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Abstract: Abiotic stresses cause a significant decrease in productivity and growth in agricultural
products, especially barley. Breeding has been considered to create resistance against abiotic stresses.
Pyramiding genes for tolerance to abiotic stresses through selection based on molecular markers
connected to Mega MQTLs of abiotic tolerance can be one of the ways to reach Golden Barley. In
this study, 1162 original QTLs controlling 116 traits tolerant to abiotic stresses were gathered from
previous research and mapped from various populations. A consensus genetic map was made,
including AFLP, SSR, RFLP, RAPD, SAP, DArT, EST, CAPS, STS, RGA, IFLP, and SNP markers based
on two genetic linkage maps and 26 individual linkage maps. Individual genetic maps were created
by integrating individual QTL studies into the pre-consensus map. The consensus map covered a total
length of 2124.43 cM with an average distance of 0.25 cM between markers. In this study, 585 QTLs
and 191 effective genes related to tolerance to abiotic stresses were identified in MQTLs. The most
overlapping QTLs related to tolerance to abiotic stresses were observed in MQTL6.3. Furthermore,
three MegaMQTL were identified, which explained more than 30% of the phenotypic variation.
MQTLs, candidate genes, and linked molecular markers identified are essential in barley breeding
and breeding programs to develop produce cultivars resistant to abiotic stresses.

Keywords: barley; abiotic stresses; meta-analysis; QTL; MQTL; consensus map

1. Introduction

Increasing biotic and abiotic stresses have a negative impact on the yield and productiv-
ity of agricultural products in the world [1,2]. Crops are susceptible to environmental stress,
and these changes affect their performance and development. Environmental stresses can
be divided into two categories: abiotic stresses, including salinity, drought, temperature,
and biotic stresses, including fungi, bacteria, and nematodes [1,3]. Barley is a suitable crop
for genetic research due to its high adaptability, low chromosome number, diploid, ease
of cross-breeding and cultivation in a wide range of climatic conditions, and tolerance to
salinity, drought, and fungal diseases [4,5].

Plants are generally more sensitive to abiotic stresses in the seedling emergence and
early seedling growth stages. Moreover, plants are more tolerant to abiotic stresses in
the germination stage. The sensitivity of the plant constantly changes during the grow-
ing stages. Abiotic stress tolerance contains several quantitative and physiological traits
controlled by multiple QTLs [6–8].
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Improving quantitative traits via plant breeding is difficult. Thus, identifying individ-
ual genes with the most effect on phenotype is challenging [9].

The development of molecular techniques such as QTL is a common and powerful tool
for explaining complex traits and identifying chromosomal regions containing candidate
genes associated with complex traits [10,11]. The advent of the first molecular markers was
accompanied by dramatic advances in QTL mapping.

The first genetic map of the Hordeum vulgare L. was developed using the RFLP marker.
Then, markers such as SNP, DArT, SSR, and AFLP were used to construct linkage maps.
Linkage maps are used to identify QTLs and organize the genome, and higher-density
maps are used to identify molecular markers associated with QTLs [12].

A meta-analysis is the collection and synthesis of scientific research results and their
analysis, and ultimately the presentation of more information than available findings.
This technique was first introduced in the 1970s [13–15]. Many QTLs were identified in
various experiments [16]. QTL meta-analysis integrates QTL data. In this regard, statistical
power to identify QTLs increases and improves the accuracy of identifying candidate
genes. Estimating genetic structure in meta-analysis is better than in independent research.
Reducing confidence intervals for QTLs is another benefit of QTL meta-analysis [17,18].

Ellis et al. identified 12 QTLs for seven traits in barley. They reported QTLs for
leaf emergence, stem weight, and the number of tillers for the first time [19]. Five QTLs
were identified for salinity tolerance on chromosomes 1H, 2H, 5H, 6H, and 7H, some of
which were mapped to other related cereals. These QTLs account for more than 50% of
phenotypic variations [20]. Sbei et al. examined salinity-tolerant QTLs using 384 SNP
markers, of which seven major QTLs identified effects on chromosomes 1, 2, 3, 4, and 5 [21].
Ghaffari Moghadam et al. identified 23 QTLs related to salinity tolerance at five salinity
levels (4, 8, 12, 15, and 20 dS/m). These QTLs explained 9.1 to 15.4% of the phenotypic
variance of the traits [22]. Using the double haploid population from the crossing of CM72
(salinity tolerant) and Gairdner (salinity sensitive), 30 QTLs were identified for ten traits
that explained 3.25 to 29.81% of the phenotypic variance. QTLs identified under salinity
stress on chromosome 4 were associated with spike numbers [23]. Other studies identified
QTL for many traits related to salinity abiotic stress [24–30]. Makhtoum et al. investigated
the Iranian barley population using 103 samples from F8 families derived from the cross of
two cultivars of Badia×Kavir. They identified 26 QTL-controlling traits under salt stress,
9 QTL-controlling traits under drought stress, and 8 QTL under normal conditions [31,32].

