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Abstract: The performance of relativistic density functional

theory (DFT) methods has been investigated for the calcula-
tion of the recently measured hyperfine coupling constants

of hexafluorido complexes [ReF6]2@ and [IrF6]2@. Three relativ-
istic methods were employed at the DFT level of theory: the
2-component zeroth-order regular approximation (ZORA)
method, in which the spin–orbit coupling was treated either

variationally (EV ZORA) or as a perturbation (LR ZORA), and
the 4-component Dirac–Kohn–Sham (DKS) method. The de-
pendence of the results on the basis set and the choice of

exchange-correlation functional was studied. Furthermore,
the effect of varying the amount of Hartree–Fock exchange

in the hybrid functionals was investigated. The LR ZORA and

DKS methods combined with DFT led to very similar devia-

tions (about 20 %) from the experimental values for the cou-
pling constant of complex [ReF6]2@ by using hybrid function-
als. However, none of the methods were able to reproduce
the large anisotropy of the hyperfine coupling tensor of
complex [ReF6]2@. For [IrF6]2@, the EV ZORA and DKS methods
reproduced the experimental tensor components with devi-

ations of &10 and &5 % for the hybrid functionals, whereas

the LR ZORA method predicted the coupling constant to be
around one order of magnitude too large owing to the com-

bination of large spin–orbit coupling and very low excitation
energies.

Introduction

The magnetic properties of the seemingly simple hexafluorido

complexes of ReIV and IrIV, [ReF6]2@ and [IrF6]2@, have recently at-
tracted a lot of interest because they were shown to be suit-

able building blocks for single-molecule magnets.[1, 2] They also

exhibit an interesting electronic structure, which characterizes
their single-ion magnetic behaviour : a large zero-field splitting

(ZFS) in the case of [ReF6]2@, which is induced by strong spin–
orbit coupling, and in the case of [IrF6]2@, an equally strong

spin–orbit coupling without ZFS.
EPR spectroscopy is an essential tool for the structural and

magnetic characterization of transition-metal complexes; the

spectra are conventionally interpreted in terms of three param-
eters : the electronic g-tensor, the hyperfine coupling tensors,

and the zero-field splitting tensor. Accurate calculations of
these EPR parameters are desired to predict the magnetic

properties of similar compounds as well as to facilitate a de-
tailed interpretation of the EPR experiments. In addition, quan-

tum chemical methods can provide detailed information about

the given property, such as the magnitude of the contributions
from different mechanisms or the dependence on, for exam-

ple, geometry or environment. In this work we have focussed

on the hyperfine coupling.
Several mechanisms contribute to the hyperfine coupling

constant, and they have to be treated properly to obtain re-
sults in good agreement with experimental values. In non-rela-

tivistic theory, the only mechanism of the isotropic hyperfine

coupling is the Fermi-contact interaction, which describes the
interaction between the electronic and nuclear spin when an

electron is located at the position of the nucleus. This interac-
tion requires that the spin density in the area close to the nu-

cleus is properly described by the computational method,
which affects several aspects of a quantum chemical calcula-

tion. The quality of the basis set is critical ; in particular, the

number of tight s-functions is important, which has led to the
development of specialized core-property basis sets for the

lighter transition metals.[3–5] It has been shown that a Gaussian
description of the nuclear charge (as an alternative to the stan-

dard non-relativistic point charge model) can significantly im-
prove the agreement with experimental results.[6–8] In density
functional theory calculations of hyperfine couplings, the spin

polarization of the core electrons should be properly described
by the exchange-correlation functional.[9] Several studies have

shown that the qualitative performance of various exchange-
correlation functionals differs from system to system; therefore,

the dependence on the exchange-correlation functional of a
desired property must be investigated for each class of sys-

tems.[5, 9, 10]

When considering the hyperfine coupling in complexes that
involve elements with large nuclear charges, such as Re and Ir,

relativistic effects have to be taken into consideration.[11, 12] Rel-
ativistic contributions to hyperfine couplings are often divided

into two parts: a scalar relativistic contribution and a spin–
orbit coupling contribution. In the first row of the transition

metals, scalar relativistic effects dominate, and therefore, more

studies have considered this effect, whereas spin–orbit cou-
pling effects were ignored or treated in an approximate

manner. In the second and especially the third row of the tran-
sition metals, spin–orbit coupling effects can dominate the hy-

perfine coupling interaction; therefore, their accurate descrip-
tion is necessary.[13, 14] The highest currently available level of
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theory with respect to relativistic effects is to start from the
Dirac equation, to treat the nuclear magnetic moments as per-

turbations to first order and to use some approximation of the
electron–electron repulsion. The most common approach is to

use the Dirac–Coulomb Hamiltonian; herein, we will call this a
fully relativistic 4-component calculation. A more approximate

treatment is to work only with the large component of the
Dirac spinor, that is, a 2-component treatment, which can be

