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KEYWORDS Abstract Background: Owing to the compressive nature of the neuropathy, patients with
Carpal tunnel carpal tunnel syndrome (CTS) have prolonged distal motor latency (DML), sensory nerve la-

syndrome; tency (SNL), median nerve swelling and restricted median nerve mobility. The purpose of this
Cross-sectional area; study was to noninvasively augment carpal tunnel space using radioulnar wrist compression
Median nerve; (RWC) and evaluate its effects on median nerve pathological properties in patients with
Mobility; CTS. It was hypothesized that the RWC intervention would reduce the median nerve DML,
Nerve conduction; SNL and cross-sectional area (CSA) and enhance longitudinal median nerve mobility
Radioulnar wrist in patients. with CTS.

compression Methods: Eleven patients diagnosed with CTS participated in this study. A portable RWC inter-

vention splint was developed to apply 10 N of compressive force across the wrist. Three daily
sessions of RWC were performed over 4 weeks of intervention (15 min per session, 45 min per
day, 7 days per week). Each 15-min session consisted of three 5-min blocks of RWC, with a 1-
min rest in between consecutive blocks. Patients were evaluated at Week 0 (baseline), Week
2 (mid-intervention) and Week 4 (end of intervention). DML and SNL of the median nerve were
evaluated using established nerve conduction study techniques. Median nerve CSA at the
distal wrist crease was obtained by ultrasound imaging. Median nerve motion associated with
finger flexion/extension was captured by dynamic ultrasound imaging and quantified using a
speckle cross-correlation algorithm. Finger flexion/extension was recorded using an electro-
goniometer. The slope of the regressed linear equation of median nerve displacement as a
function of finger flexion angle was used to quantify nerve mobility.

* Corresponding author. Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA.
E-mail address: liz4@ccf.org (Z.-M. Li).

https://doi.org/10.1016/j.jot.2019.01.002
2214-031X/© 2019 The Authors. Published by Elsevier (Singapore) Pte Ltd on behalf of Chinese Speaking Orthopaedic Society. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


mailto:liz4@ccf.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jot.2019.01.002&domain=pdf
https://doi.org/10.1016/j.jot.2019.01.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.sciencedirect.com/science/journal/2214031X
http://ees.elsevier.com/jot
https://doi.org/10.1016/j.jot.2019.01.002
https://doi.org/10.1016/j.jot.2019.01.002

Y. Yao et al.

Results: Patients with CTS showed significantly decreased DML (p = 0.048) and median nerve
CSA (p < 0.001) and increased nerve mobility (p < 0.001) at mid-intervention compared to
baseline. However, DML, CSA and mobility of the median nerve did not differ significantly be-
tween Weeks 2 and 4 (p = 0.574, 1.00 and 0.139, respectively). Median nerve SNL was not
significantly affected throughout the 4-week intervention (p = 0.330 for Week 0 vs. 2;

Conclusion: This study revealed that RWC intervention with 10-N force applied to the wrist in
the radioulnar direction could restore impaired neurophysiological and biomechanical func-
tions of the median nerve. The beneficial effects of RWC intervention for the median nerve
were in evidence after a relatively short period of two weeks. These functional improvements
could be explained by intermittent decompression of the median nerve via RWC-induced

The translational potential of this article: Biomechanically manipulating the carpal tunnel by
RWC decompresses the median nerve and has the potential to become an alternative treat-

© 2019 The Authors. Published by Elsevier (Singapore) Pte Ltd on behalf of Chinese Speaking
Orthopaedic Society. This is an open access article under the CC BY-NC-ND license (http://
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p = 1.00 for Week 2 vs. 4).
augmentation of the carpal arch.
ment for CTS.
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Carpal tunnel syndrome (CTS) is the most common periph-
eral entrapment neuropathy resulting from compression of
the median nerve at the wrist, affecting approximately 4%
of the US general population [1]. The pathophysiology of
CTS is likely multifactorial but thought to be driven mainly
by mechanical insult on the median nerve resulting from
increased pressure within the carpal tunnel [2].

Electrophysiologically testing median nerve conduction
has also been widely used for clinical diagnosis of CTS [3,4].
When compared to healthy individuals, whose median
nerve distal motor latency (DML) and sensory nerve latency
(SNL) are generally less than 4.2 ms [5,6] and 3.4 ms [6,7],
respectively, patients with CTS classically present with
prolonged median nerve DML [8] and SNL [9].