Drought stress is economically the most important abiotic stress that limits production
and reduces the quality, nutritional value, and grain yield [33,34]. Using RIL populations,
Gudys et al. identified 64 QTL populations for 25 physiological and biochemical traits [17].
In a study of 79 identified QTLs, 55 QTLs for stem traits, 15 QTLs for root traits, and
9 QTLs for physiological traits were detected, most of which are located on chromosomes
1H, 2H, 4H, and 5H [33]. Using 301 BC2DH lines from the cross between Scarlett cultivar
and wild barley ISR42-8, Arifuzzaman et al. evaluated six traits in two controlled and
drought-stress environments over three years using 371 DNA markers, which led to the
identification of 33 QTL [35]. Sayed et al. identified four QTLs related to proline content
(PC) on chromosomes 3H, 4H, 5H, and 6H and four QTLs related to leaf wilting (WS) on
chromosomes 1H, 2H, 3H, and 4H [36]. In a study, 68 QTLs with a LOD of more than
2.5 were identified, and one to 12 QTLs were detected per trait. The results showed the
effect of several genes on different traits in the barley genome [34].

Huang et al. (2018) identified Mn2+ controlling QTLs based on chlorophyll content
and plant survival using the DH population caused by Yerong and Franklin crosses (water-
logged and susceptible, respectively). The seven QTLs identified on chromosomes were
1H, 3H, 4H, and 6H [37]. In an experiment conducted in 2005 and 2008 using the RIL
population-caused Prisma and Apex crosses, 41 QTLs were identified for 18 traits, which
explained 8.4 to 54.4% of the variance of the traits [38]. Another study identified 4 QTL
on chromosomes 2H, 3H, and 4H [39]. Saal et al. identified 82 QTLs for 1000-seed weight,
day to maturity, plant height, number of spikes per square meter, and grain yield using the
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BC2DHS42 population [40]. Yang et al. QTLs for grain protein concentrations were detected
using 146 recombinant inbred lines caused by ‘Lewis’ (CI15856) and ‘Karl’ (CI15487) [41].

Li et al. used two different populations in two seasons. Genetic linkage map made
with SSR, RFLP, and DArT markers to identify quantitative trait (QTL) loci associated with
traits related to waterlogging tolerance (such as leaf chlorosis, plant survival, and biomass
reduction). They found 20 QTLs to waterlogging stress, some of which affected several
traits [42].

A study using 156 double haploid lines caused Yerong (waterlogging tolerant) and
Franklin (waterlogging sensitive) to identify 31 QTLs, which explained from 4.74 to 55.34%
phenotypic variations [43]. Zhou et al. produced a consensus map using six double haploid
populations and identified four QTLs that explained 6.2 to 30.1% phenotypic variations [44].
The first report of QTL for root porosity in the barley, which describes the main mechanism
of waterlogging tolerance, identified a QTL for root porosity on chromosome 4H, which
explains 35.7 and 39% of phenotypic variations in control and hypoxia [45]. Low temper-
atures can limit the yield of many crops, and a better understanding of genetics can be
effective in this challenge [46]. Skinner et al. identified four QTLs under low-temperature
stress conditions by preparing a genetic map using populations caused by Dicktoo and
Morex crosses [47].

Chlorophyll fluorescence is one of the most useful techniques for obtaining accurate
information on the status of the photosystem in cost-effective plant physiology under
abiotic stresses [48]. QTLs related to flag leaf length, width, and chlorophyll content
detected using a double haploid population caused Yerong and Franklin crosses, and
9 QTLs were identified on five chromosomes that explained 1.9 to 20.2% phenotypic
variation of traits [49].

