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CUBIC: an atlas of genetic architecture

promises directed maize improvement
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Abstract

Background: Identifying genotype-phenotype links and causative genes from quantitative trait loci (QTL) is challenging for
complex agronomically important traits. To accelerate maize gene discovery and breeding, we present the Complete-diallel
design plus Unbalanced Breeding-like Inter-Cross (CUBIC) population, consisting of 1404 individuals created by extensively
inter-crossing 24 widely used Chinese maize founders.

Results: Hundreds of QTL for 23 agronomic traits are uncovered with 14 million high-quality SNPs and a high-resolution
identity-by-descent map, which account for an average of 75% of the heritability for each trait. We find epistasis contributes
to phenotypic variance widely. Integrative cross-population analysis and cross-omics mapping allow effective and rapid
discovery of underlying genes, validated here with a case study on leaf width.

Conclusions: Through the integration of experimental genetics and genomics, our study provides useful resources and
gene mining strategies to explore complex quantitative traits.
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Background
Plant breeding has had an enormous impact on food se-
curity and will continue to play a substantial role in the
foreseeable future. Maize (Zea mays) is one of the most
diverse crop species and a plant model in genetic studies;
globally, it is also the most widely planted crop and an es-
sential component in feeding an increasing world popula-
tion. Researches have paid particular attention to maize
functional gene discovery with an expectation to acceler-
ate genetic improvement. Genome-wide association study
(GWAS) has become a routine tool to study genotype-
phenotype links [1, 2] and is especially suitable for maize
due to abundant genetic diversity, rapid linkage disequilib-
rium (LD) decay, plentiful germplasm resources, and suit-
ability for repeated phenotypic trials [3, 4]. While a very
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large sample size is necessary to obtain adequate power in
GWAS for human genetics, the use of artificially designed
populations with balanced allele frequencies and con-
trolled population structure maintains statistical power
with smaller populations in plant genetics. The Multi-
parent Advanced Generation Inter-Cross (MAGIC) design
is popular for identifying QTL of agriculturally important
traits in crop plants [5–9] and has been considered as a
next-generation permanent population [10]. For applied
research, most breeders favor the diallel cross design, a
classical mating scheme in which all parents in a set are
crossed in all possible combinations to make hybrids, in
order to explore the genetic underpinnings of traits, in-
cluding general and specific combining ability [11, 12].
The identification of functional genes and favorable al-

leles is most useful for future breeding progress. With
this in mind, and with the expectation to explore and
exploit breeding resources, we describe the development
of a Complete-diallel plus Unbalanced Breeding-derived
Inter-Cross (CUBIC) population (Fig. 1). Here, we
present the power of integrated GWAS and QTL map-
ping based on high-density marker coverage and
le is distributed under the terms of the Creative Commons Attribution 4.0
.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
ive appropriate credit to the original author(s) and the source, provide a link to
changes were made. The Creative Commons Public Domain Dedication waiver
ro/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-020-1930-x&domain=pdf
http://orcid.org/0000-0001-8650-7811
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:maizezhao@126.com
mailto:yjianbing@mail.hzau.edu.cn


Fig. 1 Development of the CUBIC population. The present CUBIC population, consisting of 1404 progenies, was derived from 24 elite Chinese
maize inbred lines. a These 24 founders were crossed under a Complete Diallel Cross type IV (CDC IV) mating design, omitting parents and
reciprocal crosses. Thirty F1s with best agronomic performance (early flowering time, small ear height, and big ear size) were selected to further
cross in the CDC IV design. b Another 110 F1s were randomly selected for open pollination in isolation. Two hundred and 400 ears were harvested
from the agronomically selected and randomly selected subsets, respectively, and seeds from the above F1s were mixed together in a 2:1 ratio with
the expectation of improving population performance and maximizing diversity. c The resulting individuals were planted under open pollination in
isolation for 6 generations. About 2000 ears of the most diverse lines were retained and mixed equally in each generation. Finally, the population was
self-pollinated by single seed descent for another 6 generations, and a total of 1664 inbred lines were obtained, of which 1404 have been successfully
sampled and sequenced, and thus used in further analysis

Liu et al. Genome Biology           (2020) 21:20 Page 2 of 17
extensive phenotyping of the CUBIC population and
show how the uncovered favorable alleles can be mod-
eled for directed inbred design. Many QTL regions were
narrowed to a few candidates or to a single causal gene
using information from multiple omics studies of the
population. Epistasis was found to be prevalent and con-
tributing to phenotypic variance, explaining up to 15%
of trait heritability on average. The full exploration of
genetic architecture of the 23 agronomic traits allowed
genomics-directed maize improvement.

Results
Population design and genetic and phenotypic diversity
The CUBIC population consists of 1404 progenies des-
cended from 24 elite inbred lines (Fig. 1). The 24 foun-
ders were selected from 4 subgroups and have been
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widely used in Chinese breeding over the past century
(Additional file 1). The population was firstly derived
from an existing breeding design, by applying 2-round
diallel cross to 24 founder lines to select 30 F1 and 200
F2 hybrid lines with “favorable” performance (Fig. 1a),
including early flowering, low ear height, large ear size,
biotic and abiotic resistance, and other favorable agro-
nomic traits. To make it suitable to comprehensively ex-
plore the genetic diversity among elite lines, genetic
architecture of important agronomic traits, and favorable
haplotypes from distinct elite founders, we borrowed
and extended the population by integrating another 110
random F1s and open-pollinated 400 F2s (Fig. 1b). Seeds
from the two sets of F2s were mixed with a ratio of 2:1,
followed with 6 generations of open pollination and an-
other 6 self-crossing generations by single seed descent
(Fig. 1c). Additional to the breeding materials derived,
CUBIC design generally descends from the traditional
MAGIC design with the integration of an initial two
round diallel crosses. This adjustment allows escape
from arbitrary founder number and saves period of
population development.
All progenies (including 3 progenies entered twice for

replication) were re-sequenced with ~ 1× coverage and
the 24 founders with 11× coverage; 194 lines were further
genotyped using a maize200K array to cross-validate vari-
ant discovery. Following sequencing, variant calling, and
imputation, approximately 5 Tb of raw sequencing data
were collected (Additional file 2, Additional file 3: Figure
S1) to characterize over 14 million high-quality SNPs and
439K short insertions and deletions (InDels). The 1404
lines and 30 checks (planted in every 50 plots), together
with all founders, were evaluated in 5 locations (Add-
itional file 3: Figure S2) for 23 agronomic traits (Add-
itional file 4). The best linear unbiased predictor (BLUP)
values for each line were used to reduce environmental
noise in the phenotypic data. The CUBIC parents were
highly diverse for the 23 traits of interest, as the variance
of each trait was high and comparable to a natural popula-
tion (Additional file 3: Table S1). In the entire CUBIC
population, the 23 traits exhibited an average broad-sense
heritability of 0.83, ranging from 0.72 to 0.93 (Add-
itional file 3: Table S1), indicative of highly repeatable
data, despite the polygenic nature of these traits.