Median nerve cross-sectional area (CSA) is commonly
evaluated ultrasonographically as a means of diagnosing
CTS [10,11]. Median nerve CSA is considered abnormal
when the CSA is > 9 mm? proximal to the carpal tunnel
entry [12], >10.03 mm? in the proximal carpal tunnel [13]
or > 10.5 mm? at the level of pisiform bone [14]. In pa-
tients with CTS, increased median nerve CSA, specifically
within the proximal segment of the carpal tunnel, is an
indicator of pathological state of nerve swelling [15—17].

The median nerve is a mobile structure that stretches,
compresses and translates in response to upper extremity
motion. In healthy hands, the median nerve experiences
sufficient excursion in response to hand motions to dissi-
pate mechanical stress [18,19]. In patients with CTS,
mobility of the median nerve is commonly restricted which
is indicative of nerve dysfunction [20—22]. Therapeutically,
gliding exercises are used to improve impaired nerve
mobility as a conservative intervention for CTS [23,24].

Symptoms of CTS are commonly managed by conservative
and/or surgical means. Conservative interventions for CTS
include wrist splinting [25], nonsteroidal antiinflammatory
drugs [26] and corticosteroid injection [27]; however, their
effectiveness remains uncertain. Surgical treatment of CTS

is performed by transecting the transverse carpal ligament.
However, surgical release disrupts the anatomical, biome-
chanical and physiological functions of the carpal tunnel [28]
and is associated with complications such as loss of grip
strength, postoperative pillar pain [29] and symptom
recurrence [30].

Recent studies have demonstrated a method to augment
the carpal arch biomechanically as a way to decompress the
median nerve [31,32]. Geometric modelling [31] and
in vitro studies [32] have showed that carpal arch width
narrowing is associated with palmar bowing of the trans-
verse carpal ligament, leading to increased arch height and
area. Radioulnar wrist compression (RWC) increased the
carpal arch area and lessened the flattening ratio of the
median nerve in vivo [33,34], suggesting that the median
nerve had been decompressed. However, it remains un-
known how RWC improves the pathomechanics and patho-
physiology of the median nerve in patients with CTS.

The purpose of this study was to evaluate the effects of
4 weeks of daily RWC on median nerve DML, SNL, CSA and
longitudinal mobility in patients with CTS. It was hypothe-
sized that RWC intervention would reduce median nerve
DML and SNL, decrease median nerve CSA and increase
median nerve longitudinal mobility in patients with CTS.

Materials and methods
Human individuals

Eleven patients (56.2 + 12.3 years; 4 male and 7 female)
clinically diagnosed with CTS voluntarily participated in this
study, and the more affected hand of each participant was
evaluated. Participants were recruited based on a history of
paraesthesia, pain and/or numbness in the median-
innervated hand territory persisting for at least 3 months;
at least one positive physical examination of Tinel’s sign,
Phalen’s test or carpal compression test; a mean CTS
severity score greater than 1.5 using the questionnaire [35];
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DML larger than 4.2 ms and SNL larger than 3.4 ms [6]. Pa-
tients were excluded from participation if they had systemic
diseases (i.e. rheumatoid arthritis, diabetes, fibromyalgia),
a history of major injury to the hand and wrist, underwent
previous surgical intervention, current night splinting
treatment, musculoskeletal/neuromuscular disorders or
body mass index above 30 or if they were currently pregnant.
The study was approved by the institutional review board,
and written informed consent was obtained from each
participant before participation.

RWC intervention

A portable device was developed to noninvasively apply
compressive forces across the wrist in the radioulnar di-
rection and centred at the distal level of the carpal tunnel.
Force application was achieved by air pressure through a
medical balloon (5.5 x 5.5 cm) attached to the ulnar side of
a thermoplastic wrist brace (DJO Global, Vista, CA, USA).
Air pressure applied using a sphygmomanometer generated
140 mmHg, or 10 N, compressive force to the wrist [34].
Patients were trained to wear the portable RWC device
three times daily over 4 weeks of intervention. Each
bracing session included three 5-min wrist compressions
followed by a 1-min rest in between.

Outcome measures

Patients were evaluated biweekly over the 4-week period,
which included three data collection time points at Weeks
0 (baseline), 2 (mid-intervention) and 4 (end of interven-
tion). At each time point, assessment of intervention out-
comes included median nerve conduction (DML and SNL),
median nerve CSA and median nerve mobility.