In this study, the analysis of Meta-QTLs abiotic stress tolerance was performed using
many identified QTLs. Moreover, candidate genes for each Meta-QTL were identified in the
annotated Gene Ontology (GO) database. This study’s results help improve climate modifi-
cation strategies to resist abiotic stresses. The selection based on the markers connected to
the large effect Meta-QTLs known in this study can help us obtain a plant resistant to most
abiotic stresses. We named this plant Golden Barley.

2. Materials and Methods
Construction of a Consensus Linkage Map

This meta-analysis included data for salinity, drought, waterlogging, mineral defi-
ciency tolerance, and low-temperature stresses. In order to identify Meta-QTLs affecting
abiotic stress in barley (H. vulgare L.), first, the necessary data were extracted from several
articles (Figure 1).

The abiotic tolerance QTLs in this study were collected from previously published
papers (Table 1). We obtained 1162 original QTLs for 116 different traits that were originally
mapped from different populations (Table 2). Table 1 shows the traits used in QTL mapping
for abiotic stress tolerance in previous studies. In addition, basic information, such as
mapping method, flanking markers, most likely position, 95% confidence interval (CI),
LOD value, and R2, were collected for meta-analysis and overview analysis.

A consensus genetic map containing AFLP, SSR, RFLP, RAPD, SAP, DArT, EST, CAPS,
STS, RGA, IFLP, and SNP markers was provided. For this purpose, two genetic linkage
maps were used as reference [50,51]. However, the number of markers common between
the individual studies used here and any available reference maps was insufficient for a
reliable projection of QTL positions. Therefore, BioMercator [52] was used to assemble an
integrated map with these published consensus linkage maps [51,53,54] and 26 individual
linkage maps (Table S1).
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Figure 1. The beginning of a Meta-QTL project to reach the Golden Barley.

All calculations for creating the pre-consensus map were performed by applying a
weighted least square strategy for marker ordering and determining their position on the
consensus map. Individual genetic maps from individual QTL studies were integrated into
the pre-consensus map. Chromosomes connected with less than two common markers
to the pre-consensus map were excluded before creating the consensus map. Inversions
of marker sequences were filtered by discarding inconsistent loci except for very closely
linked markers. If the distance of pairwise inversed markers was smaller than 1 cM, only
one of the markers was discarded to retain a maximum number of common markers. The
consensus map covered a total length of 2,124.43 cM with an average distance between
markers of 0.25 cM (Table S1; Figure 2).
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Table 1. The abiotic tolerance QTLs in this study were collected from previously published papers.

Reference Marker Population Parents Population
Size

No. of
Marker

[6] SSR, ISSR, iPBS, Scot,
IRAP, CAAT RIL Badia × Kavir 106 392

[7] SSR, ISSR, iPBS F3 Badia × Comino 100 128

[17] SNP, SSR RILs Maresi ×
Cam/B1/CI08887//CI05761 100 819

[19] AFLP, SSAP, SSR, DH Derkado × B83-12/21/5 156 241
[20] DArT, SSR DH Yuyaoxiangtian Erleng × Franklin 172 858
[22] SSR, ISSR, iPBS F3 Badia × Comino 100 128
[23] SSR, DArT DH CM72 × Gairdner 93 332

[24] SSR, SNP, DArT, STS,
CAPS, dCAPS, DH Nure × Tremois 118 162

[25] SSR, DArT DH TX9425 × Naso Nijo 188 626
[26] SSR, DArT, CAPS DH Barque-73 × CPI-71284-48 72 1180

[27] SSR, ISSR, iPBS, Scot,
CAAT, IRAP, RILs Badia × Kavir 106 302

[28] SSR DH Steptoe × Morex,
Harrington × TR306

149
146 103

[29] DArT, SSR DH CM72 × Gairdner 108 886
[30] DArT, AFLP, SSR DH TX9425 ×Franklin 72 520

[33] SSR, DArT, gene-specific
marker DH Scarlett × ISR42-8 76 371

[34] RFLP RILs Tadmor × Er/Apm 167 77
[35] SSR, DArT DH Scarlett × ISR42-8 301 371

[36] SSR, DArT, gene-specific
marker DH Scarlett × ISR42-8 76 371

[37] SSR, DArT DH Yerong × Franklin
TX9425 ×Naso Nijo

177
188

2500
524

[38] AFLP RILs Prisma × Apex R 94 191

[39] EST, BR, GBM, GBS, RFLP,
SSR, SNP DH OWBDOM × OWBREC 94 650

[40] SSR DH ISR42-8 × Scarlett 301 98
[41] SSR RIL Lewis(CI15856) × Karl(CI15487) 146 104