Single-variant-based association mapping explains limited
heritability
The CUBIC population showed weak population stratifi-
cation and rapid LD decay (Additional file 3: Figure S3),
which are promising for association analysis. Single-
variant-based GWAS (sGWAS) using 11.8 million SNPs
of minor allele frequency (MAF) greater than 0.02 was
performed based on a mixed linear model (see the
“Methods” section). This analysis detected 355 significant
(P ≤ 1.23E−8) loci (hereafter called sQTL) for the 23 agro-
nomic traits (Fig. 2a; Additional file 3: Figure S4; Add-
itional file 5). Taking flowering time as an example, a total
of 54 QTL were identified as associated with 3 flowering
time traits (days to anthesis (DTA), days to tasseling
(DTT), and days to silking (DTS)). Several previously
cloned maize flowering genes (including ZCN8, ZCN12,
FLK, ZmMADS69, and VGT1) and homologous loci vali-
dated in rice and Arabidopsis flowering (e.g., HD1, VOZ1,
HEX5) were identified in these QTL intervals. Although
the flowering time traits in maize, rice, and Arabidopsis
are highly divergent [3], the genes identified in model
plant species provide essential clues for exploring their
roles in maize. The genetic architecture for male (DTA
and DTT) flowering traits was similar but distinct from
the female (DTS) flowering time trait (Additional file 3:
Figure S4).
Despite the many QTL identified, most of them had a

moderate additive effect, ranging from 0.01 to 0.83
standard deviations for each trait, with an average of
0.24. However, yield traits displayed weak effects overall,
which was expected from the highly polygenic nature of
such traits. Of the many QTL identified via sGWAS,
most explained only a small proportion of the pheno-
typic variance, averaging 3.8%; however, seven contrib-
uted over 10% of the trait variance per sQTL. The sQTL
jointly explained only 28% of the phenotypic variance on
average (3.4~42.6%; Fig. 2b; Additional file 3: Table S2),
far short of the estimated heritability for each trait.

Uncovering QTL allele series via identity-by-descent
mapping remedies missing heritability
The traceable feature of the present design makes it pos-
sible to infer every genomic segment of each offspring
descended from any given parent (Additional file 3: Fig-
ure S5) using a hidden Markov model (HMM) [13] (see
the “Methods” section). A total of 207,853 identity by
descent (IBD) segments were found in all 1404 lines,
ranging from 94 to 294, with an average of 148 segments
per line (Additional file 3: Figure S6). This indicates that
the recombination per line is nearly 7.6-fold higher than
in bi-parental mapping populations [14, 15], 1.7-fold
higher than in the public maize MAGIC population [9],
and that the total number of recombination events in
CUBIC is 1.4-fold higher than in the maize NAM popu-
lation [16], which will allow higher mapping resolution.
The size of the IBD segments per line varied, with a me-
dian of 4.2 Mb, and the distance between the closest
markers on adjacent IBD segments approximately
followed a bimodal distribution with the most at 100 bp
and 80 kb, respectively (Additional file 3: Figure S6c).
The segments that failed to be traced to any specific par-
ent covered approximately 3.2% of the maize genome. In
these regions, the identity-by-state between multiple



Fig. 2 Overview of the 2 methods of GWAS analysis. a Summary porcupine plot of mapping results for 23 agronomic traits. Significant SNPs (P ≤
1.23E−8) or bin (LRT value ≥ 7.1) at each QTL is marked by a dot, with each color corresponding to a trait. The abbreviations are defined in the
“Methods” section. b The partition of heritability explained by all identified QTL. Each horizontal bar indicates heritability accounted for by sQTL
(yellow), additionally by hQTL (green), and missing or unexplained (gray) relative to total heritability. c Venn diagram of co-localization between
sQTL and hQTL, summed over traits. d Simulation analysis of mapping power under three QTL types. The three types of QTL were simulated to
express as bi-allelic, four allelic, and nine allelic QTL, which were assumed to be produced by one, two, or 3 independent functional variants
available in the local QTL region. The details of simulation analysis can be seen in the “Methods” section. e Comparison of variance explained
(PVE) by single QTL identified by sGWAS vs. hGWAS
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parents was high compared to the flanking regions, pre-
sumably reflecting the co-ancestral origins.
With “bin” defined as a genomic span in which no re-

combination happened in any inbred line, a total of 27,
005 unique bins were identified (Additional file 6). Bins
varied tremendously in size across the genome, with a
median of 100 kb (Additional file 3: Figure S6c). Treat-
ing the IBD states as haplotypes for each bin, we
proposed another GWAS method (hGWAS; see the
“Methods” section). This identified 421 significantly
(likelihood rate test, LRT ≥ 7.1) associated loci (hQTL;
Fig. 2a; Additional file 3: Figure S7; Additional file 7),
with 6~26 hQTL per trait. Single hQTL contributed be-
tween 2% and 16.7% of the phenotypic variance for each
trait, with an average of 7.2%, and 55 hQTL explained
more than 10% of the phenotypic variance.
Interestingly, few of the sQTL and hQTL co-localized

physically (Fig. 2c), but sQTL and hQTL jointly
accounted for an average of 71% of the estimated herit-
ability (46~87% per trait) (Fig. 2b; Additional file 3:
Table S2), implying that the two GWAS methods work
in a complementary manner. A hypothesis-based simula-
tion (see the “Methods” section) suggested that while
sGWAS reached the highest power with biallelic QTL ir-
respective of effect size, hGWAS power increased with
increasing numbers of alleles and was more powerful for
identifying QTL with minor effects (Fig. 2d; see the
“Methods” section). These results agreed with the empir-
ical observation that hQTL explained nearly twice the
heritability as sQTL (Fig. 2e). The integration of these
identified QTL provides a practical opportunity for the
precise customization of elite parental lines. Moving be-
yond the potential application for an individual trait, we
now demonstrate the value of the ensemble model in
pyramid breeding by measuring the phenotypic effect of
each QTL on multiple traits (Additional file 3: Figure S8
and Supplementary Notes). However, actually uncover-
ing the causal genes underlying these QTL will undoubt-
edly accelerate precision pyramid breeding.

Epistasis adds another layer to trait variance
Epistasis represents a non-linear interaction between
two or more segregating loci and contributes to quanti-
tative traits by biologically plausible mechanisms [17].
However, arguments are still present on its prevalence
and significance to trait variance. While epistasis is im-
portant for trait variance [17, 18] and heterosis [19, 20],
its prevalence in maize trait architecture is usually
thought to be small [21, 22] or of large effect only at
specific loci [23, 24].
The balanced design and large population size of the

present study provided a good opportunity to answer
these questions. A total of 1466 significant epistatic in-
teractions (epiQTL) were identified for 21 of the 23
measured traits and explained an average of 15.3% of the
trait heritability, although this varies greatly between traits
(Fig. 3a, b; Additional file 3: Figure S9; Additional file 8;
see the “Methods” section). Most of the epiQTL were
found with 1 of the 2 interacting loci linked with sQTL
(43.88%) or neither of the 2 interacting loci linked
with any sQTL (43.27%) (Fig. 3c). A subset (4.22%) of
epiQTL was found co-occurring with previously iden-
tified functional networks (Additional file 3: Figure
SS10), including protein-protein interactions (PPI)
[25], co-expression relationships of protein and tran-
script levels [26], and the interactive genome architec-
ture from ChiA-PET experiments on H3K4me3
modifications [27]. These multiple lines of evidence
provide clues to understanding the molecular mech-
anism of epistasis. Interestingly, the recombination
frequency in the epiQTL regions was significantly
lower than random levels (Fig. 3d), suggesting that
epiQTL regions were likely functional and experien-
cing selection.