Median nerve conduction

Nerve conduction studies were performed using a NeuroMax
1002 nerve conduction system (XLTEK, Oakville, Ontario,
Canada). DML and SNL were examined using a standard
technique of supramaximal percutaneous stimulation. Room
temperature was maintained at 25°C, and skin temperature,
over 32°C. To evaluate DML, the active electrode was placed
over the abductor pollicis brevis muscle, and the reference
electrode was placed 4 cm above the active electrode, just
distal to the metacarpophalangeal joint of the thumb. The
median nerve was stimulated supramaximally at the wrist,
7 cm proximal to the active electrode, by two stainless-steel
electrodes placed longitudinally over the median nerve. To
evaluate SNL, the reference and active ring electrodes were
placed at the distal and proximal interphalangeal joints of
the index finger, respectively. Stimulator probes were
placed over the median nerve 14 cm proximal to the refer-
ence electrode. DML and SNL were evaluated during the
visits at Weeks 0, 2 and 4.

Median nerve CSA

Participants were instructed to lay with their forearm su-
pinated with the wrist neutrally positioned in a thermo-
plastic splint shaped according to the individual’s arm

geometry. An ultrasound imaging system (Acuson S2000;
Siemens Medical Solutions USA, Mountain View, CA, USA)
with an 18L6HD linear array transducer (Siemens Medical
Solutions USA, Mountain View, CA, USA) was used to assess
median nerve morphology. The transducer was placed
transversely at the level of the distal wrist crease and
perpendicular to the long axis of the forearm at the inlet of
the carpal tunnel. Ultrasound images with 0.062-mm reso-
lution and 640 x 480 pixels image size were captured by a
single investigator (Y.Y.) who was experienced in musculo-
skeletal ultrasound imaging of the carpal tunnel. The image
depth was set as 2.5 cm, and the gain was set as 8 dB.
Median nerve CSA was obtained using the ImageJ (US Na-
tional Institutes of Health, Bethesda, MD, USA) multipoint
selection tool to trace the median nerve within its hyper-
echoic border.

Median nerve mobility

Patients laid supine on a testing bed with the arm abducted
30°, the forearm supinated and the wrist in neutral. The
patient’s arm was secured within a thermoplastic splint
shaped according to his/her arm geometry. The thumb was
fixed in 45° extension, and the proximal/distal interpha-
langeal joints of the four fingers were fixed in an anatom-
ical neutral position using a flat splint at the dorsum of
hand. The ultrasound transducer was used to identify the
axial imaging plane that clearly contained the hook of
hamate and ridge of trapezium, corresponding to the distal
boundary of the carpal tunnel. The tuberosities of the
pisiform and the scaphoid were identified in the axial im-
aging plane, corresponding to the proximal boundary of the
carpal tunnel. The ultrasound system setup was the same as
mentioned previously. A line of radiopaque markers
(0.33 mm diameter; Beekley Corporation, Bristol, CT, USA)
were attached to the patient’s palmar surface to define the
proximal and distal boundary of the carpal tunnel under
ultrasound imaging. The radiopaque markers were placed
10 mm distal and parallel to the hamate—trapezium line
and 10 mm proximal and parallel to the pisiform—scaphoid
line to prevent artifacts caused by shadow from the metal
markers from entering the ultrasound images.

High-frequency (17 MHz) dynamic ultrasound images
captured the longitudinal median nerve within the carpal
tunnel as a superficial structure that is hypoechogenic
compared to the speckle structure of the tendons during
finger flexion/extension. The ultrasound transducer was
mounted on the palmar surface after locating the plane in
which the median nerve was the thickest. Angular finger
motion at the metacarpophalangeal joints was recorded
using an electrogoniometer attached to the back of the
hand and four fingers and was synchronized to ultrasound
image capture. Ultrasound frame rate for acquisition was
set as 30 Hz. Cyclic finger flexion/extension was conducted
between neutral (0°) and 90° flexion at a pace of 0.3 Hz,
synchronized to a metronome for 1 min. The procedure was
executed three times with a 3-min rest provided between
consecutive trials. Three random finger flexion phases from
0° to 90° were analyzed.

Longitudinal median nerve displacement at each flexion
angular position was analyzed using a custom LabVIEW
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(National Instruments, Austin, TX, USA) program using
speckle cross-correlation algorithm [36]. Sequences of im-
ages were converted to digital format and analyzed offline
frame by frame. The program defined ranges of interest
(ROIs) (6.2 x 1.8 mm) at 0.62-mm increments along the
midline of the median nerve and tracked each ROI frame by
frame corresponding to finger motion. Individual ROls
ranged from the proximal to distal boundary of the carpal
tunnel. Median nerve displacement was calculated as the
mean value of individual displacements of all ROIs. Least-
squares linear regression was performed for median nerve
displacement as a function of finger flexion angle. The
slope of the linear equation was used to quantify the
mobility of the nerve. Static structures such as carpal bones
were also tracked using the same methodology to eliminate
error from probe or forearm movement relative to the
probe during finger flexion. Any movement of bone struc-
tures was subtracted from the nerve displacement values to
give the best estimation of median nerve displacement.