[42] SSR, AFLP, DArT DH TX9425 × Franklin,
Yerong × Franklin

92
177

520
524

[43] DArT, AFLP,
microsatellite markers DH Yerong × Franklin 156 604

[44] SSR, DArT DH YuYaoXiangTian Erleng × Franklin 172 2223
[45] DArT, SSR DH Franklin × YuYaoXiangTian Erleng 126 858

[46] SSR, RAPD, RFLP, CAPS,
AFLP, STS, DH Nure × Tremois 136 127

[47] SSR DH Dicktoo × Morex 91 94

[51] DArT, SSR, RFLP, STS DH, RIL

Barque73 × CPI71284-48, Clipper ×
Sahara, Dayton × Zhepi2, Foster ×
CI4196, Steptoe × Morex, TX9425 ×

Franklin, Yerong × Franklin

707 2935

[57] AFLP, SSR, RFLP DH Clipper × Sahara 3771 150 211
[58] RFLP, SSR F8–9, RIL Foster × CIho 4196 250 206
[59] SSR F4–6, RIL Fredrickson × Stander 116 143
[60] RFLP, RAPD, SAP DH Steptoe × Morex 150 295
[61] DArT, AFLP, SSR DH TX9425 × Franklin 92 520
[62] SSR DH Steptoe × Morex, Igri × Franka 133 133

[63] RFLP DH, F2/F3
IGRI × FRANKA, VADA × H.

spontaneum 206 251

[64] RFLP DH PB1 × PB11 111 136
[65] SSR DH Lina × H. spontaneum Canada Park 86 325
[66] SSR, SNP RILs ZGMLEL × Schooner 190 1011
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Table 1. Cont.

Reference Marker Population Parents Population
Size

No. of
Marker

[67] DArT, SNP RIL Pompadour × Biosaline-19 98 8610

[68] RFLP, AFLP, SSR DH
RIL

Steptoe × Morex, Dom × Rec
Igri × Franka, L94 ×Vada 317 3258

[69] SNP, SSR DH Huadamai 6 × Huaai 11 122 1962

[70] SSR RIL
DH

Igri × Franka, Steptoe × Morex,
OWBRec × OWBDom, Lina ×

Canada Park, L94 × Vada, SusPtrit
× Vada

645 775

[71] EST, CAPS, STS, SNP, SSR DH Haruna Nijo × H602 93 2948
[72] RFLP, SSR, AFLP, RGA DH Foster × ND9712 × Zhedar 75 214

[73] RFLP, RAPD, STS, IFLP,
SSR, AFLP DH Oregon Wolfe Barley 94 830

725
[74] SNP RIL Morex × Barke 81 195

Table 2. The traits used in QTL mapping for abiotic stress tolerance in previous studies.

Stress Traits

Drought

Root–shoot ratio, Root dry weight, Plant height, Harvest Index, Leaf weight, Pm.SEVAD, Stomata number,
Thousand kernel weight, Leaf wilting score, Leaf osmotic potential, Free proline content, Ethylene content,
Light absorption flux (ABS) per PSII reaction center, Water content, Trapped energy flux per PSII reaction
center, Root Length, Drought tolerance score, Relative water content, Pm.AUDPCAD, Plant number, No.
of Kernels/spike, Number of spikes/plant, Shoot dry weight, Water-soluble carbohydrate concentration at
full turgor, Drought water-soluble carbohydrate concentration, Grain yield, Electron transport flux per PSII

reaction center (RC), Osmotic adjustment, Osmotic potential under irrigation, Flag leaf weight, Leaf
number, Plumule weight, Peduncle length, Flag leaf width, Water loss rate, The average fraction of open

RC during the time needed to complete the closure of all RCs, Flag leaf length, Peduncle diameter,
Internode length, Water-soluble carbohydrate concentration, REo/RC, DIo/CSm, TRo/RC, ABS/CSo, Fo,