Use of founder genome assignments and multiple omics
data for rapid gene mining—ear leaf width example
Among all detected QTL in the present study, about
10.4% harbored genes that had been cloned and 11%
contained annotated candidate genes of phenotypic rele-
vance, another 10% overlapped with QTL identified in
previous studies, and the remaining 68.6% were newly
identified (Additional files 5 and 7). Additionally, 57
QTL were located in non-genic regions, of which 89.7%
were identified close to MNase hyposensitive (HS) prox-
imal regions [28], and 53.4% and 55.1% resided in
accessible chromatin regions identified in leaf and inflor-
escence [29], all were significantly higher than expected
by chance (Additional file 3: Figure S11). This strongly
suggests the importance of non-coding sequences that
may influence phenotypic variation by regulating other
genes.
Rapid identification of genes underlying novel QTL is

challenging, and one targeted strategy in the present
design uses linkage-like analysis to consider phenotypic
differences between individuals with distinct allelic
states. This is possible since the offspring panel approxi-
mates multiple RIL populations once founder contribu-
tions have been assigned to every progeny (see the
“Methods” section) and allowed the QTL to be narrowed
to very small regions. We present the ear leaf width
(ELW) trait as an example, since one large effect QTL
was identified on chromosome 4 by both GWAS
methods (Fig. 4a). This QTL contributed to ~ 13% of the
ELW variance, causing a decrease in ear leaf width of
0.7 cm, and the interval was estimated to between 1.26
and 4.72Mb using local LD architecture, an interval
containing 127 genes. By assessing the IBD effect



Fig. 3 Identification of the epistatic contribution to trait variance. a Significant epistasis for flowering time traits. Other traits are shown in Additional file 3: Fig.
S9. b Heritability explained by significant epistasis for different traits with different criteria averaged between 15.3% (P=1E−12) and 4.8% (P=1E−15). c Different
epistatic combinations of loci and ratios for identified epiQTL: SS-1, two interacting loci linked with two sQTL affecting the same trait; SS-2, two interacting loci
linked with two sQTL affecting different traits; SN, one of two interacting loci linked with a sQTL; NN, neither of two interacting loci linked with any measured
sQTL. d Fraction of recombinants (combinations from different parents) encompassing interacting pairs of loci between epiQTL and random
distal pairs
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spectrum on the basis of peak bin (see the “Methods”
section), a total of 15 IBD states were observed in this
region, and only 1 from HUANGC showed a statistical
difference from the 14 other parental alleles for pheno-
typic effect (Additional file 3: Figure S12). The progeny
individuals were thus grouped into 2 distinguishable al-
leles (HUANGC and NON-HUANGC), and comparing
phenotypic difference against allele type narrowed the
QTL to a 334-Kb region (t test, P < 0.01, Fig. 4b) in
which there are only 14 genes (Additional file 9). Of
these, 8 were highlighted due to the inclusion of loss-of-
function (type I) and regulatory (type II) variants in the
dataset (Fig. 4c; see the “Methods” section).
RNA-seq of 391 randomly selected offspring lines

(using RNA from leaf tissue collected at the V9 stage)
revealed that the expression of 4 genes, of all 14 candi-
dates, was significantly correlated with ear leaf width
variation (P < 0.01, Fig. 4c). A metabolic profile of these
lines detected 13 metabolites correlated with trait vari-
ation (P < 0.05, Additional file 3: Table S3) from a total
of 237 primary metabolites and 10 hormones identified
in leaf tissue at the same period. Hypothesizing that the
metabolites would mediate the link between the causal
gene and phenotypic variation allowed us to determine
that 2 of the 14 genes annotated closely to the differently
expressed metabolites, particularly for sucrose metabol-
ism (Fig. 4c; Additional file 9).
Considering all evidence together, the gene GRM

ZM2G070553 encoding galactose oxidase (named
ZmGalOx1) was identified as a strong candidate for this
QTL. ZmGalOx1 contains 4 type-I polymorphisms, 3
SNPs, and a 1-bp InDel (InDel_1/0), which were con-
firmed by re-sequencing (Additional file 3: Table S4).
The 1-bp InDel displayed the most significant associ-
ation (P = 2.93E−24; Fig. 4d) and was highly significantly
correlated with the trait differences and slightly related
to the expression variation (Fig. 4e). Importantly, the de-
letion was present exclusively in the HUANGC allele
(Additional file 3: Table S5) and will induce a truncated
protein with an incomplete BAP domain, which has
been reported to influence leaf development in tobacco
[30]. ZmGalOx1 was then knocked out by CRISPR/Cas9
in maize variety ZZC01, which displays wide leaves. A
total of 55 transgenic T0 seedlings were obtained, of
which 18 were confirmed by re-sequencing to have been
edited in the target gene (positive control) and 37 seed-
lings had no sequence changes and were used as nega-
tive controls. The positive controls contained 4 editing
types with various deletion lengths located upstream
from InDel_1/0, and all expressed narrower ear leaves



Fig. 4 Integrating omics data empowers rapid gene mining for ear leaf width. aManhattan plot of ear leaf width (ELW) based on sGWAS. The black dashed
line represents the cutoff of 1.23E−8 based on adjusted Bonferroni correction. b Refinement of the major ELW QTL on the short arm of chromosome 4. The left
panel illustrates the 7 major haplotypes (n>8) at this QTL within the original 3.5-Mb interval. This test enabled the QTL to be delimited to a 334-Kb region with
14 genes. c Determination of candidate gene via omics data. The upper, middle, and bottom panels are the genomic, transcriptomic, and metabolic levels,
respectively. The 14 genes are sequentially ordered based on physical positions (Additional file 9), and the genes associated with red
symbols imply the candidate genes that influence the ear leaf at the different levels. d Local Manhattan plot within ZmGalOx1. Four type
I polymorphisms were identified at this gene. The type I InDel is colored in red and SNPs are colored in blue; the bottom panel is a
protein structure corresponding to the 1-bp InDel mutation. e Genetic impact of the 1-bp InDel on ELW and ZmGalOx1 expression. The P
and R2 values were calculated using ANOVA. f Functional validation of ZmGalOx1 via CRISPR/Cas9. g Cytological experiment of CRISPR/
Cas9 modified ZmGalOx1-carrying lines. The epidermal cells in the abaxial leaf surface for the CRISPR/Cas9 edited lines were observed.
The P values are based on t test, and the error bars in bar plots represents the standard deviation in f and g
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compared to the negative control lines (P = 2.22E−05,
Fig. 4f). This confirmed the causal effect of ZmGalOx1
on the ear leaf width. The positive control lines had sig-
nificantly fewer cells (P = 2.30E−05), but no difference in
single-cell width compared to non-edited ones (P = 0.14;
Fig. 4g), which is consistent with the cytological results
found in 59 lines from the CUBIC population with con-
trasting alleles of the 1-bp deletion (Additional file 3:
Figure S13). Taken together, this data strongly implies
that ZmGalOx1 affects leaf development by regulating
cell proliferation efficiency and that this gene is hypo-
thetically involved in the glycolysis metabolic network
(Additional file 3: FigureS14).