derived from the Dirac equation by first eliminating the small

component of the four-component wave function followed by
the regular approximation approach.[15] This is frequently em-
ployed in the form of the zeroth-order regular approximation
(ZORA).[16] Scalar relativistic terms are always included in these

treatments, whereas spin–orbit coupling can either be includ-
ed variationally or by perturbation theory on top of the pertur-

bation from the nuclear magnetic moments, which leads to a

second-order perturbation theory treatment.
In this work, we have compared the performance of three

relativistic methods in the calculation of metal hyperfine cou-
pling tensors in complexes [ReF6]2@ and [IrF6]2@ at the DFT

level : the fully relativistic 4-component method with electron–
electron repulsion approximated by a Coulomb interaction in

the form of the 4-component Dirac–Kohn–Sham (DKS)

method, the 2-component ZORA method with variational
treatment of spin–orbit coupling (EV ZORA), and the 2-compo-

nent ZORA method that treats spin–orbit coupling as another
perturbation, that is, by linear response theory (LR ZORA). We

have chosen the two minimally covalent 5d transition-metal
complexes [ReF6]2@ and [IrF6]2@ as test systems to investigate

what challenges their complex electronic structure, that is, the

large spin–orbit coupling in both and the large zero-field split-
ting in [ReF6]2@, pose for the three theoretical methods. In ad-

dition, we review the theoretical background of the three
methods in a common notation with focus on the calculation

of the different contributions to the hyperfine coupling ten-
sors. Specifically, this is the first time that the expressions for

the contributions that arise in the DKS method are presented.

The article is organized as follows: initially, we have re-
viewed the theory of hyperfine coupling within the three rela-

tivistic methods; then in the following three sections, we have
reported the details of our calculations, discussed the results,

and drawn our conclusions.

A short review of the theoretical background

ZORA with variational treatment of spin–orbit coupling

The 2-component ZORA hyperfine Hamiltonian consists of the
derivative with respect to a component of the nuclear spin, IN,u,

of the 2-component ZORA Hamiltonian[16] in the presence of
magnetic fields (SO-ZORA),[13, 14] which is given (here and in the

following) in the Hartree system of atomic units [Eq. (1)]:

ĥSO@ZORA
N;u ¼ dĥSO@ZORA

dIN;u

¼ 1
2c

rN

r3
N

> pK þ Kpð Þ
. -

u

þsur ? K
rN

r3
N

. -
@ s ? ru K

rN

r3
N

. -+ * ð1Þ

in which K ¼ 2c2=ð2c2 @ VÞ, s is the vector that consists of the
three Pauli spin matrices, p ¼ @ir is the momentum operator,

rN ¼ r@ RN is the position vector of the electron relative to the
position of nucleus N, and rN ¼ jrNj is the length of rN. The sub-

script u in Equation (1) indicates that the operator is perturbed
by the u component of the nuclear spin, IN. In the non-relativis-

tic limit, for which K!1, the first term in Equation (1) takes the

form of the nuclear-spin/electron-orbit operator, and the last
two terms reduce to the usual Fermi-contact and spin-dipolar

operators. When evaluating the derivatives of the last two
terms in Equation (1), a purely relativistic operator arises

[Eq. (2)] (last two terms) as well as the ZORA analogues of the
Fermi-contact and spin-dipolar operators (first two terms):[17]

ĥSO@ZORA;FCþSD
N;u ¼ 1

2c
8p

3
KsudðRNÞ þ K

3ðs ? rNÞrN;u

r5
N

@ su

r3
N

. -+
þðfrKg ? rNÞsu

r3
N

@ fruKgðs ? rNÞ
r3

N

* ð2Þ

In the DFT-based EV ZORA implementation in the ADF pro-

gram,[18] the hyperfine coupling tensor was calculated in a re-
stricted fashion on the basis of a Kramer’s pair of the singly oc-

cupied molecular orbital (f1 and f2).[13, 14] Consequently, this
method applies only to doublet systems and the elements of
the hyperfine coupling tensor of nucleus N, AN, are calculated

as described in Equations (3)–(5):

AN;ux ¼ 2gNmNRehf1jĥSO@ZORA
N;u jf2i ð3Þ

AN;uy ¼ @2gNmNImhf1jĥSO@ZORA
N;u jf2i ð4Þ

AN;uz ¼ 2gNmNRehf1jĥSO@ZORA
N;u jf1i ð5Þ

in which gN is the nuclear g-factor of nucleus N and mN the nu-
clear magneton. Notably, the current implementation does not

allow for the calculation of the individual terms in the ZORA
hyperfine Hamiltonian in Equation (2).