TRo/CSo, ABS/CSm, Fm, Sm, DIo/RC, DIo/CSo, ABS/RC

Salinity

GY grain yield, Phenol, Salinity score, Root length, Stomata length, Leaf number, Sugar content, Plumule
length, Spike diameter, Peroxidase, Shoot dry weight, Leaf injury score, Stomatal pore area, Spikes per

plant, Shoot weight, Biomass, T/C ratio, TR transpiration rate, GS stomatal conductance, Leaf weight, Flag
leaf length, Grain weight, Seed dormancy, Catalase, Dry weight per plant, Grain number per plant, Flag

leaf width, Plumule weight, Dry weight of roots, Green dry weight of shoots, Green fresh weight of shoots,
Fresh weight of roots per plant, Pm.SEVAS, Proline content, Stomata width, Shoot diameter, Tiller number,
Seedling weight, Seedling gibberellic acid response, Root dry weight, Leaf length, Flag leaf weight, Na+:K+

ratio, Awn weight, Seminal roots, Peduncle length, REo/RC, DIo/CSm, TRo/RC, ABS/CSo, Fo, TRo/CSo,
ABS/CSm, Fm, Sm, DIo/RC, DIo/CSo, ABS/RC

Waterlogging
Longest root length, Shoot dry weight, Shoot fresh weight, Root fresh weight, Leaf chlorosis, Waterlogging
index, Grain yield, Spike length, Plant survival, Tiller number, Leaf yellowing proportion, Porosity, Plant

biomass reduction, Grains per spike

Cold stress Cold score, TMC-Ap3 accumulation, Frost tolerance, Fv/Fm value, plant survival, COR14b accumulation,
Vernalization requirement

Nitrogen
Deficiency

Thousand-grain weight, Plant survival, Plant height, Number of ears, Grain yield, Days until heading,
Thousand kernel weight, Sheath weight, Stem weight, Straw weight, Above-ground nitrogen uptake N,

Nitrogen use efficiency of biomass, Above-ground biomass, Leaf weight, CP at maturity carboxypeptidase,
Leaf chlorosis, N remobilization efficiency, Grain protein content

Aluminum toxicity Aluminum tolerance score

Mn toxicity Leaf chlorosis, Plant survival
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From the 1162 QTL collected, 585 could be projected onto the consensus map generated,
given that the markers used to map them were present in the consensus map. For the
projection of these QTLs, the confidence interval of 95% was initially calculated for each
locus via the equations below: These equations have been modeled for each mapping
population [55,56]: F2 and Backcross:

CI =
(

530
number of lines×R2

)
(1)

or RILs CI =
(

163
number of lines×R2

)
(2)

and for DH CI =
(

528730
number of lines×R2

)
(3)

Next, the QTL, represented by their middle points and their calculated confidence
intervals, original LOD score, and R2 were directly projected onto the consensus map.
The meta-analysis was carried out, individually by chromosome, through the Veyrieras
two-step algorithm in the software [75]. The Akaike (AIC) statistics were used to define
the best model for the definition of the number of Meta-QTL or “real” QTL, which best
represent the original QTL.

The algorithms and statistical procedures implemented in this software are well-
described in the literature [52,75,76]. All files prepared to run BioMercator V.4.2, i.e., maps
and QTL files for each barley chromosome, are made available in Table S2.

3. Results
3.1. Distribution of QTLs and MQTLs

In total, forty-eight of the 65 QTL analysis studies contained all the information
needed for MQTL analysis. A total of 585 QTLs (206 for salinity, 210 for drought, 47 for
waterlogging, 106 for toxicity and mineral deficiency, and 16 for low-temperature stresses)
were identified from 37 experiments under meta-analysis and projected on the consensus
map (Table 3 and Figure 3). The number of QTLs controlling traits related to abiotic stress
tolerance ranged from 58 QTLs (on chromosome 5H) to 120 QTLs (on chromosome 2H).
The details of the identified meta-QTLs, including the number of initial QTLs, their position
in the consensus map, flanked markers, CI and R2, are shown in Table S1.

The number of QTLs in each MQTL for tolerance to abiotic stresses ranged from 1
QTL in MQTL4.4, MQTL5.5, and MQTL5.7 to 38 QTLs in MQTL6.3 (Table S2).

Most of the QTLs (43 QTLs) for salinity stress were located on chromosome 2. More-
over, the highest QTLs were located on chromosome 4 (9 QTLs), chromosome 1(11 QTLs),
and chromosome 3 (25 QTLs) for low temperature, waterlogging, and mineral deficiency
stresses, respectively.

