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Abstract

Original Article

Introduction

Single‑photon emission computed tomography (SPECT) bone 
scanning, which is widely used in metabolic bone disease, 
traumatology, bone and joint infections, and particularly in 
oncology, is one of the most common examinations in nuclear 
medicine imaging.[1] As shown in Figure 1, there are two main 
categories of bone scans, namely, planar bone scintigraphy and 
three‑dimensional tomography;[2] planar bone scintigraphy is 
used routinely in clinic due to its simplicity.[3]

Clinical whole‑body bone scintigraphy is a multi‑bed imaging 
technology that captures multiple projections of the entire 
skeleton. However, this technology usually requires a long 
scanning time to obtain a reasonable planar image due to the 

poor sensitivity of SPECT scanner. Moreover, it reduces the 
examination efficiency and patient comfort, increases the 
possibility of patient motion during the examination, and 
causes motion artifact.[4] Efforts to improve the sensitivity of 
SPECT scanners have focused on collimator design, which is 
the critical factor, with proposals for dedicated collimators of 
high sensitivity in bone scintigraphy. However, commercially 
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available collimators may show a slight degradation in 
resolution limited by the tradeoff between collimator 
sensitivity and resolution.[5]

Recently, we have developed a dedicated, parallel‑hole 
collimator for bone scintigraphy on a clinical dual‑head SPECT 
system (Imagine NET 632, Beijing Novel Medical Equipment 
Ltd.), which has a sensitivity of 177 cpm/µCi, better than 
the conventional, low‑energy, high‑resolution collimator. 
However, the resolution is higher than 9.5 mm, which will 
have an impact on image sharpness and clinical diagnosis. The 
research on improving resolution has always been a research 
hotspot such as the use of pinhole collimators,[6] four‑head 
SPECT,[7] and self‑collimating SPECT.[8] Nevertheless, some of 
these methods lose detection sensitivity while achieving high 
resolution, and others are only at a theoretical or research stage 
and too far from clinical application. Moreover, our research 
is conducted under the condition that the system design has 
already been determined, so we will not consider redesigning 
the system. Other algorithms, such as reconstruction 
with hybrid kernelized expectation maximization or deep 
learning,[9,10] can improve the resolution from 10 to 5  mm 
even to positron emission tomography level but have limited 
effects on planar images.

Considering the blurring effect of low resolution, it is 
potentially feasible to apply the blind deconvolution approach 
to the planar images to improve the resolution of bone 
scintigraphy. While blind deconvolution has been extensively 
applied in various fields of image and signal processing, 
including radio astronomy, seismology, and biomedical 
engineering, it is rarely used in the nuclear imaging field.[11] 
Furthermore, for SPECT planar images, the practical point 
spread function  (PSF) is unknown and difficult to estimate 
due to the distance‑dependent response.

The blind deconvolution algorithm is a multi‑solution 
problem, which means multiple combinations of PSF and 

recovered images can generate the same convolution output. 
An appropriate deconvolution greatly depends on the initial 
estimation of the PSF and the number of iterations, whereas 
the iteration number is also related to the noise in the recovered 
images due to the high noise in SPECT images. Many efforts 
have been made to improve the practicality of the algorithm.[12] 
Several new iterative formulas have been proposed to improve 
the basic implementation of the algorithm[13‑16] based on 
simulation studies. To enhance the convergence speed 
and stability, vector extrapolation principles,[17] prior 
information from deep learning,[18‑21] and constraints from the 
L0‑norm and total variation[22‑27] are also utilized to enhance 
convergence speed and stability. In addition, a two‑step blind 
deconvolution[28‑31] has been proposed recently, resulting in 
faster algorithms with improved robustness.

While these prior studies have indicated promising results, they 
have not delved into the issue of selecting key parameters, such 
as the initial PSF estimation and iteration number, especially 
for deblurring SPECT planar images with high noise. In this 
work, we investigated the feasibility of the blind deconvolution 
approach for deblurring SPECT planar images to enhance 
the quality of bone scintigraphy using the bone‑dedicated 
collimator we have developed. We aimed to produce a simple, 
convenient, and clinically applicable approach based on blind 
deconvolution that can significantly improve the planar image 
quality of our SPECT system. Compared with other algorithms, 
our proposed deconvolution approach is much easier for the 
implementation and more stable for the output.