ZORA with perturbative treatment of spin–orbit coupling

In the LR ZORA formalism that was implemented in the ADF

program,[8, 18] spin–orbit coupling was treated as a further per-
turbation, and an element of the hyperfine coupling tensor

was calculated as a second derivative of the perturbed energy
with respect to both nuclear and electron spin [Eq. (6)]:

AN;uv ¼
d2EðJv; INÞ

dIu dSv

ð6Þ

By applying the Hellmann–Feyman theorem to the per-

turbed DFT energy, one obtains an expectation value of the
derivative of the hyperfine ZORA Hamiltonian in Equation (1)

over the unperturbed ground state. As the unperturbed molec-
ular orbitals f

ð0Þ
i were obtained with the scalar relativistic

ZORA Hamiltonian, the spin degree of freedom can easily be
integrated out, which allows for the spin derivative in Equa-

Chem. Eur. J. 2018, 24, 5124 – 5133 www.chemeurj.org T 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim5126

Full Paper

http://www.chemeurj.org


tion (6) to operate inside the integral. Consequently, the ex-
pression for an element of the first-order contribution to the

hyperfine coupling tensor reduces to the ZORA Fermi-contact
and spin-dipolar contributions [Eq. (7)]:

AFCþSD
N;uv ¼ 2gNmN

na @ nb

X
l;t

Pð0Þa@b

tl hcljĥFCþSD
N;uv jcti ð7Þ

in which Pð0Þa@b

tl is the unperturbed scalar relativistic spin densi-
ty matrix, see ref. [8] for the exact expression and more details,

na and nb are the number of electrons with a and b spin and

cl;t are the one-electron basis functions. The scalar-relativistic
(spin-free) ZORA (SR-ZORA) Fermi-contact and spin-dipolar op-

erator takes the following form [Eq. (8)]:

ĥSR@ZORA;FCþSD
N;uv ¼ 1

2c
8p

3
Kdu;vdðRNÞ þ K

3rN;v rN;u

r5
N

@ du;v

r3
N

. -+
þðfrKg ? rNÞdu;v

r3
N

@ fruKgrN;v

r3
N

* ð8Þ

Notably, the two purely relativistic contributions (the two last

terms) are considered as a part of the Fermi-contact and spin-
dipolar contributions in the LR ZORA formalism.

The integrals of the ZORA PSO operator over the unpertur-

bed orbitals will not contribute to the total hyperfine coupling
tensor. To include this contribution, one has to let the molecu-

lar orbitals be perturbed by the spin–orbit interaction, that is,
to solve the coupled perturbed Kohn–Sham equations. Details

of this approach can be found in ref. [17] in the case of nuclear
spin–spin coupling and ref. [19] for the implementation of mo-

lecular g-tensors. Thus, an element of the spin–orbit contribu-

tion to the hyperfine coupling tensor can be written in terms
of the perturbed spin density matrix, PðvÞa@b

tl [Eq. (9)]:

APSO=SO
N;uv ¼ 2gNmN

na @ nb

X
l;t

PðvÞa@b

tl hcljĥPSO
N;u jcti ð9Þ

in which the spin-free ZORA paramagnetic spin–orbit operator
is given in Equation (10):

ĥPSO
N;u ¼

1
2c

rN

r3
N

> Kpþ pKð Þ
+ *

u

ð10Þ

4-Component Dirac–Kohn–Sham method

Finally, in the 4-component Dirac–Kohn–Sham method, which

is implemented in the ReSpect program,[20] an element of the
hyperfine coupling tensor is calculated as the derivative of the

perturbed DFT energy with respect to a component of the nu-

clear spin IN;u [Eq. (11)]:[6]

AN;uv ¼
1

h ~Si
dEðJv; INÞ

dIN;u
ð11Þ

in which h ~Si is the effective spin of the system (1/2 for dou-
blets, 1 for triplets etc.), Jv is the v component of the magneti-

zation vector, and IN is the spin of nucleus N. Applying the
Hellmann–Feynman theorem led to an expectation value of

the derivative of the Dirac Hamiltonian with respect to nuclear
spin [Eq. (12)]:

AN;uv ¼
gNmN

h ~Si
Xocc

i

hf Jvð Þ
i jĥDKS

N;u jf Jvð Þ
i i ð12Þ

in which f
Jvð Þ

i denotes the occupied 4-spinor molecular orbi-
tals. The hyperfine Dirac–Kohn–Sham Hamiltonian [Eq. (13)] is

the simple cross product between the Dirac matrix, a, which

consists of the three Pauli spin matrices [Eq. (14)] and the rela-
tive vector between the electron and nuclear positions, rN :

ĥDKS
N;u ¼

ðrN > aÞu

r3
N

ð13Þ

a ¼ 0 s

s 0

 !
ð14Þ

The superscript Jv indicates that the molecular orbitals depend

on the chosen direction of magnetization, v, as described in
refs. [21] and [22]. In ref. [6] , the use of a restricted kinetically

balanced basis set is described, which leads to the following
final expression [Eq. (15)]:

AN;uv ¼
gNmN

h ~Si2c
Tr

0 L
y
N;u

LN;u 0

 !
PLLðJvÞ PLSðJvÞ

PSLðJvÞ PSSðJvÞ

 !" #
ð15Þ

for which the density matrix is given in Equation (16):

PLLðJvÞ PLSðJvÞ

PSLðJvÞ PSSðJvÞ

 !
¼
Xocc

i

CLðJvÞ
i

CSðJvÞ
i

 !
C

LðJvÞy
i C

SðJvÞy
i

0 /
ð16Þ

CLðJvÞ
i and CSðJvÞ

i are the i’th molecular orbital coefficients of the
large and small part of the 4-spinor orbitals. LN;u consists of

matrix elements over the large and small component basis
functions with the off diagonal part of the operator in Equa-

tion (13). After applying restricted kinetic balance in the con-

struction of the small component basis, these matrix elements
turn out to consist of four contributions, all of which are ex-

plicitly calculated in the current implementation. These terms
take the usual form of the Fermi-contact, spin-dipolar, and par-

amagnetic spin–orbit operators (FC, SD and PSO) as well as a
purely relativistic contribution (here denoted REL) analogues

to the last two terms of Equation (2) [Eqs. (17)–(20)]:

LFC
N;u

0 /
lt
¼ hcljsu

8p

3
dðRNÞjcti ð17Þ

Chem. Eur. J. 2018, 24, 5124 – 5133 www.chemeurj.org T 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim5127

Full Paper

http://www.chemeurj.org


LSD
N;u

0 /
lt
¼ hclj

3ðs ? rNÞrN;u

r5
N

@ su

r3
N

jcti ð18Þ

LPSO
N;u

0 /
lt
¼ hclj

ðrN > pÞu

r3
N

jcti ð19Þ

LREL
N;u

0 /
lt
¼ hclj

rN

r3
N

> s>rð Þ
% $

u

jcti ð20Þ

Lyu has contributions from the PSO operator and the negative
of the REL operator only. The resulting four contributions to an

element of the hyperfine coupling tensor are consequently cal-
culated as follows [Eqs. (21)–(24)]:

AFC
N;uv ¼

gNmN

h ~Si2c
Re Tr LFC

N;uPLSðJvÞ
h in o

ð21Þ

ASD
N;uv ¼

gNmN

h ~Si2c
Re Tr LSD

N;uPLSðJvÞ
h in o

ð22Þ

APSO
N;uv ¼

gNmN

h ~Si2c
Tr LPSO

N;u PSLðJvÞ þLPSO
N;u PLSðJvÞ

h i
ð23Þ

AREL
N;uv ¼

gNmN

h ~Si2c
Re Tr @LREL

N;u PSLðJvÞ þLREL
N;u PLSðJvÞ

h in o
ð24Þ

Computational details

Geometry and spin state

Herein, we have calculated the EPR hyperfine coupling tensors of
ReIV and IrIV in the [ReF6]2@ (1) and [IrF6]2@ (2) ions. The available ex-
perimental EPR spectra[1, 2] were measured on the diamagnetic co-
ordination polymers with alternating metal centres, Zn(viz)4[ZrF6] ,
that were doped with &5 and &1 % of the fluorido complexes 1
and 2 respectively (Figure 1). The ZrIV chain that acts as the host
for the ReIV and IrIV fluorido complexes is isostructural with the un-
diluted Re and Ir chains and crystallizes in the P42/n space group
with the tetravalent metal centres on special positions with tetrag-
onal symmetry. This ensures strictly axial and co-parallel g- and A-
tensors. The geometries used in all calculations presented in this
work are the experimental X-ray structures of complexes 1 and 2

in the polymer Zn(viz)4[MF6] (M = Re, Ir) without further geometry
optimization.

The chain structure caused a slight elongation of the M@F bonds
in complexes 1 and 2 along the chain direction, which resulted in
axial symmetry. As a consequence, two metal hyperfine parameters
were extracted from the experimentally determined EPR spectra,[1, 2]

which are denoted the parallel and perpendicular components Ak
and A? . In our calculations, Ak and A? were determined from the
principal components of the hyperfine coupling tensor. Two of the
principal components will be equal and thus resemble A? , and the
unique component will be Ak .

The hyperfine coupling tensor does not transform as a true tensor,
and the principal values were determined as the square roots of
the eigenvalues of the “squared” hyperfine tensor A ? AT.[23] The ei-
genvectors of this true tensor then make up its so-called principal
axis system. Following this procedure, the principal values were ab-
solute values. The isotropic hyperfine coupling constant was calcu-
lated by using Equation (25) :

Aiso ¼ ðA11 þ A22 þ A33Þ=3 ð25Þ

The individual contributions to the isotropic hyperfine coupling
constant should, in principle, also be calculated by following the
above described procedure. However, as the relative signs of the
contributions would be lost, these values were based on the princi-
pal values of the respective symmetrized tensors, 1

2 ðAþ ATÞ.
For both compounds, the expected spin states have previously
been established by magnetometry;[1, 2] specifically, the ground
states of [ReF6]2@ and [IrF6]2@ are S = 3/2 and S = 1/2, respectively.
These spin states have been assumed in the computations, and
the most abundant isotopes with I¼6 0 were used: 187Re (I = 5/2;
62.7%) and 193Ir (I = 3/2; 62.7%).