Based on our meta-analysis, 128 MQTLs were identified for 585 QTLs related to
abiotic stress tolerance. The number of MQTLs per chromosome ranged from 12 MQTLs
(on chromosome 6) to 23 MQTLs (on chromosome 2). Moreover, 44, 32, 23, 23, and 6
MQTLs were respectively identified for salinity tolerance, drought tolerance, waterlogging
tolerance, mineral deficiency tolerance, and low-temperature tolerance. The number of
QTLs and MQTLs for each chromosome is shown in Table 4 and Table S3.

Li et al. (2013) identified 79 MQTLs for 337 QTLs associated with abiotic stress
tolerance traits. The number of these MQTLs varied from 7 (on chromosome 6) to 20 (on
chromosome 2). They identified 17 MQTLs for waterlogging stress tolerance, 26 MQTLs
for drought stress, 22 MQTLs for salinity, 11 MQTLs for low temperature, and 3 MQTLs
for toxicity and mineral deficiency [16]. Zhang et al. (2016) studied 195 QTLs to identify
salinity, drought, and waterlogging stress tolerance in barley. Their meta-analysis identified
37 MQTLs for abiotic stress tolerances [53].
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Table 3. R2, Meta-QTL, Peak position (bp), Meta-QTL CI range bp, and Closest markers of detected
meta-QTLs.

Chr Meta-QTL AIC R2 Meta Meta-QTL Peak Position (bp) Meta-QTL CI Range bp Closest Markers

1 MQTL1.1 546.03 0.07 120604292 113763968–128399829 * Cmwg645(59.938)-bPb-0395(60.740)
MQTL1.2 0.22 191424829 187288939–198521321 E32M61-265(94.97)-SCRI_RS_113745(95.12)
MQTL1.3 0.22 215895490 209987507–219651209 E38M55-493(107.09)-0501A(107.11)
MQTL1.4 0.15 227122225 224396043–241295755 bPb-8763(113.65)-E40M32-654(113.84)
MQTL1.5 0.11 274117654 257758192–281940383 His3B(135.24)-ABC152F(135.81)
MQTL1.6 0.22 328366571 317252081–331517042 bp5019(162.71)-bPt-5002(163.17)

2 MQTL2.1 966.53 0.09 42367561 39815442–44919679 AWBMS62(17.55)-WG516(17.79)
MQTL2.2 0.2 68439906 64629701–72250111 bPb-6235a(28.42)-bPb-6128(28.76)
MQTL2.3 0.09 97387878 91468880–103306875 BNL16.06(40.61)-bPb-3574(41.08)
MQTL2.4 0.04 139419949 135909288–142930609 P61M48h(58.13)-bPb-3575(59.69)
MQTL2.5 0.22 170213114 166570654–173855574 BF064492(71.03)-AWBMA33(71.19)
MQTL2.6 0.06 189767373 187766416–191768330 Bmag0711(49.14)-EBmac521a(80.08)
MQTL2.7 0.1 263383407 256445958–270320855 EBmatc0039(109.90)-AWBMA21(109.95)
MQTL2.8 0.12 294464135 290701857–298226412 BQ740141(122.82)-3179-497(122.96)
MQTL2.9 0.07 611525900 608806036–614245763 BM815937(221.69)-BM816122(257.49)

3 MQTL3.1 775.59 0.09 268408330 261707356–275109306 E32M62-92(101.28)-E35M48-250(101.83)
MQTL3.2 0.23 379792248 376613242–384250770 E41M61-400(143.95)-E42M51-442(143.96)
MQTL3.3 0.1 436460332 428189641–444731023 bPb-3320(165.22)-basd27g02(165.47)
MQTL3.4 0.17 473526748 471178768–475874727 bPt-6567(179.18)-bPt-5150(179.52)
MQTL3.5 0.31 498826884 495476397–502177372 bp4025(189.03)-7241-553(189.17)
MQTL3.6 0.07 573909459 563449078–584369838 ABA302(217.25)-P15M47-91(217.59)

4 MQTL4.1 889.8 0.07 182695125 175965050–193845575 SCRI_RS_180891(80.50)-
SCRI_RS_119628(83.45)

MQTL4.2 0.08 250437750 245089075–255786425 BOPA2_12_10063(113.09)-E36M62-78(113.51)
MQTL4.3 0.04 285624125 277921575–293326675 basd13l12(128.85)-E33M60–5.5(129.43)
MQTL4.4 0.03 317672025 304090350–331253725 E40M32-153(143.70)-E36M59-94(143.91)
MQTL4.5 0.12 339354100 332668250–346039950 E33M54-416(153.49)-bPb-6872(153.58)
MQTL4.6 0.17 352946825 348117550–357776125 E32M62-386(158.61)-E38M55-139(158.80)
MQTL4.7 0.17 403538300 400996575–406080025 BF258346B(182.46)-bPb-7395(182.61)
MQTL4.8 0.32 462329625 460130475–465799650 mHsh(209.15)-ABC305(209.24)

