on breathing are commonly investigated at either a coarse scale by 47 

examining their effects on the frequency and amplitude of respiratory motor nerve activities after systemic drug 48 

application or at a finer scale via drug micro-injection within a particular compartment of the respiratory 49 

network. Consequently, the mechanisms of respiratory neuromodulation identified by these experimental 50 

approaches have highlighted the role of neuromodulation within single network compartments, especially the 51 

pre-Bötzinger complex (6,9), as the primary targets of neuromodulators. However, these studies do not consider 52 

the pattern of neuromodulatory neurotransmission across the entire network, which was a major aim of the 53 

present study. 54 

The conundrum of neuromodulation is highlighted by research concerned with opioid-induced 55 

respiratory depression (ORID) evoked by overdose of opioid-based analgesics or drugs of abuse that 56 

predominantly bind to the µ-opioid receptor (µ-OR) (10–12). Mechanistically, µ-OR agonists have been shown 57 

to act on the medullary pre-BötC (13–15), ventral respiratory group (16–20), and pontine parabrachial and 58 

Kölliker-Fuse nuclei (21–26). In addition to these functionally identified areas, a recent anatomical study of 59 

Oprm1 expression in the respiratory network has identified µ-OR+ neurons in the nucleus tractus solitarii, 60 

Bötzinger complex, intermediate reticular nucleus/post-inspiratory complex, parafacial area, locus coeruleus 61 

and raphé nuclei (27) suggesting that opioids may act simultaneously at many diverse sites across the brainstem 62 

respiratory network. Despite the widespread expression of µ-ORs, several studies have proposed that OIRD 63 

depends solely on the activation of µ-ORs in the pre-BötC to suppress inspiratory rhythm generation (11,13,28). 64 

Other studies have taken a more holistic view acknowledging the role of a distributed network mechanism for 65 

OIRD, but highlight the Kölliker-Fuse nuclei as a primary therapeutic target for OIRD (10,23,24,26).  66 

This on-going debate has motivated the need to develop an understanding of the network mechanism of 67 

OIRD (12), and of respiratory network neuromodulation, in general. However, understanding the network 68 

mechanisms for neuromodulation in a distributed brain circuit would require defining not only the complete 69 

connectome of the circuit, but also the pattern of neuromodulatory co-transmitters and receptors expression 70 

across that connectome (2,5). Here, to overcome this challenge, we combine computational modelling with 71 

ensemble electrophysiology to test the hypothesis that neuromodulatory systems in the respiratory network are 72 

organized to contribute to the maintenance of the breathing rhythm and pattern. To encapsulate this hypothesis, 73 

we follow the approach of Kleinfeld and Sompolinsky (29) who developed a pair of Hebbian learning rules for 74 

the fast- and slow-synapses of a Hopfield network that produce the periodic sequential activities observed in 75 

central pattern generating networks. By training such a model to produce the respiratory firing patterns observed 76 

in the pre-Bötzinger complex (pre-BötC), an essential node of the respiratory network that expresses a 77 

representative set of firing patterns associated with all three phases of the breathing pattern under intact network 78 

conditions in vivo (30–32) and in situ (33), we develop a model of the respiratory network in which the 79 

asymmetric pattern of slow-/neuromodulatory-connectivity drives the respiratory rhythm and pattern. To test 80 

our hypothesis, we compare the in silico predictions of increasing the strength of subsets of neuromodulatory 81 

connections based on the net effect on their post-synaptic targets with electrophysiologic experiments in situ in 82 

which we used a high-density multi-electrode array to monitor the ensemble activities of pre-BötC neurons 83 

before and after systemic administration of either the Gi/o-coupled µ-OR agonist fentanyl or the Gi/o-coupled 84 

5HT1A receptor agonist 8-OH DPAT. In either case, we observed qualitatively similar responses of network 85 

activity to the perturbations in both simulations and experiments. Interestingly, the model also predicted the 86 

existence of a population code in which network activity is maximal at the transitions between the three phases 87 

of the breathing pattern, which we also observed experimentally in the ensemble activity of the pre-BötC. Taken 88 

together, we propose that neuromodulatory systems of the respiratory network are organized asymmetrically to 89 
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contribute to the maintenance of the breathing rhythm and pattern. Furthermore, we conclude that activation of 90 

µ-ORs disrupts a network mechanism of respiratory rhythm and pattern generation.  91 

 92 

Materials and Methods 93 

Experimental protocols were approved by and conducted with strict adherence to the guidelines established by 94 

the Animal Ethics Committee of the Florey Department of Neuroscience & Mental Health, University of 95 

Melbourne, Melbourne, Australia (AEC No.: 17-075-FINMH). For breeding, adult male and female Sprague–96 

Dawley rats (Animal Resources Centre, Canning Vale, Australia) and their offspring were housed under a 14:10 97 

light/dark cycle with ad libitum access to standard laboratory chow and water. 98 

In situ arterially-perfused brainstem preparation 99 

 Experiments were performed in juvenile (17-26 days post-natal) Sprague-Dawley rats of either sex using 100 

the in situ arterially-perfused brainstem preparation as described previously (34,35). Briefly, rats were 101 

anesthetized by inhalation of isoflurane (2-5%) until they reached a surgical plane of anesthesia. Next, rats were 102 

transected sub-diaphragmatically and immediately transferred to an ice-cold bath of artificial cerebrospinal fluid 103 

(aCSF; in mM: [NaCl] 125, [KCl] 3, [KH2PO4] 1.25, [MgSO4] 1.25, [NaHCO3] 24, [CaCl2] 2.5 and D-104 

glucose 10) for decerebration. Next, the heart and lungs were removed. The phrenic nerve was isolated for 105 

recording, and the descending aorta was isolated for cannulation. Next, the cerebellum was removed. Finally, 106 

the vagus and hypoglossal nerves were isolated for recording. 107 

 The preparation was then transferred to a recording chamber. The aorta was quickly cannulated with a 108 

double-lumen catheter. The preparation was then re-perfused with carbogenated (95%/5% pO2/pCO2), heated 109 

(31°C) aCSF (200 mL) using a peristaltic pump (Watson-Marlow).  110 

Phrenic, vagal and hypoglossal nerves were mounted on suction electrodes to record the fictive 111 

respiratory motor pattern. Motor nerve potentials were amplified (400×), filtered (1-7500 Hz), digitized (30 112 

kHz) via a 16-channel differential headstage (Intan RHD2216), and stored on an acquisition computer using an 113 