Programs and basis sets

The 2-component ZORA calculations that treat spin–orbit coupling
either variationally (EV ZORA) or as a perturbation (LR ZORA) were
carried out with the ADF program[8, 14, 18] at the DFT level. The EV
ZORA method was implemented in a spin-restricted fashion, and
accordingly, spin polarization effects were not taken into account.
In contrast, the LR ZORA method employs the unrestricted scheme
and uses the collinear description of spin density. For consistency,
the collinear option was also employed in the EV ZORA calcula-
tions. The Slater-type orbitals (STO) basis sets, DZ, TZ2P, and QZ4P,
which were optimized for ZORA calculations, were employed. Con-
vergence in all 2-component ZORA calculations was obtained with
a threshold of 4 V 10@3 for the linear dependence of basis func-
tions.

The unrestricted 4-component calculations were carried out within
the Dirac–Kohn–Sham (DKS) framework, as implemented in the Re-
Spect program with restricted kinetic balanced basis sets and non-
collinear spin density.[20, 6] Dyall’s Gaussian-type orbital (GTO) va-
lence basis sets, vdz, vtz, and vqz, were used.[24, 25]

Both the ZORA and the DKS results were obtained with the GGA
exchange-correlation functional BP86[26, 27] as well as the hybrid
functionals B3LYP[28] and PBE0[29] with 20 and 25 % Hartree–Fock
exchange, respectively. In all self-consistent-field (SCF) calculations,
a Gaussian-type nucleus model was employed along with an SCF
convergence criteria of 10@6.

Figure 1. Illustration of the coordination polymer Zn(viz)4[MF6] (M = Zr, Re,
Ir). Re, Ir : turquoise, Zn: purple, F: green, C: yellow, N: blue, H: white.
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Results and discussion

Basis set dependence

Calculations of magnetic properties are known to put extra re-
quirements on the quality and size of basis sets compared
with simple calculations of energies.[30] For example, previous
studies showed that, in ZORA calculations of nuclear magnetic
shielding constants, it was important to use the large QZ4P

basis sets.[31, 32] Therefore, we also studied the basis set depend-
ence of both the ZORA and DKS results for the hyperfine cou-
pling constants in both ions. Table 1 shows the LR ZORA and
EV ZORA results of the isotropic hyperfine coupling constant

of ReIV and IrIV complexes, respectively, which were obtained
with the special ZORA STO basis sets DZ, TZ2P, and QZ4P, as

well as DKS 4-component results, which were obtained with

Dyalls vdz, vtz, and vqz GTO basis sets.

Evidently, the isotropic hyperfine coupling constant changed
only slightly but in a consistent manner when the basis set

was increased by using the DKS method and Dyall’s basis sets,
whereas we observed the same irregular, no-monotonic behav-

iour of the ZORA basis sets, as seen previously, for nuclear

magnetic shielding.[31, 32] It was shown there, that the increasing
cardinal number and the increasing amount of polarization
functions have opposite effects, which lead to an oscillating
and not yet converging behaviour. Therefore, the change from

the TZ2P to the QZ4P basis set in the ZORA calculations still
led to a change in the isotropic hyperfine coupling constants

of 8 and 3 % for [ReF6]2@ and [IrF6]2@, respectively. Therefore,

in the following sections, the ZORA results are all with the
QZ4P basis set, whereas the DKS results are with the vdz or vtz

basis set, which is stated in each section, as we see only a

small change between the results with the vdz and vqz basis
set.

Effect of exchange-correlation functional and amount of
Hartree–Fock exchange

In Table 2, the metal isotropic hyperfine coupling constants cal-

culated at the 2- and 4-component levels with the GGA func-
tional, BP86, and the hybrid functionals, B3LYP and PBE0, are

shown along with the experimental values. It was not possible

to obtain acceptable convergence with the BP86 functional in
combination with the DKS method.

Three conclusions can be drawn when the relative devia-
tions from the experimental values are considered. Firstly, for

both relativistic methods and all three functionals, the devia-
tions from the experimental values were considerably smaller

for complex [IrF6]2@ than for [ReF6]2@. Secondly, for complex

[IrF6]2@, the 4-component DKS results were in better agreement
with the experimental values than the EV ZORA results were.