5 MQTL5.1 710.31 0.03 11389965 9196970–13582960 ABG464(10.90)-Act8A(11.32)
MQTL5.2 0.12 121232310 120331310–122133305 bp3200(106.34)-E40M40-354(107.08)
MQTL5.3 0.09 135954265 133744270–138164260 E42M55-350(119.80)-E37M50-70(120.07)
MQTL5.4 0.14 152138215 149316225–154960210 Bmac282a(134.20)-E37M62-231(134.43)
MQTL5.5 0.07 177842140 174833150–180851130 1896-1435(156.80)-bags4p07(157.03)
MQTL5.6 0.06 197188085 192853095–201523070 Bmac0223(173.52)-CDO57B(174.12)
MQTL5.7 0.06 206322725 204237395–208408050 MWG923(181.91)-GBM1227(182.46)
MQTL5.8 0.26 239937290 238061630–241812955 bPb-4988(211.63)-7523-440(211.80)
MQTL5.9 0.19 262479225 262054225–262904225 dhn9(231.4)-bPb-6367(231.8)

6 MQTL6.1 438.51 0.12 129309961 120005985–138613926 bPb- 8054(38.32)-bPb-9768(38.80)
MQTL6.2 0.07 198777337 181047449–216507225 bPb-4555(58.80)-GBM1049(58.86)
MQTL6.3 0.55 256188394 251612394–260764394 Bmac297(75.84)-bPb-1116(75.92)
MQTL6.4 0.26 320961575 319965327–321957823 4191-268(95.03)-E45M48e(93.05)

7 MQTL7.1 640.38 0.15 172041612 165726420–178356810 bPb- 8054(38.32)-bPb-9768(38.80)
MQTL7.2 0.11 205841892 197894802–213788982 bPb-4555(58.80)-GBM1049(58.86)
MQTL7.3 0.07 224776302 218058726–231493884 Bmac297(75.84)-bPb-1116(75.92)
MQTL7.4 0.06 248606394 240290454–256922334 4191-268(95.03)-E45M48e(93.05)
MQTL7.5 0.11 278695794 273308316–284083272 GBM1030(124.47)-bPb-1039(124.83)

MQTL7.6 0.21 293069850 289839600–296300106 BOPA1_5480-826(131.10)-BOPA1_ABC11989-
1-2-148(131.14)

MQTL7.7 0.01 311177142 306538548–319839582 bp8365(138.93)-SCRI_RS_122512(139.52)
MQTL7.8 0.04 352488594 345402156–359575026 bPb-5260(157.53)-Bmag0174b(157.88)
MQTL7.9 0.08 381929706 374642082–389217330 ABC305(170.76)-bPb-9269(171.07)
MQTL7.10 0.16 413807478 411996750-415618206 bPb-4129(185.06)-bp5141(185.26)

Table 4. Numbers of projected QTL and detected MQTL (in brackets).

Chr Drought Low Temperature Water-Logging Salinity Mineral Toxicity and Deficiency Total

1H 18(4) 2(2) 11(4) 21(6) 12(4) 64(20)

2H 54(6) 1(1) 10(4) 43(8) 12(4) 120(23)

3H 43(6) 0 8(4) 23(5) 25(2) 99(17)

4H 32(4) 2(1) 8(3) 39(8) 15(4) 96(20)

5H 16(4) 9(1) 3(2) 23(6) 7(2) 58(15)

6H 21(2) 2(1) 2(2) 22(4) 12(3) 59(12)

7H 26(6) 0 5(4) 35(7) 23(4) 89(21)

Total 210(32) 16(6) 47(23) 206(44) 106(23) 585(128)
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3.2. Overlap of QTLs in Meta-QTLs