Narrowing QTL regions to candidate causal genes via
cross-omics mapping and cross-population analysis
Beyond the specific strategies that can be applied in the
present population, we attempt to systemically identify
functional genes within novel QTL by two general strat-
egies. The first involves integrating transcriptomic data
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to perform omics QTL mapping, and the second uses
sequencing of an independent population to provide a
cross-population analysis (Additional file 3: Figure
S15a-c).
Transcriptomic analysis has become a common tool for

functional gene identification and to further interpret
regulatory mechanisms associated with complex traits [4,
31, 32]. Here, cross-omics mapping (Additional file 3: Fig-
ure S15ab) was performed using the expression data from
391 progenies by integrating associations including
expression-genotype (eQTL) and expression-phenotype
(epQTL) links [32], together with the genotype-phenotype
associations (pQTL) detailed above. All these association
analyses were performed with mixed linear models (see
the “Methods” section). As a result, eQTL from 674 genes
showed co-positioning with 170 (47.9%) pQTL identified
by sGWAS, reducing candidate number on average from
the original 72.7 genes to 4.0 genes per QTL (Add-
itional file 10). This result suggested key driver genes of
the hypothesized genotype-expression-phenotype mech-
anism, including RAP2 (AP2/EREBP transcription factor,
GRMZM2G700665, Additional file 3: Figure S13de),
ZCN12 (GRMZM2G103666), and zmBBX19 (B-box zinc
finger protein 19, GRMZM2G422644) for male and
female flowering interval, and the gibberellin receptor
GID1L2 (AC218900.3_FG001) for ear height (Add-
itional file 3: Figure S15d; Additional file 3: Figure S16).
Interestingly, a larger set of 280 (81.1%) pQTL from
sGWAS displayed trans-eQTL effects regulating the ex-
pression of those genes outside pQTL intervals signifi-
cantly (Additional file 11). This analysis produced more
functional candidates that were not observed by
phenotype-based GWAS. The epQTL adds indirect
evidence of gene-expression-phenotype links (Add-
itional file 12) and exactly verified some of the co-
localization of pQTL and eQTL findings. The ratio will
undoubtedly be increased when more tissues are used for
the expression quantification. Interestingly, most (96.5%)
epQTL were novel and did not cover any genotype-
phenotype associations, suggesting direct expression-
phenotype mapping is mutually complementary to con-
ventional GWAS. These new associations included many
known links, or some inferred from other species, such as
MADS4 (GRMZM2G032339), ZMM15 (GRMZM2G55
3379), VOZ5 (GRMZM2G449165), NFC103B (GRMZM2
G320606), HB120 (GRMZM2G056600), and BHL32 (GR
MZM2G180406) for flowering time traits (Additional file 3:
Figure S17).
Furthermore, comparisons of GWAS observations

across diverse populations have been shown to be valu-
able to both cross-validation and fine-mapping [33]. A
collection of over 500 unrelated inbred lines has been
widely used for QTL discovery [4] which was re-
sequenced (~ 20× coverage) in the present study to
integrate its complementary advantage of higher reso-
lution mapping power compared with the CUBIC de-
sign. This was done by regarding all CUBIC QTL as
candidate regions to perform association analysis with a
liberal threshold (P < 1E−4) in the previous population.
In total, 77 (10.6%) CUBIC QTL were co-mapped in
the unrelated population (Additional file 13), allowing
these candidate intervals to be narrowed. This analysis
prioritized the association of RAP2 (Additional file 3:
Figure S15e) for flowering time, PHD17 (E3 SUMO-
protein ligase SIZ1, GRMZM2G155123) for ear height,
and ACCO35 (1-aminocyclopropane-1-carboxylate oxi-
dase35, GRMZM2G052422) for tassel branch number.
Together, combining these systematic analyses provided a
general framework and an excellent resource for inference
of functional candidates and insights into the mechanisms
governing complex traits.

Discussions
Identification of the genes controlling phenotypic vari-
ation aids in understanding the genetic basis of key traits
and relevant crop improvement. Plant populations
resulting from controlled crossing experiments provide
an opportunity to facilitate statistical designs for GWAS
and can improve mapping power [4]. In the present
study, an innovative synthetic population (CUBIC) inte-
grating advantages of both the diallel cross and MAGIC
designs proved valuable in complex trait dissection
thanks to its high phenotypic diversity, large population
size, rapid LD decay, weak population structure, and
traceable recombination events. The process of artificial
selection was introduced in the early development of
CUBIC population, which can enrich the favorable genes
with low frequency, thus enhancing the QTL detection
power and help to understand the breeding process in
genome level. The contribution for each parent in gen-
ome level ranged between 0.5% for YUANFH and 13.4%
for HUANGC (Additional file 3: Figure S18). As ex-
pected, the enriched genome segments for specific par-
ent are not random and some of them overlapped with
the mapped QTL (data not shown). The weighting to-
ward material with desirable phenotypes of CUBIC helps
make the resulting material more immediately relevant
for breeders and the inclusion of more diverse germ-
plasm ensures its effectiveness as a trait mapping re-
source. The IBD-based GWAS is complementary to
conventional single-variant-based association mapping,
and the former is particularly superior in the identifica-
tion of QTL with allelic series. Almost 71% of the trait
heritability was explained by hundreds of QTL uncov-
ered by both mapping methods.
Beyond the great resources of genotype-phenotype as-

sociations, we further demonstrate how this population
design is additionally valuable to narrow down the
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candidate regions due to its IBD traceable feature, and
how integrative omics data to rapidly pinpoint causal
genes responsible for phenotypes of interest, using ear
leaf width as an example. Genomic, transcriptomic, and
metabolic data were integrated to clone the causal gene,
ZmGalOx1, responsible for ear leaf width, which has
been verified with CRISPR/Cas9 experiment. This again
reinforced the capacity of the CUBIC population as a
tool to rapidly mine genes. Beyond this specific case, we
took a further step to systematically identify likely
functional candidates by cross-mapping and cross-
omics analysis, creating useful resources to explore
and understand physiological mechanisms of import-
ant agronomic traits.

Conclusions
Future breeding can be transfigured to be more pre-
cise under the guidance of genomic information, by
assembling major mapped QTL for a target trait into
one breeding population and by pyramiding favorable
QTL for multiple traits to optimize the overall per-
formance using exact assessment of co-variation of
diverse traits. We expect these substantial gene-trait
links to provide guidance and resources for precise
maize genetic improvement. With the creation of su-
perior alleles at directive loci by emerging genome
editing techniques (as pioneer explorations shown in
[34–37]), we now move toward a knowledge-driven
advanced crop improvement era.