Materials and Methods

Single‑photon emission computed tomography scanner
The clinical dual‑head SPECT scanner  (Imagine NET 632) 
with bone‑dedicated collimators was used in this study. The 
system consists of two detectors, composed of NaI (Tl) crystals 
with a size of 585 mm × 470 mm × 9.5 mm. The effective 
field of view (FOV) area is 520 mm × 400 mm. The distance 
between the center of FOV and the surface of collimator 
is 20  mm. The energy resolution is 9.8% at 140 keV. The 
intrinsic spatial resolution is 3.4  mm at central FOV. The 
dedicated collimator for bone scanning is a type of parallel‑hole 
collimator, with a thickness of 25.5 mm, hole size of 1.22 mm, 
and hole thickness of 0.16 mm.

Blind deconvolution
We proposed the blind deconvolution algorithm is to obtain a 
deblurred image based on maximum likelihood estimation.[32] 
The iterative formulae are as follows:[33,34]
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where k is the number of iterations, i (k) (x, y) is the deblurred 

Figure 1: (a) Anterior and posterior two‑dimensional planar images of 
whole‑body bone scintigraphy, (b) maximum intensity projection image 
of the three‑dimensional tomographic image from single‑photon emission 
computed tomography bone scanning
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image obtained after the kth iteration, h(k)  (x, y) is the PSF 
acquired after the kth iteration, and p (x, y) is the initial planar 
image, which is to be deblurred.

In practical application, its discrete form is used:
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where k is the number of iterations, i (k) (x, y) is the deblurred 
image obtained after the kth iteration, and h(k) (x, y) is the PSF 
acquired after the kth iteration. P (t, q) is the initial planar image, 
which is to be deblurred. T, Q, M, and N are the total number 
of pixels in each dimension.

While the initial estimation of the deblurred image, PSF, and 
the iteration number is critical for the blind deconvolution 
algorithm, we established those values to be close to the targeted 
values according to the physical process of SPECT scanning.

The original image acquired by SPECT is directly applied 
as the initial estimation of the deblurred image. The 
two‑dimensional PSF was modeled as a zero mean Gaussian 
function, determined by the convolution kernel σ and the 
truncated dimension. Although the practical resolution for 
the projection is difficult to estimate because the SPECT 
collimator resolution is distance dependent, the resolution 
range can be calculated with the resolution formula. Then, 
the range of the convolution kernel, where the initial PSF 
convolution kernel σ should be located, can be obtained. 
In our study, first, considering the collimating effect of the 
collimator, it is assumed that the collimator only receives γ 
photon from the vertical direction, and then, the phantom 
thickness is known. Hence, the range of the convolution kernel 
can be calculated by the resolution formula. The convolution 
kernel σ should be located at 1.41 mm ≤ σ ≤ 2.92 mm. The 
truncated dimension is greater than three σ. Meanwhile, we 
used a limited iteration number to avoid amplification noise, 

whereas our initial inputs are close to the target based on the 
above design.

GEANT4 Application for Tomographic Emission simulation
To evaluate the performance of the proposed blind deconvolution 
approach, we performed Monte Carlo simulation studies 
with the GEANT4 Application for Tomographic Emission 
platform  (8.1 version).[35] The SPECT scanner  (Imagine 
NET 632 scanner) with bone‑dedicated collimators for 
data acquisition was simulated. The energy resolution is 
9.8% at 140 keV. The two detectors were placed opposite to 
each other. As shown in Figure 2, the NCAT phantom with 
99mtechnetium methylene diphosphonate tracer was used for 
bone scintigraphy, whereas several different tumors were 
inserted into the skeleton. The ratio of activity between tumor, 
bone, and background was set to be 450:90:2. The size of the 
phantom was 51.2 cm × 51.2 cm × 40 cm. The attenuation and 
scatter of the phantom were modeled. The data acquisition 
energy window was 126–154 keV. Herein, we focus on the 
projection of a single‑bed position for our algorithm evaluation.

Experiments and evaluation
Comparison of different input parameters
To examine the effect of different inputs on the deconvoluted 
output and to test the validity of the proposed prediction 
scheme, we implemented the blind deconvolution approach 
using various input parameters, which are the initial PSF 
and iteration number, on a single original projection. The 
planar image obtained from the simulation with NCAT 
phantom is shown in Figure  3. The image voxel size is 
4.0625 mm × 4.0625 mm. The total activity (emission count) in 
our simulation was 66,000 Bq, and the scanning time was 150 s.

Evaluation with different tumors
To further validate the robustness of the proposed approach, 
we implemented the blind deconvolution in multiple scenarios 
by varying the tumor location and size in simulations. We 
inserted the tumors with a diameter of 4  cm into different 

Figure 2: (a) The activity image of the NCAT phantom, (b) the attenuation 
coefficient image of the NCAT phantom. The white regions in activity image 
indicate tumors with a diameter of approximately 4 cm
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body regions, including the lower leg, thigh, pelvis, vertebral 
bones, and neck to verify the impact of tumor location. Then, 
we changed the diameter of the tumor in the vertebral bones 
from 1 to 5 cm with a 1‑cm interval to verify the impact of 
the tumor size.