For the [ReF6]2@ system, the approximate 2-component LR
ZORA results seemed to be in marginally better agreement
with the experimental values than the 4-component DKS re-
sults. However, neither of the two methods in combination

with DFT performed very well for this complex. Thirdly, for
both complexes and both relativistic methods, the hybrid func-
tionals reduced the deviation from the experimental values

compared with the pure GGA functional.
This difference between GGA and hybrid exchange-correla-

tion functionals was investigated further by following the pro-
cedure of other recent studies,[10, 33] in which it was shown that

raising the amount of Hartree–Fock exchange in the PBE0

functional increased the agreement with the experimental
values. In Figure 2, it is shown how the perpendicular and par-

allel components of the hyperfine coupling tensor, as well as
the isotropic hyperfine coupling constant, depend on the

amount of Hartree–Fock exchange in the PBE0 functional. The
results were obtained at the 4-component DKS level with the

vdz basis set (circles) and the 2-component ZORA level with

the QZ4P basis set (triangles). The left axis shows the absolute
values and the right axis shows the relative deviation of the

calculated isotropic results from the experimental isotropic
values. The experimental values are shown as solid lines.

The [ReF6]2@ results show a linear dependence of the parallel,
perpendicular, and isotropic hyperfine coupling constants on

the amount of Hartree–Fock exchange. The isotropic value

agrees with the experimental values at around 50 % Hartree–
Fock exchange. However, the experimental splitting of the par-

Table 1. Basis set dependence of the isotropic metal hyperfine coupling
constant Aiso (MHz) in complexes [ReF6]2@ and [IrF6]2@ calculated at the
ZORA (LR ZORA for [ReF6]2@ and EV ZORA for [IrF6]2@) and DKS levels by
using the PBE0 functional.

Method Basis set [ReF6]2@ [IrF6]2@

ZORA DZ 1231 81.4
TZ2P 1224 86.0
QZ4P 1324 82.8

DKS vdz 1283 97.1
vtz 1303 97.9
vqz 1303 98.1

Table 2. Exchange-correlation functional dependence of the isotropic metal hyperfine coupling constant Aiso (MHz) in complexes [ReF6]2@ and [IrF6]2@ calcu-
lated at the ZORA (LR ZORA for [ReF6]2@ and EV ZORA for [IrF6]2@) and DKS levels by using the QZ4P and vtz basis sets, respectively. Relative deviations
from the experimental values calculated as jAexp

iso @ Acalc
iso j=Aexp

iso ? 100% are given in parentheses.

ZORA DKS Exp.
BP86 B3LYP PBE0 BP86 B3LYP PBE0

[ReF6]2@ 971 (40 %) 1240 (23 %) 1324 (18 %) 940 (42 %) 1193 (26 %) 1303 (19 %) 1607
[IrF6]2@ 79.5 (14 %) 83.3 (10 %) 82.8 (10 %) – 97.1 (5 %) 97.9 (6 %) 92.4

Chem. Eur. J. 2018, 24, 5124 – 5133 www.chemeurj.org T 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim5129

Full Paper

http://www.chemeurj.org


allel and perpendicular components of the hyperfine coupling
tensor, as illustrated by the separation of the top and bottom

grey lines, was not at all reproduced by the DFT calculations,
regardless of the amount of Hartree–Fock exchange.

The results for complex [IrF6]2@ did not exhibit the same
linear trend as those for [ReF6]2@. From the DKS values, we can

conclude that increasing the amount of Hartree–Fock ex-

change increases the deviation from the experimental values
instead of reducing it. The opposite was true for the ZORA

values. Furthermore, the calculated DKS values for the parallel
and perpendicular components follow slightly different trends,

which resulted in a reordering of the components around 40 %
Hartree–Fock exchange. The same behaviour was seen when

the ZORA method was used; however, it was not possible to

obtain good convergence with a large amount of exact ex-
change.

For complex [IrF6]2@, the range of the deviation from the ex-
perimental values was around :5 to :12 %, which is consider-

ably smaller than the deviation that was observed for complex
[ReF6]2@ (@20 to + 15 %). The admixture of Hartree–Fock ex-

change in hybrid functionals is known to enhance the spin po-
larization of the core-shell electrons,[9] an effect that is often
underestimated by GGA functionals, and one would expect

this enhancement to affect the Fermi contact interaction more
strongly than both spin-dipolar and spin–orbit coupling inter-

actions. As we will discuss in the following section, the hyper-
fine coupling in complex [ReF6]2@ was in fact dominated by the

Fermi contact term, whereas the spin–orbit coupling interac-

tion dominated the hyperfine coupling of complex [IrF6]2@. This
presumably leads to the different behaviour of the two com-

plexes with respect to the amount of Hartree–Fock exchange,
although in absolute terms, the spin–orbit contribution in

complex [ReF6]2@ was actually larger than in [IrF6]2@.

Importance of the treatment of the spin–orbit coupling con-
tribution

In Table 3, the contributions to the parallel, perpendicular, and

isotropic components of the hyperfine coupling tensors, which
were calculated by using the three methods LR ZORA, EV

ZORA, and DKS and the standard PBE0 functional, are listed.