Open-Ephys acquisition system (Rev. 2, (Siegle et al., 2017)). Within minutes, apneustic respiratory 114 

contractions resumed.  115 

 The perfusion flow rate was adjusted to fine tune the preparation to generate a stable rhythm with 116 

augmenting inspiratory phrenic discharge and bi-phasic inspiratory and post-inspiratory activity on the vagus 117 

nerve. Finally, a single bolus of vecuronium bromide (0.3 mL, 0.1 mg/mL w/v vecuronium bromide: saline) was 118 

delivered to the perfusate to paralyse the preparation to avoid movement artifacts. 119 

Ensemble recording of pre-Bötzinger complex 120 

In one series of experiments (n=11), we measured single unit activities across ensembles of pre-BötC 121 

neurons using a 4-shank, 64-channel high-density silicon MEA (Neuronexus, A4x16) while simultaneously 122 

recording the three-phase respiratory motor pattern on phrenic, vagal and hypoglossal nerves. The MEA 123 

electrode sites spanned 345 µm in the dorso-ventral axis, and 600 µm in the rostro-caudal axis.  124 

Using a micro-manipulator (Narishige MMN-33), we slowly inserted the MEA into the brainstem until 125 

we observed an ensemble of neuronal activities with respiratory-related firing patterns. The coordinates of the 126 

recording sites were measured from the caudal-most shank relative to those of calamus scriptoriius and were: 127 

1.6-2.3 mm rostral to calamus scriptorius, 1.4-1.8 mm lateral to the midline and 1.6-2.2 mm below the 128 

brainstem surface. Once positioned within the pre-BötC, we recorded the spontaneous activity of the pre-BötC 129 

ensemble for 10 min. Neuronal activities from the MEA were amplified (400×), filtered (0.001-7.5 kHz) and 130 

digitized via a 64-channel mono-polar headstage (Intan RHD2164) and stored on an acquisition computer using 131 

an Open-Ephys acquisition system. 132 
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In a subset of these experiments, to enable mapping the location of pre-BötC neurons to the 7T MRI 133 

Waxholm atlas of the Sprague-Dawley rat brain (36) by determining the rigid transformation necessary to 134 

register the positioner coordinate-system with those of the Waxholm atlas, we measured the coordinates of 5 135 

surface landmarks that were easily identifiable both on the brainstem surface of the preparation and within the 136 

atlas (Suppl. Fig. 1, Fig. 1A & F). 137 

Pharmacologic experiments 138 

 In subsequent experiments, to assess the effects of increasing neuromodulatory tone, after positioning 139 

the MEA within the pre-BötC and recording the stationary baseline pattern of pre-BötC ensemble activity, we 140 

administered either the 5HT1aR agonist 8-OH DPAT (1 µM, n=4) or the µ-opioid receptor agonist fentanyl (15 141 

nM, n=8) to the perfusate and recorded the ensemble activity of the pre-BötC for an additional 10 min once the 142 

preparation expressed a new stationary breathing pattern (≤ 5 min).  143 

Data Analysis 144 

 Phrenic, vagal and hypoglossal nerve activities (PNA, VNA & HNA, respectively) were first high-pass 145 

filtered with a zero-phase 3rd order Butterworth filter (𝐹𝐶  =  300 𝐻𝑧) to remove any DC artifacts before 146 

rectification and integration with a moving average filter in forward-backward mode to prevent any phase 147 

distortion (𝜏 = 100 𝑚𝑠).  The Kilosort algorithm was used for semi-automated spike sorting of single unit 148 

activities recorded on the MEA (37). After spike sorting, we manually inspected and adjusted the cluster 149 

assignments. The most frequent modification made to cluster assignments was to remove low-amplitude 150 

clusters that were associated with noise or multi-unit activity.  151 

 After spike sorting, we sought to assess the distribution of pre-BötC neuronal firing patterns by 152 

clustering their respiratory cycle-triggered histograms. We first determined the event times of the inspiratory-to-153 

post-inspiratory (I-PI) phase transition for all breaths via PNA. Depending on the signal-noise ratio of the PNA 154 

time series, we used either fixed threshold or the difference between a fast- (𝜏 = 33.3 𝑚𝑠) and slow- (𝜏 =155 

100 𝑚𝑠) moving averages to detect the I-PI transition events. After measuring the average respiratory period, 156 

we computed the cycle-triggered average of the respiratory motor pattern and the cycle-triggered histogram of 157 

each neurons spiking pattern over 1 respiratory cycle using the I-PI transition events as the trigger for 158 

averaging.  159 

 To cluster these cycle-triggered histograms of pre-BötC neuronal firing patterns for the group, we 160 

combined dimensionality reduction with principal component analysis (PCA) and k-means clustering. The 161 

cycle-triggered histograms were scaled to the [0, 1] interval to remove the influence of the peak firing 162 

frequencies. Then, we reduced the dimensionality of the scaled group dataset using PCA keeping the top 163 

principal components which accounted for >90% of the variance of the original dataset. The inverse transform 164 

of these top principal components further illustrated that no meaningful information was lost by discarding the 165 

remaining principal components (Suppl. Fig. 2). Then, we determined the optimal number of clusters using the 166 

‘elbow method.’ To visualize the efficacy of the clustering, we examined scaled firing patterns sorted by the k-167 

means cluster labels and used a t-Stochastic Neighbour Embedding to project the dimensionally reduced dataset 168 

(and k-means labels) into a 2-dimensional sub-space. Finally, to visualize the firing patterns of each cluster in 169 

the respiratory phase domain, we applied the inverse transform of the PCA to each k-means cluster center. 170 

Population coding & cross-correlation analyses 171 

 We first computed the firing rate histogram of each unit in a pre-BötC ensemble recording using a fixed 172 

bin width of 50 𝑚𝑠. The population rate time histogram was determined for each ensemble by taking the sum of 173 

the spike counts of all neurons in an ensemble for all bins (bin width: 50 𝑚𝑠) before converting the population 174 

counts into the frequency domain. Both the individual pre-BötC firing rate histograms and the population rate 175 

were then smoothed with a 2nd order Savitsky-Golay filter with a window length of 5 bins. To assess how the 176 

population firing rate or individual neuron firing rates correlated with the three-phase respiratory motor pattern, 177 

we measured the Pearson cross-correlation coefficient between VNA and either the population firing rate or the 178 
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firing rate of an individual pre-BötC neuron. We chose VNA as an index of the three-phase respiratory motor 179 

pattern because its pattern reflects all three phases of the respiratory cycle. To test whether the population rate 180 

encoded more information about the respiratory motor pattern than individual pre-BötC units, we compared 181 

these cross-correlation coefficients using a one-way ANOVA. To further characterize the relative timing 182 

between population firing rate peaks and the respiratory motor pattern, we measured the relative time difference 183 

between the I-PI transition and the nearest population firing rate peak. Finally, we examined the cycle-triggered 184 

averaged respiratory LFP in relation to the respiratory motor pattern and population firing rate.  185 