Chest phantom experiments
We designed and manufactured a custom chest phantom, 
as shown in Figure 4. The regions of the ribs and vertebral 
bones inside the phantom were injected with the 99mtechnetium 
solution with a total activity of 10.12 mCi. The activity ratio 
between the tumor and background was 3:1. The phantom was 
positioned at the FOV center of the clinical dual‑head SPECT 
system described above (Imagine NET 632), equipped with 
our designed bone‑dedicated collimators. The acquisition time 
was set to 30 s.

Quantification evaluation
We quantified the increased contrast ratio (ΔCR) of the tumor 
after the implementation of the blind deconvolution algorithm, 
as Equation (5), with the CR defined as the mean activity At of 
the tumor region over the mean activity Ab of the background 
region based on the projection image.

debluured initial

initial

CR - CR
CR =

CR
∆ � (5)

where CRdebluured is the CR of the tumor after blind deconvolution 
and CRinitial is the CR before blind deconvolution. The size of 
the background region was the same as that of the tumor region. 
The ideal CR is 3 (same as the activity ratio between the tumor 
and background set above).

The surrounding area of the tumor region with low uptake is 
chosen as background.

Results

Comparison of different input parameters
As shown in Figure 5, all obtained projection images demonstrated 
improved image quality and quantified increased CR after blind 
deconvolution with various initial PSF inputs and iteration 
numbers. However, different inputs had a significant impact 
on the image quality. The blind deconvolution algorithm with 
small iteration numbers or small kernel PSF cannot fully deblur 
the image, whereas the algorithm with large iteration numbers 
increased the noise. Furthermore, image distortion was observed 
with the large kernel PSF. Visually, the blind deconvolution 
algorithm with 2 mm PSF and 10 iterations provided the best 
tradeoff between image resolution and image noise. Therefore, 
we determined the initial PSF input as the PSF with 2 mm kernel 
and an iteration number of 10 for our bone‑dedicated collimator. 
In Figure 6, we present the two profiles across the spinal region 
with tumor and the rib region. The differences between the tumor 
regions and the spine and the rib regions were greater, and the 
image details were clearer. The improvement in the peak and the 
valley was significant after blind deconvolution.

Evaluation of different tumor locations
In Figure 7, all the projection images for each tumor obtained 
at the five different positions demonstrated an improved 
tumor detection ability after blind deconvolution. In 
addition, due to the differences in inter‑phantom attenuation 
for the tumor at different sites, the improvements differed 
slightly, particularly for the tumor in the neck. Quantified 

Figure 3: A typical planar image of the NCAT phantom obtained on our 
bone‑dedicated single‑photon emission computed tomography scanner

Figure 4: (a) Front view of the vertebral region, (b) vertebral components, blue circles representing the spherical lesions, (c) the photo of phantom
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increased CRs also demonstrated the same trend, as shown 
in Figure 8. The blind deconvolution algorithm was effective 
in improving the CRs in tumor and nontumor regions at 
different sites.

Evaluation of different tumor sizes
Figure  9  shows the output images after the blind 
deconvolution algorithm for tumors of five different 

diameters. The image counts fluctuated more obviously 
after implementation of the blind deconvolution. The 
results demonstrated that the initial PSF kernel was feasible 
for blind deconvolution of the projection images of our 
bone‑dedicated collimator in terms of different tumor sizes. 
The increased activity ratios after blind deconvolution were 
also stable, as shown in Figure 10.

Figure 5: The results of different input parameters. The parameters are given under each deblurred images: The quantified increased contrast ratio(ΔCR), 
iteration numbers, the INIT PSF which means the initial convolution kernel used for the deconvolution. The unit of color bar is counts, presenting the 
number of events detected. PSF: Point spread function, CR: Contrast ratio

Figure 6: Deblurred images (a) and two profiles (b and c) of the original image and the deblurred images obtained from blind deconvolution
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Phantom experiments
The six hot spherical lesions outlined by the blue squares 
were numbered 1–6, from top to bottom in Figure 11. The six 
hot spherical lesions have a horizontal offset in the radial of 
the vertebral components. Because they require one end to 
be connected to the vertebral components, drugs are injected 
through the small holes in the connecting part. The CRs and 
ΔCR were calculated, as shown in Figure 12. The ribs in the 
background region appeared clearer. The blind deconvolution 
algorithm showed improvements in CRs for the six hot 
spherical lesions of varying sizes, consistent with the results 
of the Monte Carlo simulations.