As the EV ZORA method only applies to systems with only one
unpaired electron, no results are shown for complex [ReF6]2@,

which has a total spin of S = 3/2. Furthermore, no contributions
are shown for the EV ZORA results, because they were not cal-

culated explicitly. Above, we showed that a purely relativistic
correction to the hyperfine coupling tensor arises in both
ZORA and DKS theory. In the LR ZORA implementation in ADF,

this contribution was considered as a part of the Fermi contact
(FC) and spin-dipolar (SD) contributions, whereas in the DKS
implementation in ReSpect, this contribution was calculated
explicitly (REL).

The results for complex [ReF6]2@ showed how the compo-
nents of the hyperfine coupling tensor are indeed dominated

by the Fermi contact contribution. If the DKS SD and REL con-
tributions are added to the DKS FC contribution (Table 3,
F++S++R), one can see that the LR ZORA results are very close

to the DKS results, particularly the perpendicular component
A? . The slightly worse agreement for the parallel component

Ak was caused by the spin-dipolar and spin–orbit contribu-
tions, which in DKS theory, deviate slightly from the corre-

sponding A? contributions, but in LR ZORA theory, only the

PSO/SO components differ by a very small amount.
Compared with the experimental values, one observes that

A? deviates for both methods by only around 10 %, whereas a
much larger deviation of around 30 % was calculated for the

parallel component Ak . Furthermore, the ordering of the two
components is reversed compared with the experimental re-

Figure 2. Dependence of A? , Ak , and Aiso in [ReF6]2@ (a) and [IrF6]2@ (b) on the amount of Hartree–Fock exchange in the PBE0 functional as well as the percent-
age deviation of Aiso from the experimental values. Calculations were carried out on the 4-component level with the vdz basis set (circles) and the 2-compo-
nent ZORA level with the QZ4P basis set (triangles).
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sults, in which Ak@ A? . The fact that neither of the two DFT-

based methods were able to reproduce the anisotropy of the
hyperfine coupling tensor of complex [ReF6]2@ might be be-

cause the methods did not take into account the splitting of
the quartet (S = 3/2) into two effective doublet states, also

known as zero-field splitting.
The components of the hyperfine coupling tensor of com-

plex [IrF6]2@ at the 4-component DKS level were dominated by

the paramagnetic spin–orbit coupling contribution, which con-
trary to the results for complex [ReF6]2@, had the opposite sign

of the Fermi contact contribution. The EV ZORA results were
similar to the DKS and experimental results, but for this

method, it was not possible to obtain individual contributions.
However, the LR ZORA results for complex [IrF6]2@ were very

different from the EV ZORA, DKS, and experimental results. The

magnitude of the Fermi contact plus the spin-dipolar contribu-
tion to A? was similar to the DKS results, whereas it was

almost a factor of 3 too large for Ak . However, the main differ-
ence originated in the spin–orbit contribution; compared to

the DKS results, LR ZORA predicted a contribution to Ak of the
wrong sign and a contribution to A? that was more than a
factor of 10 too large.

The spin–orbit coupling contribution with the LR ZORA
method was, as previously mentioned, calculated as a pertur-
bation through first order, that is, by linear response theory, on
top of a scalar relativistic result. This approach, which neglects

higher order corrections, is only applicable if the perturbation,
that is, the spin–orbit coupling, is small compared with the

energy difference between the ground and excited
states.[8, 13, 19] Therefore, we have calculated the excitation ener-
gies in complex [IrF6]2@ (and [ReF6]2@ for comparison) by using

the implementation of unrestricted TDDFT and the scalar rela-
tivistic ZORA Hamiltonian in ADF.[34] The two lowest excitation

energies for both complexes calculated at the PBE0/QZ4P level
are presented in Table 4. The transitions were assigned by in-

spection of the corresponding eigenvectors. The symmetry

labels of the molecular orbitals were assigned on the basis of
the irreducible representations in the D4h point group.

In agreement with a simplistic ligand field picture, the
lowest calculated excitation energy in the orbitally pseudode-

generate complex [IrF6]2@ was very small compared with the
lowest values for [ReF6]2@, which might cause the substantial

overestimation of the spin–orbit coupling contribution for

complex [IrF6]2@ when calculated as a linear response function.
This behaviour was previously observed for actinide systems,[13]

but not to this extent. Notably, this transition can only cause

such an overestimation if the corresponding matrix elements
over the perturbation operators are non-vanishing. In the pres-

ent implementation in ADF, it is, to our knowledge, not possi-
ble to calculate transition moments of the PSO or spin–orbit

operators, but we can at least investigate whether they are
symmetry allowed or forbidden.