Statistical analysis

One-way repeated-measures analysis of variance was per-
formed to examine the effect of RWC intervention time
(Weeks 0, 2 and 4) on median nerve DML, SNL, CSA and
mobility in patients with CTS. Post hoc Tukey’s tests were
used for pairwise comparisons, and p-values less than 0.05
were considered statistically significant. All statistical an-
alyses were performed using SigmaStat 3.4 (Systat Software
Inc., San Jose, CA, USA).

Results
Median nerve conduction

Median nerve conduction outcomes DML and SNL are shown
in Figs. 1 and 2, respectively. The median nerve DML at
baseline (Week 0) was 6.98 4+ 2.74 msec. After 2 weeks of
RWC intervention (Week 2), median nerve DML decreased by
0.71 msec (10.2%) to 6.27 + 2.05 msec, which was signifi-
cantly lower than the baseline value (p < 0.05). By Week 4,
median nerve DML increased slightly to 6.36 + 2.59 msec,
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Figure 1  Median nerve DML in the patients with CTS under
radioulnar wrist compression intervention from baseline (Week
0) through 4-week treatment (Week 4) (*p < 0.05).

CTS = carpal tunnel syndrome; DML = distal motor latency.
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Figure 2 Median nerve SNL in the patients with CTS under
radioulnar wrist compression intervention from baseline (Week
0) through 4-week treatment (Week 4).

CTS = carpal tunnel syndrome; SNL = sensory nerve latency.

which was not statistically different from either baseline
(p = 0.285) or mid-intervention (p = 0.574). SNL values
were 4.59 + 0.54, 4.33 + 0.65 and 4.25 4+ 0.86 ms at Weeks
0, 2 and 4, respectively; however, there were no significant
differences among these values (Week 0 vs. 2, p = 0.330;
Week 2 vs. 4, p > 0.99; Week 0 vs. 4, p = 0.469).

Median nerve CSA

At baseline, median nerve CSA was 18.9 + 8.7 mm?, which
decreased by 19.4% to 15.2 + 9.0 mm? after 2 weeks of RWC
intervention (p < 0.001, Fig. 3). Median nerve CSA at Week
4 was 15.3 + 8.7 mm?, not significantly different from that
at Week 2 (p > 0.99) but still significantly less than that at
Week 0 (p < 0.001).

Median nerve mobility

The RWC intervention significantly affected median nerve
mobility (p < 0.01, Fig. 4). Mobility at Week 2
(0.0063 + 0.0029 mm/degree) was 1.73 times that of Week
0 (0.0037 + 0.0015 mm/degree, p < 0.001). At Week 4,
mobility (0.0049 + 0.0019 mm/degree) had significantly
improved compared with baseline (p < 0.05); however,
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Figure 3 Median nerve CSA in the patients with CTS under

radioulnar wrist compression intervention from baseline (Week
0) through 4-week treatment (Week 4) (*p < 0.05).
CSA = cross-sectional area; CTS = carpal tunnel syndrome.
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Figure 4 Median nerve longitudinal mobility in the patients
with CTS under radioulnar wrist compression intervention from
baseline (Week 0) through 4-week treatment (Week 4)
(*p < 0.05).

CTS = carpal tunnel syndrome.

between Weeks 2 and 4, median nerve mobility did not
differ significantly (p = 0.139).

Discussion

The present study investigated the effects of RWC inter-
vention on median nerve pathomechanical and pathophys-
iological parameters in patients with CTS over a period of 4
weeks. RWC intervention was applied in a relatively low
dosage of 10-N force application thrice daily, totalling
45 min. We found that the median nerve responded posi-
tively during the first 2 weeks, demonstrating decreased
DML and CSA and increased nerve mobility, although SNL
was somewhat refractory to the intervention. The im-
provements were maintained over the subsequent 2 weeks
of intervention, although additional gains were not obvious.