Pharmacologic experiments 186 

 In all pharmacologic experiments, we spike sorted 10 min of pre-BötC ensemble activity before and 187 

after drug administration. In experiments with 8-OH DPAT, neuronal activity was aligned according to the spike 188 

templates identified by the Kilosort algorithm. The significance of the increase in respiratory rate was 189 

determined using a one-way ANOVA. To assess the effect of 8-OH DPAT on the distribution of pre-BötC firing 190 

patterns, the cycle-triggered histograms of all neurons both at baseline and after drug administration were 191 

clustered as described above. The distributions of pre-BötC firing patterns were then compared using a two-way 192 

Kolmogorov-Smirnov test. In fentanyl experiments, after spike sorting, we used the logISI method to identify 193 

bursts and burst-related spikes (38). Once identified, we compared the inter-burst intervals and spikes/burst of 194 

baseline bursting, fentanyl-evoked fast- and slow-bursting populations using a one-way ANOVA. 195 

A Hopfield network model of respiratory pattern generation 196 

 We modelled the respiratory pattern generator as a Hopfield network that included fast- and slow-197 

synapses. An all-to-all connected network of 𝑁 = 70 discrete Hopfield neurons was trained via Hebbian 198 

learning rules for fast- and slow-synapses to generate a sequential, cyclical pattern of spiking in which various 199 

populations were active or silent (29,39,40).  200 

Network dynamics 201 

Following (29,40), the output of the 𝑖th neuron, 𝑉𝑖(𝑡) is related to its net synaptic input 𝑢𝑖(𝑡) by a gain 202 

function 𝑔[𝑥]: 203 

Vi(t) =  g[ui(t) − θi] 204 

We modelled the neuronal dynamics in the high-gain limit where 𝑔[𝑥] is just the Heaviside step function 205 

such that: 206 

Vi(t) = {
1,  𝑢𝑖(𝑡) > θ𝑖

0,  𝑢𝑖(𝑡) ≤ θ𝑖
 207 

The Hopfield neurons in the model included both fast- and slow-synaptic inputs, ℎ𝑖
𝐹 and ℎ𝑖

𝑆 respectively. 208 

The net synaptic input to the 𝑖th neuron, 𝑢𝑖(𝑡), is: 209 

τ𝐹

𝑑𝑢𝑖(𝑡)

𝑑𝑡
+ 𝑢𝑖(𝑡) = ℎ𝑖

𝐹(𝑡) + ℎ𝑖
𝑆(𝑡) 210 

= ∑ [𝑤ij
FVj(t) + 𝑤ij

S Vj(t)]

N

j=1

 211 

where τ𝐹 is the time-constant of the fast synapses, 𝑤𝑖𝑗
𝐹  and 𝑤𝑖𝑗

𝑆  are the synaptic weights of the fast and slow 212 

synapses, respectively, and 𝑉𝑗(𝑡) is the time-averaged output of the neuron, i.e., 213 

𝑉𝑗(𝑡) = ∫ 𝑉𝑗(𝑡 − 𝑡′)𝑤(𝑡′)𝑑𝑡′
∞

0

 214 

The synaptic response function 𝑤(𝑡) for the slow weights, 𝑤𝑖𝑗
𝑆 , is a non-negative function normalized to 215 

unity and characterized by a mean time constant τ𝑆 satisfying 216 
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∫ 𝑡𝑤(𝑡)𝑑𝑡
∞

0

= τ𝑆 217 

 In our model, τ𝐹 and τ𝑆 were 5 and 500 timesteps, respectively. 218 

Hebbian learning of respiratory spiking patterns 219 

The network was trained via Hebbian learning rules to oscillate through a set of states, {𝑆μ}μ=1
𝑟 , that are 220 

each defined by the activity (high-frequency spiking or silent/low-frequency spiking) of all 𝑁 neurons, and that 221 

cyclically progress through their defined sequence  222 

S1 → 𝑆2 → ⋯   → Sr−1 → 𝑆r → 𝑆1 223 

The pre-BötC respiratory firing patterns were not orthogonal (see Fig. 2B for states sequence), and 224 

therefore, we followed the method proposed by (40) to encode these non-orthogonal states in the network. We 225 

first define the correlation matrix of states as 226 

𝐶μ,𝜇+1 =
1

𝑁
∑ 𝑆𝑖

μ

𝑁

𝑖=1

𝑆𝑖
μ+1

, ∀ μ = 1, … , 𝑟 227 

Then, orthogonal states can be constructed from linear combinations of the 𝑆μs 228 

𝑂𝑖
μ

= ∑ 𝐶μ,μ+1
−1

𝑟

μ=1

𝑆𝑖
μ+1

 229 

where 𝐶μ,μ+1
−1  is the pseudo-inverse of the correlation matrix of states. 230 

Finally, the network is trained using the following equations to determine the weights of the fast- and 231 

slow-synapses, respectively. 232 

𝑤𝑖𝑗
𝐹 =

𝐽0

𝑁
∑ 𝑆𝑖

μ

𝑟

μ=1

𝑂𝑗
μ

, ∀ 𝑖 ≠ 𝑗 233 

𝑤𝑖𝑗
𝑆 = λ

𝐽0

𝑁
∑ 𝑆𝑖

μ+1

𝑟−1

μ=1

𝑂𝑗
μ

, ∀ 𝑖 ≠ 𝑗 234 

where 𝐽0/𝑁 sets the scale of the average synaptic strength and λ is a parameter that determines the transition 235 

strength between successive states. For all models shown, 𝐽0 was 3, N was 70 and λ was 10. 236 