Methods
Population design
The CUBIC design is a modified Multi-parent Advanced
Generation Inter-Cross (MAGIC) population consisting
of 1404 progeny. It was derived from 24 elite Chinese
maize inbred lines from 4 divergent heterotic groups
(Additional file 1), which included 4 founders from
LvDaHongGu germplasm (旅大红骨种质): LV28 (旅28),
E28, DAN340 (丹340), and F349; 4 founders from ZI330
germplasm (自330亚群种质): ZI330 (自330), ZONG3
(综3), ZONG31 (综31), and HUANGC (黄C); 15 foun-
ders from SiPingTou germplasm (四平头种质): HZS (黄
早四), HYS (黄野四), TY4 (天涯4), YUANGFH (原辐

黄), CHANG7-2 (昌7-2), K12, XI502 (西502), LX9801,
H21, SHUANG741 (双741), Q1261, JI853 (吉853), JI53
(冀53), 5237, and 81515; and 1 founder from
Yugoslavia-improved germplasm (南斯拉夫群体选系):
NX110 (农系110). These 24 founders were crossed
under a Complete Diallel Cross type IV (CDC IV) mat-
ing design, omitting parents and reciprocal crosses, in
the summer of 2004. Thirty F1s with acceptable agro-
nomic performance (early flowering, short ear height,
and big ear size) were selected to cross further in the
CDC IV design, and an additional 110 F1s were
randomly selected to open pollinate in isolation in the
winter of 2004. A total of 200 and 400 ears resulting
from the best and the random crosses, respectively, were
harvested. Seeds were mixed together in a 2:1 ratio
(biased to improve population performance), and indi-
viduals were planted under open pollination from the
summer of 2006 to the winter of 2008 in isolated regions
for 6 generations. About 2000 ears of the most pheno-
typically diverse individuals were retained, and seeds
were mixed in equal proportions in each generation.
The population was then self-pollinated by single seed
descent beginning in the summer of 2009 for another 6
generations. During the open- and self-pollinated pro-
cesses, the greatest possible variation for several traits
was constantly maintained to maximize the phenotypic
diversity. A total of 1664 inbred lines were obtained, of
which 1404 were successfully sampled and sequenced,
and thus used in further analysis.

Phenotyping
All 1404 inbreds were planted in the year of 2014 at 5
locations (Additional file 3: Figure S2; N 43° 42′, E 125°
18′, Yushu City, Jilin Province; N 42° 03′, E 123° 33′,
Shenyang City, Liaoning Province; N 40° 10′, E 116° 21′,
Changping District, Beijing City; N 38° 39′, E 115° 51′,
Baoding City, Hebei Province; N 35° 27′, E 114° 01′,
Xinxiang City, Henan Province) in Northern China,
where the 24 elite founders that served as the parents of
the population are the most adapted. The lines were
planted with a random order at each environment to
eliminate the potential confounding effect. About 17 in-
dividual plants were planted for each line, and the line
Chang7-2 was planted after every 50th entry, whose phe-
notypes are used to correct for trend and spatial hetero-
geneity. Twenty-three phenotypes were measured at
each location, including 6 flowering time traits: days to
tasseling (DTT, measured as the interval from sowing to
the day the tassel appeared in half of the individuals per
line), days to anthesis (DTA, measured as the interval
from sowing to the day of pollen shed for half of the in-
dividuals), days to silking (DTS, measured as the interval
from sowing to the day silks emerged for half the indi-
viduals), and the intervals between them: interval be-
tween anthesis and tasseling (ATI), interval between
silking and tasseling (STI), interval between silking and
anthesis (SAI); 8 developmental agronomic traits: plant
height (PH, vertical height from the ground to the top of
the tassel, with an accuracy of 0.5 cm), ear height (EH,
vertical height from the ground to the node where the
top ear arises), ear leaf length (ELL, straight length of
the first ear leaf), ear leaf width (ELW, width of the ear
leaf measured at the widest point), leaf number above
ear (LNAE, leaf or node number from ear leaf to the
top; counted including the ear leaf), leaf number below
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ear (LNBE, leaf or node number below the ear leaf; not
including the ear leaf), tassel branch number (TBN, only
the primary tassels were considered), tassel length (TL,
straight length of the main branch); and 9 ear traits: ear
weight (EW), ear diameter (ED), ear length (EL), ear row
number (ERN), kernel number per row (KNPR), kernel
number per ear (KNPE), kernel weight per ear (KWPE),
cob weight (CW), and length of the barren tip (LBT).
For flowering times, all individuals in a line were consid-
ered, while only 5 consecutive plants in the middle of
each line were measured and the average value was used
for developmental agronomic traits. For measuring ear
traits, 5 approximately equidimensional ears were ran-
domly selected to represent each line.
For each trait, the variance of genotype and environ-

ment on phenotype were estimated, and the line mean-
based broad-sense heritability for each trait was calcu-
lated as: H2 ¼ δ2g=ðδ2g þ δ2e=nÞ , where δ2g is the genetic

variance, δ2e is the residual variance, and n is the number

of environments. The estimates of δ2g and δ2e were ob-

tained by the mixed linear model, treating genotype and
environment as random effects. The best linear unbiased
predictor (BLUP) value for each inbred line was calcu-
lated across all environments using the mixed linear
model in the R package “lme4” [38]. The BLUP values
were used in subsequent analyses, including basic
phenotypic statistics, correlation analysis, and GWAS.
The phenotypic variance or heritability explained by ei-
ther sQTL or hQTL for a given trait was estimated in an
analogous way by using linear regression, and the total
variances explained by integrated methods were esti-
mated jointly.

Whole-genome sequencing (WGS)
Sample collection and DNA extraction
Young leaves in the vegetative growth stage were col-
lected about 5 weeks after planting and flash-frozen in li-
quid nitrogen. Genomic DNA from each sample was
extracted with the cetyltrimethylammonium bromide
(CTAB) method [39] and dissolved in double-distilled
water. The DNA was checked for quality and quantity
on agarose gels and a Qubit fluorometer (Invitrogen).
Samples having at least 1 μg of total DNA, A260/A230
above 2.0, and A260/A280 above 1.8 were selected to
construct the sequencing library.

Library construction
High-quality genomic DNA was column-purified to re-
move protein, carbohydrates, salt, and other impurities.
Purified genomic DNA (1 μg) was fragmented using a
Biorupter UCD-200 (Diagenode). The fragmented DNA
was inspected for quality via agarose gel electrophoresis,
and fragments in the range of 300–500 bp were
concentrated. DNA was repaired by adding adenine nu-
cleotides (A) and a sequencing adapter to remove gaps
at the 3′ end of the fragmented DNA; repaired DNA
was then further purified by 2% agarose gel electrophor-
esis. DNA fragments of around 500 bp were recovered
by PCR amplification and purification to obtain the final
library, which was inspected again for quality by agarose
gel electrophoresis and qPCR with the StepOne Plus
Real-Time PCR system (ABI).
Sequencing
DNA libraries were sequenced with the Illumina HiSeq
2500 platform using V4 reagents with 125-bp paired-end
reads, generating a total of 5 Tb of sequenced base pairs.
The library preparation and sequencing work described
above was accomplished by the BerryGenomics Com-
pany (Beijing, China).
Variant discovery
Quality control of raw reads
Adaptor sequences were removed as the first step of the
analysis, and low-quality reads were trimmed by Trimmo-
matic (Version 0.33) [40], using the following parameters:
TRAILING= 3, MINLEN= 50, and HEADCROP = 10.
Read alignment
Clean reads were mapped to the maize B73 reference
genome (v3.25, downloaded from http://plants.ensembl.
org) using the BWA aligner (Version 0.7.12) [41], which
displays a good balance between running time, memory
usage, and accuracy. The FM-index for the reference
genome was produced first, and reads for each sample
were aligned against the reference using the “aln/sampe”
option with default parameters. The unique mapped
reads extracted from SAM files were sorted and indexed
using Picard (Version 1.119) [42].
Insertion/deletion realignment and base quality
recalibration
The RealignerTargetCreator and IndelRealigner modules
from the Genome Analysis Toolkit (GATK, Version 3.5)
[43] were used to perform local realignment around
InDels to correct mapping artifacts. SAMtools (version
0.1.19) [44] and UnifiedGenotyper from GATK were
first used to generate a high-quality SNP set as known
sites to build the covariance model and estimate empir-
ical base qualities for each individual. Next, BaseRecali-
brator and PrintReads tools from GATK were used to
recalibrate base quality scores in order to correct
sequencing errors and other potential experimental
artifacts.

http://plants.ensembl.org
http://plants.ensembl.org
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Variant calling (SNPs and short insertions and deletions,
InDels)
The recalibrated BAM files were processed with SAM-
tools and UnifiedGenotyper from GATK. For GATK,
the parameter “-glm” was set as “BOTH” to obtain SNPs
and InDels simultaneously. Variant calls from the SAM-
tools mpileup package were identified using default pa-
rameters. Variants identified by both programs were
only kept if they satisfied mapping quality (MQ ≥ 20.0)
and sequencing coverage (DP ≥ 2 and DP ≤ 100). The fil-
tered variants of each sample were further combined by
GATK CombineVariants, and another re-calling process
of every individual using GATK UnifiedGenotyper was
performed to obtain initially integrated genotypes at the
population level. Next, variants with a missing rate
greater than 98% were removed, and heterozygous sites
with a “Lowqual” label were excluded. The resulting
variant calls were stored in a variant call format (VCF).