Discussion

In this study, we aimed to adopt the blind deconvolution 
algorithm to improve the quality of planar imaging for 
SPECT bone scanning using the bone‑dedicated collimator 
we designed. Based on the simulation studies, we found that 
the 2 mm PSF kernel and 10 iterations provided a reasonable 
and robust deblurred image with our system, whereas the 
initial inputs are critical factors for the performance of the 
blind deconvolution algorithm. Furthermore, the determined 
inputs were verified with the phantom studies on the clinical 
SPECT scanner with the bone‑dedicated collimator. The 
results demonstrated the ability of the blind deconvolution 

Figure 7: Comparison before and after blind deconvolution for different tumor positions. The unit of color bar is counts, presenting the number of 
events detected. The five columns share the same color bar. In the upper part of the image, the bidirectional arrow represents the section line, while the 
unidirectional arrow points to the location of the tumor. The lower part of the image shows the counts corresponding to the position of the section line

Figure 8: (a) Contrast ratios before and after deconvolution at different sites, (b) increased contrast ratios before and after the algorithm at different sites
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algorithm to deblur the planar images of SPECT bone 
scintigraphy.

However, those input parameters might not be feasible for 
other SPECT system planar imaging, or even the same SPECT 
system equipped with other collimators. To examine that, 
we simulated planar images of the NCAT phantom on the 
SPECT scanner but using five different collimators, as shown 
in Table 1. The NCAT phantom with a 3‑cm‑diameter tumor 
in the vertebral bones was used. As shown in Figures 13 and 
14, there were apparent differences across those systems, 
although all the deblurred images showed an improvement. 
The number 1 system with low resolution had low original 
activities but showed a marked increase. In contrast, the 
number 3 system with high resolution exhibited high initial 

Figure 9: Comparison before and after blind deconvolution for different tumor sizes. The unit of color bar is counts, presenting the number of events 
detected. The five columns share the same color bar. In the upper part of the image, the bidirectional arrow represents the section line, while the 
unidirectional arrow points to the location of the tumor. The lower part of the image shows the counts corresponding to the position of the section line

Figure 10: (a) Contrast ratios before and after deconvolution for different tumor diameters, (b) increased contrast ratios before and after the algorithm 
for different tumor diameters

ba

Figure 11: (a) Original image obtained in clinic, (b) output image after 
blind deconvolution. Six bone (hot) lesions outlined by blue squares were 
used to calculate contrast ratios. Numbers 1–6 are the lesion numbers 
in this phantom. The unit of color bar is counts presenting the number of 
events detected. The a and b share the same color bar

ba
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Figure 13: Comparison before and after blind deconvolution for different single‑photon emission computed tomography collimators. The unit of color 
bar is counts, presenting the number of events detected. The five columns share the same color bar. In the upper part of the image, the bidirectional 
arrow represents the section line, while the unidirectional arrow points to the location of the tumor. The lower part of the image shows the counts 
corresponding to the position of the section line

Figure 12: (a) Contrast ratios before and after deconvolution, (b) increased activity ratios before and after the algorithm

ba

Figure 14: (a) Contrast ratios before and after deconvolution for different systems, (b) increased contrast ratios before and after algorithm for different 
single‑photon emission computed tomography collimators
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Table 1: Collimator parameters

System number Thickness (mm) Hole thickness (mm) Hole size (mm) Kernel minimum Kernel maximum
1 35.0 0.20 0.75 1.57 3.04
2 27.0 0.15 0.50 1.50 2.68
3 28.5 0.15 0.50 1.50 2.60
4 25.5 0.20 0.50 1.50 2.76
5 25.5 0.25 0.50 1.50 2.76

activity, but the increase after the blind deconvolution was 
limited.

From the results presented above, we can conclude that 
the blind deconvolution algorithm is a suitable method to 
deblur the planar images of SPECT bone scintigraphy for 
its consistency of imaging principles of the SPECT and the 
improvement of the blurred images. However, its improvement 
effect is limited, and there is no significant improvement effect 
on images obtained with high‑resolution systems. However, 
some other algorithms such as reconstruction with hybrid 
kernelized expectation maximization or deep learning methods 
can also be used to improve the resolution. Our proposed 
deconvolution approach is much easier for the implementation 
and the output results would be more stable.

Conclusions

In this investigation, we aimed to adopt the blind deconvolution 
algorithm to improve the quality of planar imaging for SPECT 
bone scanning. We determined the most appropriate values 
of the PSF kernel and iteration number as inputs for blind 
deconvolution using our bone‑dedicated collimator based 
on simulation studies. The results of the phantom studies 
demonstrated the ability of the blind deconvolution algorithm 
to deblur the planar images of SPECT bone scintigraphy.
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