Simulations of increasing slow neurotransmission 237 

 To simulate the effects of application of a neuromodulatory receptor agonist, we modelled the effects of 238 

increasing either slow-inhibition or -excitation in the model by increasing the weights of these synapses by 1.5x 239 

their original magnitude. 240 

 241 

Results 242 

Training a Hopfield network to generate the breathing pattern: 243 

 Recurrent Hopfield networks that generate periodic activities can be trained via Hebbian learning rules 244 

given the rhythmic firing patterns of the network (29,40). Therefore, we first needed to estimate the set of 245 

respiratory neuron firing patterns in the intact network of the in situ perfused preparation and chose to do so in 246 

the pre-BötC since it contains neurons from all three phases of the breathing pattern in vivo (30–32).  247 
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To accomplish this, we used a silicon high-density MEA to monitor ensemble single-unit activities of the 248 

pre-BötC in concert with the respiratory motor pattern on phrenic (PNA), vagal (VNA) and hypoglossal (HNA) 249 

motor nerves in the in situ perfused brainstem preparation (Fig. 1A & B). We clustered the cycle-triggered 250 

histograms of their activity using the transition from inspiration to post-inspiration (I-PI transition) as the trigger 251 

for averaging across one respiratory cycle (Fig. 1C-E). Cycle-triggered histograms were determined for 113 252 

neurons from 11 in situ preparations (Fig. 1D). To optimize the sensitivity of the clustering to the firing patterns 253 

of pre-BötC neurons, the dataset was further pre-processed by scaling to the [0, 1] interval to eliminate the 254 

influence of firing rate variability, and by using a principal component analysis (PCA) for dimensionality 255 

reduction. After pre-processing, the dataset was clustered using the K-means algorithm (Fig. 1E). The optimal 256 

number of pre-BötC neuronal types (k* = 14) was determined using the ‘elbow method’ after repeating the K-257 

means clustering for many values of k. 258 

The pre-BötC of rats in situ displayed a mixture of inspiratory, post-inspiratory, late-expiratory and 259 

phase-spanning firing patterns (Fig. 1E). As the purpose of our clustering analysis was to develop a consistent, 260 

un-biased assessment of the diversity of pre-BötC neuronal types, we avoid introducing a new nomenclature, 261 

and instead label the clusters according to a phenotypic division of the classical respiratory neuron types that are 262 

often used in central pattern generator models of respiratory pattern generation: pre-inspiratory, inspiratory, 263 

post-inspiratory, augmenting-expiratory or tonic/respiratory-modulated. The clustering analysis revealed that of 264 

these principal pre-BötC neuronal classes, inspiratory, post-inspiratory and tonic pre-BötC neurons had distinct 265 

sub-classes (Fig. 1E). For instance, the clustering analysis revealed that post-inspiratory pre-BötC neurons were 266 

further sub-divided into 4 sub-classes (see clusters Post-I A-D, Fig. 1E) that differed in their burst durations and 267 

the relative timing of their peak intra-burst frequencies. (Fig. 1F). 268 

 To construct the sequential states needed to train the model (see Materials and Methods: Hebbian 269 

learning of respiratory spiking patterns), we discretized the firing patterns of each pre-BötC neuronal type (Fig. 270 

2). The cluster centroids of each pre-BötC cluster were taken as the putative firing patterns of each neuronal 271 

type (Fig. 2A). The model consists of a network of 70 Hopfield units with fast- and slow-synapses, with each 272 

pre-BötC neuronal class represented by 5 model units. The respiratory cycle was sub-divided into 8 sequential 273 

states of π/4 radians to enable the approximation of the activity of very transiently active neuron populations 274 

like the Post-I B and I D clusters. For each cluster and for each fraction of the respiratory cycle, the state was 275 

taken as 1 when the cluster fired at a high frequency and -1 when the population was less active or silent (Fig. 276 

2B). Using these sequential state vectors, we trained the network to encode these sequential firing patterns using 277 

Hebbian learning rules. The resultant network weights are shown in Fig. 2C & D. The fast-synapses had a 278 

symmetric structure consistent with their role in encoding the fixed points associated with each network state 279 

(Fig. 2C), whereas the slow-synapses had an asymmetric structure consistent with their role in destabilizing any 280 

given fixed point in the direction of the next sequential fixed point (Fig. 2D). As expected, the trained model 281 

generated these sequential firing patterns associated with the three-phase respiratory motor pattern in the 282 

absence of external input (Fig. 2E), thereby fulfilling the definition of a central pattern generator network. Thus, 283 

we generated an associative memory network model of breathing pattern generation that was constrained by the 284 

representation of the three-phase respiratory motor pattern within the pre-BötC. We next validated the 285 

predictions of the model experimentally.  286 

The role of neuromodulation in respiratory rhythm generation: 287 

 The model encapsulates our hypothesis that the asymmetric connectivity of slow-, neuromodulatory-288 

synapses contributes to respiratory rhythm generation. Because the model contains slow-synapses that are 289 

described by their net excitatory or inhibitory effect on the post-synaptic target, we investigated the model 290 

predictions associated with this assumption by uniformly increasing the weights of either slow-inhibitory or -291 

excitatory synapses in silico (Fig. 3). We chose to increase these slow synaptic weights to enable comparison 292 

with the experimental perturbation of systemic administration of neuromodulatory receptor agonists. Increasing 293 

the weights of slow-inhibitory synapses in the model evoked only minor effects on network activity (Fig. 3B). 294 
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Specifically, the sequential firing patterns of the network remained unchanged. However, the frequency of the 295 

network’s rhythm increased by 12%. The alternative perturbation, increasing the weights of slow-excitatory 296 

synapses, evoked a collapse of the respiratory rhythm (Fig. 3C). With the increase in slow excitatory 297 

neuromodulation in the model, the majority of neurons (~64%) fell silent. The remaining active neurons 298 

expressed either tonic or bursting activities. The remaining bursting pattern of activity was characterized by 299 

shorter burst durations and inter-burst intervals than any bursting activity observed at baseline (compare Figs. 300 

3A & C). To test these model predictions experimentally, we analyzed the effect of systemic administration of 301 

either the 5HT1aR agonist 8-OH DPAT (Fig. 4) or the µ-opioid receptor agonist fentanyl (Fig. 5) on pre-BötC 302 

ensemble activity in situ.  303 

Systemic application of 8-OH DPAT evoked effects on pre-BötC ensemble activity that were 304 

qualitatively similar to the model predictions of increasing slow inhibition. 8-OH DPAT increased the frequency 305 

of the respiratory rhythm (Fig. 4A & B). This increase in respiratory rate was accompanied by a reconfiguration 306 

of pre-BötC ensemble activity wherein some units became silent, previously silent units became active and 307 

some units maintained their baseline firing patterns (Fig. 4A). To test whether the distribution of respiratory 308 

firing patterns was altered, we clustered the cycle-triggered histograms of all units before and after systemic 8-309 