Variant calling pipeline evaluation
To estimate the error rate of the variant calling pipeline
for the present study (i.e,. for the maize genome), a
number (10×) of pair-end sequencing reads were simu-
lated from the reference genome with 0 miss-match and
the same pipeline was utilized to call variants. Theoretic-
ally, no differences should be identified; such variants
could only be derived from incorrect mapping and call-
ing, which may occur due to intrinsic duplication of gen-
ome fragments. Only 12 heterozygous SNPs and 0
InDels were called using the simulated sequences. This
indicated that our maize variant calling process applied
above is reliable, and systematic errors (caused by the
complex genome structure) are limited and most likely
to happen for heterozygous loci. With the expectation
that this kind of error would occur most frequently at
specific sites, we further simulated the same procedure
10 times with the aim of covering the majority of this
type of error. The variant sites identified from this ana-
lysis were removed, if present, from the variant set called
from real data.

Genotyping by 200K Array
A subset of 194 lines, including 24 founders and 170
randomly selected progenies, were further genotyped
using the Affymetrix Axiom Maize Genotyping Array
200K (from Peking University, China). The Affymetrix
Power Tools (APT) and SNPolisher package [45] were
used to analyze the genotyping data in the “cel” format.
Briefly, the DQC value and call rate for each sample
were set larger than or equal to 0.82 and 0.97, respect-
ively, and acceptable poly high resolution (PHR) values
were retained leading to a dataset of 53,831 high confi-
dence SNPs. The average concordance rate between the
200K Array and the whole-genome sequencing was 97%.
All SNPs obtained from re-sequencing and the 200K
array were integrated to perform genotype imputation
for all lines, and those inconsistent genotypes were con-
sidered as unknown.

Genotype imputation
Missing genotypes were imputed using Beagle (version 4.0)
[46]. Exploration of imputation accuracy with various miss-
ing data rates was done via the comparison between im-
puted calls and randomly masked genotypes (~ 5000,000
for site × individuals) for chromosome 10 only. The best
parameter combination for the present study was deter-
mined to be as follows: window= 50,000, overlap = 5000,
original missing rate < 75% (sites from the 200K array were
always kept), and using the imputation-then-removing
strategy of [47]. With this method, the average imputation
accuracy was 98%. Ultimately, a set of 14,126,424 high-
confidence SNPs and 439,670 InDels were retained for fur-
ther analysis, covering about 99.13% of predicted maize
genes (38,805 genes).

Mosaic map tracing IBD origins from 24 founders for each
progeny line
The hidden Markov model (HMM) raised in [13] was
used to make a multipoint probabilistic reconstruction
of the genome of each progeny line as a mosaic of the
founder identity-by-state (IBD). Each progeny genome is
made up of IBD segments of the founder genomes, with
a transition between founders occurring whenever a re-
combination has occurred (Additional file 3: Figure S5).
The biallelic SNPs cannot distinguish between all foun-
ders, so the HMM used the information of neighboring
SNPs to compute the posterior probability, Pi

s; f , that at a

given SNP locus s, the CUBIC progeny line i is des-
cended from founder f. The IBD state is built as the
founder with the maximum posterior probability max f f
Pi
s; f g at SNP locus s for progeny i, only if the maximum

posterior exceeds twofold of expected value by chance
(1/24); otherwise, it was considered an unknown state.
Segments that failed to be traced to any specific founder
covered approximately 3.1% of the maize genome. In
these regions, the identity-by-state between multiple
founders was highly comparable compared to the flank-
ing regions, presumably reflecting the co-ancestral
origins.
Upon the CUBIC design, the HMM made the follow-

ing approximations and assumptions: (i) the genome of
each progeny line is homozygous due to advanced self-
ing generations, so we filtered out the SNPs of high het-
erozygous genotypes (> 10%) or missing calling before
imputation (> 25%), leaving ~ 240K high-quality SNPs
for IBD reconstruction; (ii) the effective number of gen-
erations (G) approximately be 9, since the eight rounds
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of inter-cross generation (dialle cross or open pollin-
ation), plus one round of approximate cross-generation
from six generations of selfing, because on average, only
half recombination events are accumulated per selfing
[48]; (iii) the identity of the founder in a given IBD seg-
ment in the mosaic is uncorrelated with other segments
for that individual, and the length of segment follows an
exponential distribution with a mean length ρ/G, where
ρ is the genetic length of the segment, corresponding to
a consensus map (Additional file 14) built with ten bi-
parental linkage maps [15].
The power of the HMM method in correctly tracing

the IBD origins of CUBIC progeny lines was evaluated
by simulating pseudoprogeny lines by reshuffling 24
founder genomes. First, we set the number of recombin-
ant segments of the progeny line as 180 (the median of
recombination per line in real data) and to be propor-
tional to the chromosome length. Second, we set the
location of the break point based on the empirical re-
combination ρ from the consensus genetic map (Add-
itional file 14). The 24 founders were then randomly
assigned to the simulated segments for each line. The
procedure repeated 100 times to simulate 100 pseudo-
progeny lines. The simulated recombination count of
the 100 pseudoprogeny lines appeared to apparently de-
creased recombination in centromere relative to the
arms of chromosomes (Additional file 3: Figure S19a).
The SNP genotypes of 100 pseudoprogeny lines were
projected from the founder SNP genotypes in every sim-
ulated IBD segment. Then, for each pseudoline, the
HMM with the same criteria in real data was run to
trace back to the 24 founders. The power was defined as
the proportion of SNPs across the genome that have the
identical IBD origin to what it was simulated to be. It
was found that the current procedure of the HMM ap-
proach had the power of 93–97% (along different chro-
mosomes) to correctly identify the founder origins
(Additional file 3: Figure S19b).