The median nerve conduction studies indicated that DML
reduced by 0.71 msec after 2 weeks of daily RWC, a 10.2%
decrease from the initial time point (baseline 6.98 msec).
Further improvements were not observed by Week 4, but
rather beneficial effects of the intervention were sus-
tained. Our biomechanical treatment method improved
patients’ DML in just 2 weeks, compared favourably to
conservative splinting treatment over 6 weeks of splinting
(0.71 msec vs 0.13 msec) [37]. Postoperatively, median
nerve conduction studies have shown delayed recovery of
sensory and motor nerve conduction, taking as long as 6—8
weeks [38]. Another study showed only slight improvement
of median nerve DML during the 3-month follow-up period
after carpal tunnel release surgery, and DML was still
abnormal 3 months after operation [39]. In the present
study, noticeable median nerve DML improvement after 2
weeks of RWC intervention is in line with previous studies
investigating carpal tunnel release (6.27 msec vs about 6
msec) [39]. In our study, we found that median nerve SNL
was not more refractory to RWC intervention within the 4-
week period. Nerve motor fibres are less susceptible to
pressure than sensory fibres [40]; thus, sensory qualities are
the first affected in nerve entrapment disorders, resulting
in noticeable symptoms of pain and paraesthesia by pa-
tients. It is possible that sensory fibres might also recover
more slowly than motor fibres after median nerve decom-
pression. Although DML improvement did not return to

normal and no noticeable improvement of SNL was detec-
ted after RWC, a longer intervention period and a higher
dosage might help gain greater benefit to improve nerve
sensory and motor conduction.

Increased median nerve CSA in patients with CTS is
commonly considered to be a result of oedema and fibrous
tissue proliferation [41]. In the present study, morphological
analysis of the median nerve over a period of 2 weeks of
RWC intervention showed median nerve CSA reduced by
3.7 mm?, a 19.4% decrease from baseline (18.9 mm?). An
additional 2 weeks of intervention did not reduce median
nerve CSA further; however, the benefits of wrist compres-
sion on median nerve CSA were maintained relative to the
baseline value. When compared to surgical intervention,
RWC reduced median nerve swelling at the distal wrist
crease within a shorter treatment period. One study showed
that median nerve CSA reduced by 3.8 mm? from 16.2 mm?
12 weeks after carpal tunnel release [42]. Another study
showed median nerve CSA decreased by only 1.7 mm? from
15.5 mm? one month after release surgery, a result which
was maintained during the following 5 months [43].

In patients with CTS, constraints on the median nerve
from elevated carpal tunnel pressure (Lluch, 1992) or
endoneurial oedema and perineurium fibrosis [44] might be
factors that compromise the kinetic behaviour of the me-
dian nerve. In physiological conditions, 10 N of radioulnar
compression decreased arch width by nearly 1.0 mm and
increased arch height and area by approximately 0.5 and
5.5 mm?, respectively [33]. For patients with CTS, Mar-
quardt et al [34] showed that compressive forces of 10 N
applied across the wrist of patients with CTS increased arch
area by 13% and reduced median nerve flattening (a mea-
sure which reflects the degree of nerve compression). In
our study, 10-N RWC applied for 2 weeks enhanced median
nerve longitudinal mobility, an outcome likely attributable
to median nerve decompression from carpal tunnel area
augmentation and pressure decrease.

Parameters strongly associated with the CTS patho-
physiology, including median nerve conduction, CSA and
longitudinal mobility, were evaluated in this study to
determine the cumulative, long-term effects of RWC
intervention. Patients enrolled in our study performed
three RWC sessions each day for 4 weeks, totalling 45 min of
daily wrist compression. After 2 weeks, median nerve DML,
CSA and mobility all improved. These positive results might
be due to intermittent decompression of the median nerve
by increased carpal arch area. Between the second and
fourth weeks of RWC intervention, the initial decreases
observed in median nerve DML and CSA and initial increase
in nerve mobility remained much the same, indicative of a
sustained effect of prolonged treatment. Over time, the
carpal tunnel structure might adapt to wrist compression
and thus spare less space in the carpal tunnel compared to
the first 2-week RWC intervention using the same force
level of RWC.

The present study is an initial attempt to examine clin-
ically relevant outcome measures of the median nerve in
response to our novel RWC intervention. The study is
limited in a small sample size with a relatively short period
of intervention. Future studies can be designed to investi-
gate intervention protocols with increased daily dosage or
lengthened intervention periods beyond 4 weeks to allow
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for determination of an optimal treatment strategy. Large-
scale clinical trials can also further evaluate the efficacy of
RWC intervention for patients with CTS with different de-
grees of symptom and function severity.

In conclusion, our findings indicate that RWC interven-
tion has demonstrated benefits for median nerve recovery
and is a promising strategy to improve median nerve
swelling and distal motor latency and to restore the nerve’s
natural kinematic behaviour in patients suffering with CTS.
Although larger and longer term clinical studies are needed
to prove the clinical efficacy of RWC intervention as a
treatment option for CTS, this study highlights the potential
of RWC intervention as a new noninvasive biomechanical
strategy for CTS management.
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