OH DPAT (Fig. 4C). All firing pattern clusters contained units from both baseline and 8-OH DPAT groups (Fig. 310 

4D). Importantly, the distribution of pre-BötC firing patterns after systemic 8-OH DPAT was not significantly 311 

different from that at baseline (p=0.98). Taken together, these results suggest that exogenous enhancement of 312 

5HT1aR transmission evokes qualitatively similar effects as those predicted by an increase of slow inhibition in 313 

the model. 314 

The experimentally observed effects of fentanyl on pre-BötC ensemble activity were qualitatively 315 

similar to the model predictions of increasing slow excitation. Systemic administration of 15 nM fentanyl 316 

evoked a collapse of the respiratory motor pattern on phrenic, vagal and hypoglossal nerves (Fig. 5A). 317 

Consistent with the model, ensemble activity in the pre-BötC was largely suppressed with the number of active 318 

neurons from 7.8 ± 1.2 to 2.6 ± 0.5 neurons (Fig. 5B & C, p<0.001). Further, pre-BötC neuronal activity after 319 

systemic fentanyl administration consisted of neurons with either tonic or bursting activities. However, unlike 320 

the model, we observed bursting neurons with either fast-bursting and slow-bursting phenotypes. Consistent 321 

with the model, both classes of bursting neurons had shorter burst durations than at baseline, firing significantly 322 

fewer spikes per burst (Fig. 5E, Fast-Bursting: p<0.05, Slow-Bursting: p<0.01). Further, like the model 323 

predictions, the fast-bursting class also had significantly shorter inter-burst intervals than bursting pre-BötC 324 

neurons at baseline (Fig. 5D, p<0.05). However, the slow-bursting class had significantly longer inter-burst 325 

intervals than bursting pre-BötC neurons at baseline (Fig. 5D, p<0.01). Taken together, the model predictions 326 

after perturbing neuromodulatory transmission were consistent with experimental results suggesting that 327 

neuromodulation underlies respiratory rhythm generation. 328 

Population activity encodes respiratory phase transitions: 329 

 Another prediction of the model was the existence of a population code of the respiratory motor pattern 330 

(Fig. 6). In the model, transitions between successive states occur because of the slow-synaptic 331 

neurotransmission that changes the energy landscape of the network. During any given state, the network lies at 332 

a global energy minimum leading to the repetitive firing of neurons associated with that fixed point. Because of 333 

the asymmetric connectivity of the slow synapses in the network, each fixed point is progressively destabilized 334 

until the fixed point associated with the next sequential state becomes the new global minimum. When this 335 

critical point is reached, the network rapidly transitions to the new fixed point thereby recalling the activity 336 

pattern of the next sequential state. These transitions are not instantaneous. Each state transition involves a short 337 

overlap of the activity patterns associated with the two successive states during this pattern recall process 338 

causing peaks in the population firing rate. We observed that the population activity of the network resembled 339 

the bi-phasic waveform expressed in vagal nerve activity, and that three of the eight state transitions—from I to 340 
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PI, from PI to E2 and from E2 to I—were associated with brief peaks in population activity (Fig. 6A, top) when 341 

the distance between successive state vectors was maximal.  342 

 To test whether the intact respiratory network in situ also generates a population code of respiratory 343 

phase transitions, we measured the population firing rate of pre-BötC ensembles in situ. Like the model, the 344 

population activity of the pre-BötC ensembles was characterized by a basal level of activity interspersed with 345 

brief peaks of fast spiking (Fig. 6B). Consistent with the model, the peaks in population activity occurred at or 346 

near the three transitions between respiratory phases. The cross-correlation between the population activity and 347 

the vagal motor pattern, which carries information about all three phases of the respiratory motor pattern, was 348 

significantly greater than that of individual neurons (Fig. 6C) suggesting that the population activity carries 349 

more information about the breath-by-breath respiratory motor pattern than the activity of any individual pre-350 

BötC neuronal type.  351 

To further investigate whether the timing of pre-BötC population activity was specifically associated 352 

with the transitions between respiratory phases, we focused on the relative timing between ensemble population 353 

activity peaks that occurred nearest to the transition between I and PI (Fig. 6D). On average, the ensemble 354 

population activity peak occurred 0.0024 ± 0.206 s before the decline in inspiratory PNA amplitude reflecting 355 

the fact that individual ensembles differed greatly with respect to the precision of and relative timing of their 356 

encoding the I-PI transition (Fig. 6D). We hypothesized that this variability may be due to the limited number of 357 

pre-BötC neurons that we were able to simultaneously monitor using silicon MEAs. Therefore, we further 358 

addressed this question by measuring the cycle-triggered averages of respiratory local field potentials (LFPs) on 359 

each of the four MEA shanks and ensemble population activity in a representative experiment since LFPs reflect 360 

the synaptic activity of many more neurons (Fig. 6E). Respiratory LFPs in the pre-BötC occurred specifically at 361 

the E2-I and I-PI transitions, whereas the ventral-most site of the fourth shank identified respiratory LFPs 362 

occurring specifically at the I-PI and PI-E2 transitions. Taken together, these data confirm the prediction of the 363 

model that population activity within the respiratory network peaks at the transitions between respiratory 364 

phases, a feature that is not present in the population activity of CPG models of respiratory pattern generation 365 

(Suppl. Fig. 3).  366 

 367 

Discussion 368 

In this study, we have developed a Hopfield network model of respiratory rhythm and pattern generation 369 

that encapsulates the hypothesis that slow-, neuromodulatory-connectivity in the respiratory network is 370 

organized asymmetrically to generate the respiratory rhythm. We tested this model assumption by comparing 371 

the predictions of uniformly increasing slow-inhibitory or -excitatory weights with in situ experiments in which 372 

we recorded ensemble activity of the pre-BötC before and after systemic administration of 5HT1aR or µ-OR 373 

agonists. Increasing slow-inhibitory weights in the model or activating 5HT1aRs systemically with 8-OH DPAT 374 

increased the frequency of the respiratory rhythm without changing the firing patterns of respiratory neurons. 375 