Single-variant-based GWAS
In total, 11.8 million high-quality SNPs (MAF ≥ 0.02)
were used to perform sGWAS. The relatedness matrix
(K, random effect) was calculated using the “pylmmKin-
ship.py” script from pylmm [49], and the top ten PCs
(which explained 8.76% of the variance) were generated
by GCTA [50] and applied as a fixed effect. The mixed
linear model (MLM) corrected by a relatedness matrix
and the top ten PCs was implemented by the software
Tassel 3.0 [51]. The significance threshold for the associ-
ation was set to 1.23E−8, which was equal to 0.05/Ne,
where Ne is the effective number of independent tests
[52]. To interpret GWAS results, significantly associated
SNPs for each trait were first grouped into one locus in
which two consecutive SNPs were less than 20 Kb, and
in which at least two significant SNPs existed for each
locus. The adjacent loci were further merged into a
single locus if any significant SNPs between adjacent
loci were in LD (r2 ≥ 0.2). To reduce the probability
of missing causal genes in some narrow QTL intervals
due to minor QTL, another 25 Kb was extended to
both sides for those QTL with intervals less than
50 Kb and significance of the peak SNPs smaller than
100 times cutoff value (i.e., 1.23E−10). Ultimately, the
significant loci were treated as sQTL, the peak SNP
defined the significance of the sQTL, and the ex-
tended region of significant SNPs were defined as the
sQTL interval.
IBD-based GWAS (hGWAS)
The IBD mosaic map of all CUBIC lines was collapsed
into 27,005 bins based on all identified recombination
break points. In each bin, there was only 1 IBD state for
a given line but 16~24 IBD states available across all
lines. Treating each bin as 1 variable, the hGWAS was
performed via the “JLM” script described previously
[53]. In hGWAS, the mixed linear model was built and
the restricted maximum likelihood (REML) was used to
test the significance of each bin, by treating bin and
polygenic effects as random effects and the top 10 PCs
as fixed effects. The covariance structure of the poly-
genic effects was inferred with a bin-based kinship
matrix, which was calculated using the method raised by
[54] through reformatting bins as the dummy variables.
The general analytic differences for the present popula-
tion to previous study [53] included 2 aspects: (1) the
fixed effect, the previous method (JLM) intended to
jointly analyze the data with 10 independent popula-
tions; thus, a categorical variable or design matrix was
included as fixed effect to indicate sample-population re-
lationships; instead, the populations structure of CUBIC
was inferred using PCA, which was fitted as fixed effects
in hGWAS model (similarly what we do in sGWAS); (2)
random effect, it was modeled by a kinship matrix under
linear mixed model framework. Previously the kinship
matrix was simply calculated by genome-wide SNP data,
instead for CUBIC population, we inferred it using the
whole-genome bin marker data. We used a permutation
test of 500 iterations to determine the threshold for the
likelihood ratio test (LRT) scores for each trait [55]. The
resulting LRT threshold ranged from 6.8 to 7.4 (α =
0.05); for simplicity, we chose the average LRT of 7.1 as
the overall cutoff for all traits. Following the previous
procedures, significant bins were merged into a locus
(or hQTL) with nearby positions (≤ 1Mb) or located
within ≤ 5 bins; the interval of each hQTL was de-
fined as the physical position range delimited by the
significant bin [53].
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GWAS simulation
To test and interpret the difference between the 2
GWAS methods, we simulated 3 possible QTL architec-
ture scenarios using the CUBIC population, using bialle-
lic quantitative trait nucleotide (QTN) expression as an
SNP marker. These were as follows: (1) biallelic QTL,
expressed as a single QTN at a given QTL; (2) 4-allelic
QTL, attributed to 2 incompletely linked QTN at a given
QTL; and (3) 9-allelic QTL, attributed to 3 incompletely
linked QTN at a given QTL. We randomly selected 30
bins on chromosome 1 and set 10 bins as harboring sin-
gle QTN for each bin; another 10 bins were assigned 2
QTNs per bin; and 3 QTNs assigned to each bin for the
last 10 bins. We added a series of modest additive effects
to QTNs, following the geometric distribution of an (a =
0.95), to simulate the polygenic nature of the complex
traits [56]. The narrow-sense heritability (h2) and pheno-
typic variance (Vp) were defined as 0.8 and 1 for the tar-
get trait, respectively. The simulated phenotype of each
line was obtained by adding the sum of additive values
to a residual error, following a normal distribution with
0 mean and variance of 0.2 (i.e., h2 = 0.8). The 2 GWAS
methods described above were used to detect QTL in
this simulation, which was replicated 1000 times to
evaluate the statistical power and FDR for each QTL
scenario.

IBD-based QTL refinement by a linkage-like analysis
The major QTLs (those simultaneously detected by both
GWAS methods with > 10% variance explained for the
trait under study) were validated and refined. The major
QTL region was defined as the union of the sQTL and
hQTL intervals. The progeny lines were categorized into
parental IBD groups according to the peak bin. Inferred
from the simulation analysis that compared the statis-
tical power of sGWAS and hGWAS, it may be a fact that
multiple parents may share the same QTL allele. Thus,
identifying or approximating the true QTL allele can re-
duce the model complexity (decrease the degree of free-
dom), which should increase the statistical power. But
note that the IBD clustering for a QTL has to be pheno-
type dependent, which can reduce the impact of random
variants on the clustering. Thus, for a QTL, the parental
IBD groups were collapsed into phenotypically distin-
guishable clusters based on multiple comparisons of
phenotype between the parent IBD groups (P < 0.05) for
each trait. These IBD clusters, called functional alleles,
reflected potentially true alleles dependent on specific
traits, thus expecting to more closely predict trait vari-
ation than the parent IBD, independent of traits. At the
QTL region, the inferred allelic types were projected
onto all progeny lines, and the allelic combinations at
the QTL region were re-clustered for the whole popula-
tion into several major haplotypes. In this way, the
pairwise comparison of phenotype between inferred hap-
lotypes (as determined using the Student’s t test, P <
0.01) enabled the verification of the QTL credibility and
further narrowed the QTL interval, in a manner simi-
lar to the traditional bi-parental fine-mapping proced-
ure [57].
For fine mapping major GWAS loci, SNP and InDel

polymorphisms located in the QTL interval were used to
enable identification of the gene and the causal variant
responsible for the GWAS identified locus. To help de-
termine the likely functional genes, we ranked all genes
via functional annotation (predicted by ensemble VEP
program [58]) of polymorphisms located within the QTL
interval, based on the generic feature format file version
3 (gff3) in maize following the listed procedure [59].

Identification of epistasis in trait variance
Variants were filtered for frequency (MAF ≥ 2%) and
linkage disequilibrium (r2 < 0.5 within each window of
50 Kb, with a step of five SNPs) before testing for epista-
sis. For each trait, the plink program [60] was employed
in fast epistasis analysis using the supported boost test
[61] with --fast-epistasis. Pairs of loci with P value > 6E
−16 (roughly 0.01/Ne

2, where Ne is 4,057,944, the inde-
pendent number of SNPs estimated by Genetic type 1
Error Calculator (version 0.2) [52]) were first removed,
and only the most significant ones per pair were retained
for those loci that interacted with multiple other loci
within 100 Kb. The P value and corresponding variance
explained for each putative epistatic pair were further
adjusted by linear regression with controlling of popula-
tion structure and additive effect, and those with ad-
justed P values < 1E−12 were kept as instances of
significant epistasis. To estimate the trait variance jointly
explained by epistasis, the population structure and
additive effects for all remaining variants were first
regressed out, and the residuals for each trait were fur-
ther regressed against all interacting items. An extended
interval of 50 Kb for interacting variants was used to de-
termine the co-occurrence of identified epiQTL with
previously identified networks.