The spin–orbit operator in Equation (10) contains the angu-

lar momentum operators (L ¼ r> p), which must transform
like the rotation functions. Accordingly, in the D4h point group,

they transform in accordance with Equation (26):

Rx , Ry : eg

Rz : a2g

ð26Þ

Evaluating the direct products of the irreducible representa-

tions of the rotation functions and the orbitals involved in the
transitions (Table 4) showed that the second lowest transition

in complex [ReF6]2@ and the two lowest transitions in complex
[IrF6]2@ transform like the rotation functions Rx and Ry. This

means that the transition moments over the corresponding

components of the angular momentum operators are symme-
try allowed. Inspection of the principal values of the hyperfine

coupling tensor of complex [IrF6]2@ that was calculated with
the LR ZORA method (Table 3) showed that it is indeed the

perpendicular component, which corresponds to the x- and y-
directions, that is drastically overestimated.

Table 3. The individual contributions to the parallel Ak , perpendicular A? , and isotropic components Aiso of the hyperfine coupling tensor calculated with
the ZORA and DKS methods by using the QZ4P and vtz basis set, respectively, and the PBE0 functional.

LR ZORA EV ZORA DKS Exp.
FC++SD PSO/SO Total Total FC SD REL F++S++R PSO Total

[ReF6]2@

Ak 1087 234.7 1322 – 1672 @15.05 @591.1 1066 219.0 1285 1850
A? 1087 237.6 1325 – 1674 @3.049 @591.7 1079 233.1 1312 1486
Aiso 1087 236.7 1324 – 1673 @7.948 @591.5 1074 228.4 1303 1607

[IrF6]2@

Ak @145.4 @87.81 @233.2 81.69 @43.62 @11.88 16.07 @39.43 137.1 97.62 93.1
A? @66.49 1616 1549 83.37 @52.43 @10.91 19.28 @44.06 142.1 98.02 92.0
Aiso @92.79 1048 955.3 82.81 @49.50 @11.23 18.21 @42.52 140.4 97.89 92.4

Table 4. Excitation energies calculated at the PBE0/QZ4P level with the
scalar relativistic ZORA method and unrestricted TDDFT.

Transition Dominant orbital excitation Rotations DE [eV]

[ReF6]2@ 1 a b2g!a1g 99.5 % 3.06
2 a eg!a1g 96.6 % Rx, Ry 3.10

[IrF6]2@ 1 b eg!b2g 98.7 % Rx, Ry 0.10
2 b eg!b1g 53.4 % Rx, Ry 2.90

a eg!b1g 38.3 %
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The tetragonal symmetry imposed on the two ions by the
Zn(viz)4[ZrF6] host resulted in a splitting of the t2g level into an

eg and b2g level. Assuming that this splitting is small, the 4A
ground state in complex [ReF6]2@ was unaffected and the exci-

tation from the eg to b2g level is spin forbidden in a scalar rela-
tivistic treatment. In complex [IrF6]2@, this excitation is allowed
and explains the very small, first excitation energy, which is
doubly degenerate.

Conclusions

We have investigated the performance of the 2-component EV
ZORA and LR ZORA methods and the 4-component DKS

method in the framework of DFT for the calculation of the
metal hyperfine coupling constants in complexes [ReF6]2@ and

[IrF6]2@. Both the basis set dependence and the dependence
on the choice of exchange-correlation functional of the results

as well as the effect of varying the amount of Hartree–Fock ex-

change in the hybrid functionals were studied.
Both the 2-component EV ZORA and 4-component DKS

methods reproduced the hyperfine coupling tensor of complex
[IrF6]2@ in good agreement with experimental results. However,

when the 2-component LR ZORA method was applied to the
[IrF6]2@ ion, in which the spin–orbit coupling contribution was

calculated by perturbation theory, the perpendicular component

of the hyperfine coupling tensor was overestimated by around
one order of magnitude and the opposite sign was predicted

for the parallel component relative to the DKS method. This
breakdown of a perturbation theory treatment through first

order of the spin–orbit coupling is due to a very small energy
difference between the ground and first excited states, which is

caused by the tetragonal symmetry that is imposed on the ion

in combination with the presence of large spin–orbit coupling.
For complex [ReF6]2@, the 2-component LR ZORA and 4-com-

ponent DKS methods reproduced the perpendicular compo-
nent of the hyperfine coupling tensor in good agreement with
the experimental values, but they significantly underestimated
the parallel component. The agreement with the experimental

isotropic value for complex [ReF6]2@ was improved further by

increasing the amount of Hartree–Fock exchange in the PBE0
hybrid functional. However, the anisotropy of the hyperfine

tensor, which was found in experimental results, was not re-
produced by either the LR ZORA or the DKS method, regard-

less of the amount of Hartree–Fock exchange.
Overall, the LR ZORA method only applies to systems with-

out low-lying excited states ([ReF6]2@), and the current imple-

mentation of the EV ZORA approach can only be used for sys-
tems with one unpaired electron ([IrF6]2@). However, the DKS

method produced reasonable results for both systems and al-
lowed for an investigation of the individual contributions to

the hyperfine coupling tensor.
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