Increasing slow-excitatory weights in the model or activating µ-ORs systemically with fentanyl arrested the 376 

respiratory rhythm sparing neurons with tonic- and short bursting-firing patterns. The similarity between model 377 

predictions and experiments supports the hypothesis that neuromodulatory connectivity in the respiratory 378 

network is organized asymmetrically to promote rhythmogenesis. The model also predicted the existence of a 379 

population code of respiratory phase transitions which we confirmed in the population activity of pre-BötC 380 

ensembles and respiratory LFPs in the pre-BötC. 381 

Network models of respiratory rhythm and pattern generation 382 

Computational models of respiratory rhythm and pattern generation have been developed to explain 383 

experimental observations at both cellular and network scales. The discovery of spontaneously bursting pre-384 

inspiratory neurons of the pre-BötC led to the development of cellular models that describe how persistent 385 

sodium currents could underlie spontaneous inspiratory bursting in single neurons (41). Recent work on the 386 
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bursting mechanisms of the isolated pre-BötC has highlighted that its small-world connectivity, rather than its 387 

intrinsic conductances, underlies the capacity to generate inspiratory bursting activity (42,43). This conceptual 388 

model has been incorporated into network models that consist of excitatory neurons containing a subset of 389 

spontaneously bursting units connected in a small-world pattern, which is now considered to explain the 390 

inspiratory bursting of the isolated pre-BötC (44,45). Beyond the pre-BötC inspiratory activity, several network 391 

models have been developed to formalize the long-standing conceptual view of the respiratory network as a 392 

central pattern generator (46–51). These central pattern generator models consist of neurons with mutual 393 

inhibitory interactions that sculpt respiratory neuronal activities from several sources of excitatory drive. 394 

Importantly, they have shown that reciprocal inhibition can account for a variety of experimental observations 395 

including the generation of the three-phase respiratory motor pattern of inspiration, post-inspiration and late-396 

expiration. However, a limitation of previous models is that the respiratory network is not composed of strictly 397 

inhibitory or excitatory neurons. For the case of central pattern generator models, this property is highlighted by 398 

studies which show that blockade of synaptic inhibition in key inspiratory or expiratory compartments of the 399 

respiratory network is not sufficient to ablate the respiratory pattern in vivo (9,52). Thus, there remains a need 400 

for computational models of respiratory rhythm and pattern formation that have greater face validity. 401 

In the present study, we developed a network model of respiratory rhythmogenesis that incorporated 402 

excitatory, inhibitory and neuromodulatory connections. Using previously proposed connectivity patterns 403 

(29,40), we were able to generate a network model of respiratory rhythm and pattern generation based on the 404 

assumed set of respiratory firing patterns which we measured from ensemble recordings of the pre-BötC in situ. 405 

This model encapsulated our hypothesis that asymmetric neuromodulatory connections can promote the 406 

generation of the respiratory rhythm. In testing this core assumption, we found that the model was also 407 

predictive in that perturbations of its connectivity weights were consistent with experimental perturbations of 408 

serotonergic or opioidergic neurotransmission. However, the model is not without limitation. For instance, the 409 

model does not include spontaneous bursting neurons. However, spontaneous bursting neurons have been 410 

shown to be dispensable in central pattern generator models of the respiratory rhythm (53). Further, the 411 

Hopfield units of our model are binary and thus cannot generate the spiking or bursting dynamics associated 412 

with more detailed neuron models. However, it was demonstrated that the network connectivity patterns of 413 

Hopfield networks can be translated into those for spiking networks to yield networks with similar behavior 414 

(54). Finally, the present model also does not follow Dale’s law since the Hopfield units can have both 415 

excitatory and inhibitory neurons. Given such significant simplifications from the biological system, it is 416 

notable that the model was able to predict the collapse of network activity following fentanyl administration.  417 

Population coding of respiratory phase transitions 418 

The findings of the present study also extend previous observations of a population code of respiratory 419 

phase transitions. In an earlier study, we reported that respiratory LFPs, which reflect the synaptic activities of 420 

local populations, peaked specifically at the transitions between the three phases of the respiratory cycle 421 

throughout the ponto-medullary respiratory network (55). In the present study, this feature was observed both in 422 

the model in the ensemble activity of the pre-BotC in situ. In the model, transitions between states are evoked 423 

by slow neuromodulatory transmission that acts to change the ‘energy’ landscape of the network such that the 424 

fixed point associated with a given state is destabilized in the direction of the fixed point associated with the 425 

next state (40). At the transition, a partial cue of the next state’s memory is established allowing the network to 426 

recall the activity pattern of the next state. These transitions involve a brief overlap of the activities of adjacent 427 

Hebbian assemblies as the memory of the next fixed point is recalled and stabilized. Interestingly, peaks in the 428 

network’s population activity appeared at only three of eight transitions, which corresponded to those between 429 

inspiration, post-inspiration and late-expiration. We observed a qualitatively similar pattern of population 430 

activity in pre-BötC ensembles in situ. Importantly, this property of population activity cannot be accounted for 431 

in half-centre oscillator CPG models of respiratory pattern generation (Suppl. Fig. 3) since transitions in such 432 

models occur via an escape or release mechanism in which the population activity at a transition is either 433 

balanced or shifts to a new plateau depending on the number of units active before and after the transition (49). 434 
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Thus, the proposed model of asymmetric neuromodulation better accounts for the population activity of the 435 

respiratory network in situ. 436 

In addition, we observed, both in the model and in experiments, that the cycle-triggered average of the 437 

population activity in the network or in the pre-BötC respectively resembled the bi-phasic discharge of the vagal 438 

motor pattern, which regulates upper-airway patency. This observation is consistent with the recent 439 

characterization of a role for the pre-BötC in regulating, not just inspiratory discharge in the inspiratory motor 440 

nerves, but also in the inspiratory and post-inspiratory activity in the vagus (56). In the model, this bi-phasic 441 

pattern of population activity reflects the distribution of firing patterns the network was trained to generate. We 442 

derived this distribution directly from the clustering of firing patterns present in ensemble recordings in situ. 443 

Consistent with previous observations in the intact brainstem, the distribution of pre-BötC firing patterns 444 

included neurons with bursting activity in the inspiratory, post-inspiratory and late-expiratory phases as well as 445 

neurons with tonic or respiratory modulated activities (30–32). The latter classes of respiratory neurons have 446 

been previously implicated in respiratory phase switching and the reflex and behavioral control of the 447 

respiratory pattern (57–60). In contrast, in our model, these patterns of activity are merely a consequence of the 448 

overall network connectivity, with each population’s slow synapses playing significant roles in determining 449 

respiratory phase switching. Consistent with this experimental finding, we observed a stronger cross-correlation 450 

between pre-BötC ensemble activity and the vagal motor pattern than the activity of any individual pre-BötC 451 

neuron suggesting that the population, rather than individual bursting neurons, is responsible for encoding the 452 

respiratory motor pattern in network activity. Together, these experimental data confirm the model prediction of 453 

the temporal structure of population activity within the respiratory network.  454 