RNA sequencing, eQTL mapping, and epQTL analysis
A subset of 391 progenies were randomly selected from
the CUBIC population for RNA sequencing. These lines
and the founder parents were grown at the Hainan field
station in the winter of 2016. At the V9 stage (the stage
with the fastest leaf tissue growth), total RNA was ex-
tracted from the tissue of the 11th leaf, collected from
the pool of 3 plants of similar growth status per line, fol-
lowing the standard protocol of Quick RNA isolation
Kit, #0416-50 (Huayueyang Biotechnology CO., LTD.
Beijing, China). A library with insert sizes ranging from
200 to 500 bp was prepared using the commercial
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Illumina library preparation kits (TruSeq Stranded
mRNA LT-SetA. RS-122-1201). A 150-bp paired-end
Illumina sequencing was performed using the HiSeq X-
Ten protocols. Each sample had on average ~ 20 million
raw reads. The reads with low sequencing quality and
sequencing adapter were removed using the software
Trimmomatic-0.36 [40]. The paired-end reads were
mapped onto the B73 AGPv3.25 reference using the
software STAR [62] with a maximum intron size of 50,
000 bp; only those uniquely mapped reads were used to
quantify gene expression levels using the HTSeq [63].
The expression data for each gene was normalized using
the software DESeq2 [64] before the subsequent
analyses.
Only genes expressed in more than 60% of the lines

were retained in eQTL mapping. Top ten PEER [65] fac-
tors, together with the top ten genotypic PCs, were uti-
lized to account for covariates. The software EMMAX
[66] was used in eQTL mapping, taking 1.89E−8 as a sig-
nificant standard. The co-localization of pQTL and
eQTL was measured with the evidence that the peak
variant of pQTL was included in significant SNPs from
eQTL. Those loci affecting trait variance by regulating
those genes outside the pQTL region and not due to LD
(> 10M) were considered candidates with trans-effect.
The OSCA program [32] was used to perform
expression-phenotype associations (epQTL) under a lin-
ear mixed model, with 1E−3 as a significant threshold.

Cross-population analysis
The mapping on a maize association mapping panel
(AMP) containing 508 unrelated inbred lines [67] was
used to cross-validate and narrow down the candidate
list. Since the mapping results of AMP were based on
the B73 v4 genome, we first extracted the candidate
genes located in 776 QTL in the present CUBIC popula-
tion and transformed the B73 v3 gene ID into B73 v4
gene ID. All CUBIC QTLs were applied to candidate as-
sociation mapping in AMP along corresponding traits
and considered as significant when P value < 1E−4.
Meanwhile, the cross-validation in the maize association
population makes the number of candidate genes greatly
reduced.

Metabolic analysis
A metabolic profile was conducted to help interpret how
genes identified in this study may be involved in regulat-
ing the phenotype. From the 391 lines used in RNA-seq,
a subset was selected based on the phenotype and in-
ferred allelic types in the specific QTL under study. For
the major QTL identified for ELW on chromosome 4, a
total of 71 lines were chosen based on the genotype of
peak SNP, with 35 vs. 36 for different alleles of the 1 bp
deletion in ZmGalOx1. These lines and the founder
parents were grown at the Hainan field station in the
winter of 2016. At the V9 stage, we collected tissue from
the 10th leaf, collected from 3 plants per genotype, for
metabolic analysis. The 7th leaf of the CRISPR-Cas9 edi-
ted T0 plants was also collected at the V9 stage from
plants grown in the greenhouse of the China National
Seed Group Co., LTD. (Wuhan, China), in the autumn
of 2017. The primary metabolites were extracted from
maize leaves following the procedures described in detail
in previous studies [68, 69]. In brief, 50 mg of lyophilized
leaf powder was extracted with 1 ml of methanol:
methyl-t-butyl-ether (MTBE) solution (1: 3 v/v). A
300-μl aliquot from the lower polar phase was taken
and dried in a vacuum. The dried residue was deriva-
tized with N-methyl-N-(trimethylsilyl) trifluoroaceta-
mide (MSTFA) and further analyzed by GC-MS
(7890A-5975C, Agilent, Santa Clara, USA) following
the protocol described in previous studies [70, 71].
Hormones were extracted from maize leaves according

to the protocols published previously [72], and the hor-
mone compounds were separated by reversed-phase ultra-
fast LC (Shimadzu, Kyoto, Japan). These were detected by
electrospray ion source of a tandem triple quadrupole MS
analyzer (API4000, AB SCIEX, Singapore) and quantified
in multiple reaction monitoring (MRM) mode using opti-
mized MS/MS conditions. The MS conditions were as fol-
lows: source, Turbo IonSpray; ion polarity, negative;
IonSpray voltage, − 4500 V; source temperature, 550 °C;
gas, nitrogen; curtain gas, 30 psi; nebulizing gas (GS1), 55
psi; collision gas (GS2), 55 psi; scan type, MRM; Q1 reso-
lution: unit; and Q3 resolution: unit. The Analyst 1.5.2
software (AB SCIEX, Foster City, CA, USA) was used to
control the instrument and to acquire and process all MS
data. Among all samples, ten samples were tested twice
for technical replications. The Pearson correlations
between two replications indicated the high quality of
metabolic data (r = 0.9927 ± 0.0083).

CRISPR/Cas9 editing experiment
In order to confirm that ZmGalOx1 is the causal gene
for the ear leaf width QTL identified via GWAS on
chromosome 4, we edited the gene sequence using the
CRISPR-Cas9 system. Two guide RNAs (gRNAs) target-
ing the 14th exon of ZmGalOx1 were designed using the
CRISPR-P [73]. The 2 gRNAs were integrated into a
highly efficient vector [74] and transformed into imma-
ture embryos of ZZC01 by Agrobacterium infection by
the China National Seed Group Co., LTD. A total of 55
T0 CRSPR-Cas9 edited seedlings were obtained (includ-
ing positive and negative control plants), and DNA was
extracted from each individual at the seedling stage.
Primers were designed to amplify about 800 bp in the
vicinity of (and including) the 2 gRNAs within the gene.
The PCR products were used for Sanger sequencing to
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examine the variations along the sequence. By compar-
ing the sequences with those of the unedited lines
(ZZC01) using the BioEdit software [75], all sequence
changes that could lead to amino acid changes were
identified. For all 55 T0 plants, ear leaf widths in the R1
stage (after pollination) were measured for statistical
analysis.

Leaf cytological experiment
Lines with the most extreme ear leaf width, and having
either the allelic type with or without the 1-bp insertion
in ZmGalOx1, were planted in Wuhan in the summer of
2017. Ear leaves were collected in the R1 stage to pre-
pare for the cytological experiment. In the autumn of
2017, the ear leaves of CRISPR/Cas9 edited plants (in-
cluding positive and negative control plants) were also
collected at the R1 stage from greenhouse-grown plants.
The abaxial leaf epidermis tissue was removed 20 cm
from the leaf tip and affixed to a microscope slide. Im-
ages were taken under × 10 field in an Olympus DP72
compound microscope with × 10 eyepiece. Counting in a
direction perpendicular to the leaf vein, the number of
cells per field was counted by the Image-Pro Plus soft-
ware [76] to determine the average width of a single cell.
The total number of cells along the leaf from left to right
was calculated as leaf width divided by the average single
cell width. For each plant group, 12 plants were in-
vestigated for cell size and cell number with 3 leaves
per plant. The 3 values were averaged for each plant.
Student’s t test was used to test the significance of
difference between the positively and negatively edited
plants and between different ZmGalOx1 genotypic
plants (P < 0.01).
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