Implications for opioid-induced respiratory depression (OIRD) 455 

OIRD remains a significant health problem in the United States (12,61). Recently, the risk posed by 456 

illicit synthetic µ-OR agonists has been further exacerbated by the presence of adulterants like xylazine that act 457 

on α2 adrenergic receptors and nitazenes which are µ-OR agonists that may not be fully counteracted by the µ-458 

OR antagonist naloxone (61). Thus, the incidence of OIRD due to synthetic opioids and combinations of opioid 459 

and non-opioid substances has motivated the need to discover new therapeutics to counteract OIRD. Our 460 

computational model and experimental results suggest that neuromodulatory connectivity within the respiratory 461 

network is organized asymmetrically to promote rhythmogenesis. We propose that the pattern of 462 

neuromodulation should be considered for the rational design of therapies to treat respiratory disorders like 463 

OIRD. More specifically, our results suggest that identification of alternative neuromodulatory targets to 464 

prevent or reverse OIRD will require the consideration of the pattern of neuromodulator receptor expression, its 465 

overlap with that of µ-OR expression and the firing pattern of the target respiratory neurons.  466 

Neuromodulatory signaling pathways have long been therapeutic targets for respiratory disorders. A 467 

remarkable example of this strategy occurred in the case of a patient who experienced severe apneustic 468 

respiratory disturbances after surgical resection of a tumor at the ponto-medullary junction (62). In this case 469 

study, the apneustic respiratory motor pattern was corrected without side-effects using buspirone, a 5HT1aR 470 

agonist. The rationale behind the therapy arose from the perspective that neuromodulators act to influence 471 

intracellular second messenger cascades and that counteracting the influence of one pathway could be achieved 472 

by activating alternative second messenger systems with the right neuromodulatory agonist (63). However, the 473 

predicted downstream effects on membrane excitability came from intracellular recordings of very few 474 

respiratory neurons before and after drug applications. This limited evidence also led to other cases in which 475 

neuromodulatory therapies were met with limited success. For instance, 5HT4aRs were identified as a 476 

therapeutic to better manage OIRD without the loss of analgesia that accompanies OIRD reversal with naloxone 477 

(64). However, later clinical trials showed that the 5HT4R-agonist mosapride was ineffective in recovering from 478 

morphine-induced OIRD in humans (65). In the case of the irregular respiratory rhythms present in patients 479 

with Rett syndrome, pre-clinical studies in MeCP2-deficient mice developed strong evidence that drugs 480 

targeting serotonergic and dopaminergic receptors were effective to correct respiratory disturbances (66,67). 481 
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However, clinical trials in Rett patients treated with saritozan, a 5HT1aR- and D2R-agonist, were unsuccessful 482 

(68).  483 

In the present study, we developed a computational model of respiratory pattern generation based on the 484 

hypothesis that the pattern of neuromodulation in the network is organized asymmetrically to promote periodic 485 

sequential network activity. Despite the simplicity of this network model, increasing the weights of slow-486 

excitatory neuromodulatory connections accurately predicted the pattern of network activity that was 487 

experimentally observed following fentanyl-induced OIRD, specifically a reduction in the number of active 488 

neurons that spared populations with either tonic or short bursting activities. Similarly, increasing the weights of 489 

slow-inhibitory neuromodulatory connections predicted the effects of systemic application of 5HT1aR agonist 490 

8-OH DPAT which increases the frequency of the respiratory rhythm without changing the pattern of respiratory 491 

network activity. This latter model prediction has been widely observed in pharmacologic, optogenetic or 492 

chemogenetic experiments both in reduced slice preparations in vitro and in the intact network in situ for many 493 

neuromodulatory systems (6) including, for example, serotonin (8,64,69), acetylcholine (70), norepinephrine 494 

(71,72), dopamine (73), ATP (74–76) and histamine (77). That a relatively simple model of respiratory pattern 495 

generation could predict the effects of neuromodulation highlights the need to consider the pattern of 496 

neuromodulation across the network for the rational design of neuromodulatory therapies. In other words, one 497 

should address the question of whether a proposed neuromodulatory therapeutic targets the opposing 498 

asymmetric respiratory neuronal populations to promote respiratory pattern formation? Nonetheless, these 499 

simulations and experiments support previous suggestions to develop combinatorial neuromodulatory therapies, 500 

particularly to protect against opioid-induced respiratory depression (8,64,78). 501 

The need to consider the network mechanism of respiratory neuromodulation is further highlighted by 502 

the fact that both neuromodulatory agonists used in the present study are coupled to Gi/o-dependent signaling 503 

cascades (8,79). In the case of the 5-HT1aRs, our findings were consistent with a predominant effect of slow-504 

inhibition in the network. In the case of µ-ORs, our results which suggest a net effect of opioids to increase 505 

slow-excitation may appear counter-intuitive to the commonly held notion that activation of µ-ORs evokes 506 

inhibition of membrane excitability. Importantly, the action of a particular neuromodulatory receptor agonist on 507 

one cell-type does not necessarily generalize to its effect on any neuron. Instead, the effect of activating 508 

neuromodulatory receptors depends on the targets of the corresponding intracellular signaling cascades which 509 

vary across neuronal cell types. In the case of µ-ORs, it is well known that neurons can show either excitatory 510 

or inhibitory effects depending on the cell-type (79). One simple explanation of our observations is that µ-ORs 511 

may have a greater effect on inhibitory neurons such that the net effect of opioids at the level of the respiratory 512 

network is that of a slow-disinhibition. Alternatively, it has also been shown that µ-ORs can directly excite their 513 

target neurons via the coupling of their Gβγ-subunits to PLC-dependent signaling cascades that increase 514 

intracellular calcium levels (80). In either case, our computational and experimental observations supporting an 515 

asymmetric pattern of neuromodulation in the network further highlight the need to consider the intracellular 516 

effects of a neuromodulatory pathway across the whole network, rather than in small subsets of respiratory 517 

neurons. 518 
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Figures & Figure Legends 722 

 723 

Figure 1: Identifying the pre-BötC neuronal firing patterns that underlie the three-phase respiratory 724 

motor pattern.  725 

A Reconstruction of an MEA positioned in the pre-BötC in situ in a representative experiment. 726 

B A representative recording of the three-phase respiratory motor pattern on hypoglossal (HNA), phrenic (PNA) 727 

and vagal (VNA) nerves in concert with an ensemble of pre-BötC neurons.  728 

C Cycle-triggered histograms of the pre-BötC neurons shown in (A) include neurons that spike in late-729 

expiration (E2), inspiration (I) and post-inspiration (PI). 730 

D Cycle-triggered histograms of all recorded pre-BötC neurons before clustering. 731 

E K-means clustering identifies 14 classes of pre-BötC firing patterns that underlie the three-phase respiratory 732 

motor pattern. 733 

F Reconstructed locations of a subset of neurons suggest that pre-BötC neuronal types are spatially mixed. 734 

 735 
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 736 

Figure 2: Training a Hopfield model to encode the firing patterns of pre-BötC neuronal clusters.  737 

A The centroids of pre-BötC neuronal clusters were used as a basis to determine the sequential firing patterns to 738 

be encoded in the model. The respiratory cycle was discretized into 8 sequential states to account for the brief 739 

firing patterns of the Pre-I, Post-I B and I-D populations. 740 

B Each pre-BötC cluster was represented by 5 neurons in the model. Their training vectors were taken as +1 741 

when the cluster fired at a high-frequency or -1 when the cluster was silent or firing at a low-frequency. 742 

C, D The resultant fast- (C) and slow- (D) synaptic connectivity of the Hopfield network after training to 743 

encode the sequential state vectors using Hebbian learning rules. 744 

E As expected, the model generated the learned sequential firing patterns that underlie the three-phase 745 

respiratory motor pattern in the pre-BötC. Black: tonic or respiratory-modulated; Purple: inspiratory; Red: post-746 

inspiratory; Orange: late-expiratory. 747 
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 748 

Figure 3 Neuromodulation of the respiratory rhythm in silico. 749 

A The sequential firing pattern produced by the network at baseline.  750 

B Increasing slow synaptic inhibition in the model evokes an increase in the frequency of the respiratory rhythm 751 

without any change in the sequential firing pattern of the network. 752 

C Increasing slow excitation in the model evokes a collapse of the respiratory rhythm characterized by a 753 

reduction in the number of active units whose remaining activity was either tonic or fast bursting.  754 
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 755 

Figure 4 The 5HT1aR agonist 8-OH DPAT increases the frequency of the respiratory rhythm without 756 

changing the firing pattern of pre-BötC ensembles. 757 

A Systemic administration of 8-OH DPAT evoked an increase in the frequency of the respiratory rhythm as 758 

observed in PNA & VNA that was associated with a reconfiguration of pre-BötC ensemble activity. In this 759 

representative experiment 6 pre-BötC neurons maintained their original firing patterns, but at a higher 760 

frequency. In addition, 5 pre-BötC neurons became silent, and 6 pre-BötC neurons were activated.  761 

B The frequency of the respiratory rhythm was significantly increased after systemic application of 8-OH 762 

DPAT. * p<0.05 763 

C K-means clustering of all recorded pre-BötC neurons at baseline and after systemic 8-OH DPAT identified 764 

many of the pre-BötC neuronal types previously observed. 765 

D All clusters except the Aug-E population were present at similar ratios at baseline (circles) and after systemic 766 

8-OH DPAT (crosses) suggesting that despite the reconfiguration of pre-BötC ensemble activity, the distribution 767 

of neuronal firing patterns that composed the respiratory pattern generator remained the same.  768 

 769 
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 770 

Figure 5 The reconfiguration of pre-BötC ensemble activity after opioid-induced respiratory depression is 771 

consistent with model predictions after increasing slow-excitation. 772 

A Systemic fentanyl administration evokes a collapse of the respiratory rhythm on phrenic (PNA), hypoglossal 773 

(HNA) and vagal (VNA) nerves. 774 

B Consistent with the model predictions after increasing slow excitation, systemic fentanyl administration was 775 

associated with a reduction in the size of pre-BötC ensembles and spared tonic (gray), fast- (purple) and slow- 776 

(green) bursting firing patterns. Pink bars at baseline indicate the inspiratory periods. 777 

C Systemic fentanyl administration significantly reduced the number of active neurons in pre-BötC ensembles. 778 

*** p<0.001 779 

D Consistent with the model predictions, fast-bursting pre-BötC neurons had significantly shorter inter-burst 780 

intervals (IBI) than bursting pre-BötC neurons at baseline. However, we also observed a slow-bursting pre-781 

BötC population after systemic fentanyl administration that had significantly longer IBIs than bursting pre-BötC 782 

neurons at baseline. B: bursting; T: tonic; FB: fast-bursting; SB: slow-bursting * p<0.05; ** p<0.01 783 

E Consistent with the model predictions both fast- and slow-bursting pre-BötC neurons fired fewer spikes per 784 

burst than bursting pre-BötC neurons at baseline. * p<0.05; ** p<0.01 785 
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 786 

 787 

Figure 6: Population coding of the transitions between respiratory phases in the model and in the pre-788 

BötC in situ. 789 

A Because the recall of the next sequential state involves a slight overlap of sequential assemblies, the model 790 

generates brief peaks in the population firing rate at each of the three transitions between respiratory phases 791 

when the adjacent state vectors are most distant. Black: tonic or respiratory-modulated; Purple: inspiratory; 792 

Red: post-inspiratory; Orange: late-expiratory. 793 

B Consistent with the model predictions, pre-BötC ensemble activity is associated with a population firing rate 794 

that also peaks at or near the transitions between respiratory phases. 795 

C The cross-correlation between the population firing rate and the three-phase respiratory pattern of vagal nerve 796 

activity (VNA) was significantly greater than that between any individual pre-BötC unit and VNA. *** 797 

p<0.001 798 

D The cross-correlation between the population firing rate and VNA was almost always greater than that 799 

between the unit firing rate and VNA. KS-test: p<0.001. 800 

E Individual pre-BötC ensembles varied with respect to the precision with which their population firing rate 801 

encoded the I-PI transition.  802 

F Cycle-triggered averages of pre-BötC local field potentials (LFPs) more reliably encoded the transitions 803 

between respiratory phases.   804 
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