The highest QTL overlap was seen in MQTL6.3 (19 QTL drought tolerant, 9 QTL
toxicity and mineral stress elements, 1 QTL waterlogging tolerance, and 9 QTL for salinity
stress tolerance). In MQTL4.8, QTLs associated with all abiotic stresses existed (18 QTL
drought tolerant, 2 QTL low-temperature tolerance, 3 QTL toxicity and deficiency of
mineral element, 3 QTL waterlogging tolerance, and 10 QTL to salinity tolerance). In
MQT2.9, MQTL4. 1, MQTL5.1, MQTL5.3, and MQTL7.5, only QTLs associated with salinity
tolerance were observed. Moreover, in MQTL7.2, MQTL7.7, and MQTL7.7, the identified
QTLs were related to drought tolerance, toxicity, deficiency of mineral elements, and
waterlogging stress. Among the identified MQTLs, MQTL4.4, MQTL5.5, and MQTL5.7
contained only one QTL each (Table 5).
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Table 5. Distribution of abiotic tolerance QTLs per Meta-QTLs.
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MQTL1.1 1 3 2 1 0 MQTL4.6 0 0 0 15 3
MQTL1.2 0 0 5 5 4 MQTL4.7 0 9 4 1 0
MQTL1.3 0 1 3 10 4 MQTL4.8 2 3 3 10 18
MQTL1.4 0 0 0 1 2 MQTL5.1 0 0 0 2 0
MQTL1.5 1 1 0 2 0 MQTL5.2 9 0 0 8 0
MQTL1.6 0 7 1 2 8 MQTL5.3 0 0 0 5 0
MQTL2.1 1 0 0 14 0 MQTL5.4 0 5 0 2 2
MQTL2.2 0 7 0 7 18 MQTL5.5 0 0 0 0 1
MQTL2.3 0 1 0 0 8 MQTL5.6 0 0 2 0 0
MQTL2.4 0 2 2 1 1 MQTL5.7 0 0 1 0 0
MQTL2.5 0 0 5 4 14 MQTL5.8 0 0 0 1 11
MQTL2.6 0 2 0 2 0 MQTL5.9 0 2 0 5 2
MQTL2.7 0 0 2 5 12 MQTL6.1 2 0 1 3 0
MQTL2.8 0 0 1 4 1 MQTL6.2 0 1 0 1 0
MQTL2.9 0 0 0 6 0 MQTL6.3 0 9 1 9 19
MQTL3.1 0 0 1 2 5 MQTL6.4 0 2 0 9 2
MQTL3.2 0 7 4 8 5 MQTL7.1 0 11 2 10 2
MQTL3.3 0 0 2 3 8 MQTL7.2 0 0 0 0 6
MQTL3.4 0 0 1 0 14 MQTL7.3 0 0 1 2 0
MQTL3.5 0 18 0 8 5 MQTL7.4 0 7 1 0 0
MQTL3.6 0 0 0 2 6 MQTL7.5 0 0 0 7 0
MQTL4.1 0 0 0 5 0 MQTL7.6 0 0 0 6 6
MQTL4.2 0 0 1 1 6 MQTL7.7 0 3 0 0 0
MQTL4.3 0 2 0 1 0 MQTL7.8 0 0 0 1 2
MQTL4.4 0 0 0 1 0 MQTL7.9 0 0 1 5 1
MQTL4.5 0 1 0 5 5 MQTL7.10 0 2 0 4 9

Li et al. (2013) tracked 18 MQTLs for abiotic stresses, many of which overlapped.
Chromosomes 7H, 2H, 3H, 4H, 1H, and 5H were identified as regions 2, 5, 2, 4, 4, and 1.
These regions contained several overlapping MQTLs. Of the 18 MQTLs detected in three
regions of the barley genome, an overlap was observed between W-MQTL (water-logging)
and T-MQTL (low temperature). Additionally, in the four regions between S-MQTL (salin-
ity) and T-MQTL, in the three regions between W-MQTL and D-MQTL (drought), in the
five regions between S-MQTL and D-MQTL, in the four regions between W-MQTL and
S-MQTL, in two regions between T-MQTL and D-MQTL, and finally in an overlap region
between S-MQTL and M-MQTL (mineral toxicity and deficiency). In the study of Li et al.
(2013), MQTL on chromosome 6 was not detected [16]. In the study by Zhang et al. (2016),
the highest overlap was reported between QTLs controlling abiotic stress tolerance on
chromosome 4 at a genetic distance of 78.61 to 117 cM. There was also an overlap of QTLs
on chromosomes 1H and 7H related to salinity, drought, and waterlogging tolerance. Most
of the QTLs associated with salinity stress tolerance on chromosome 2H were in the genetic
distance of 0 to 53.82 cM [53].

3.3. Major MQTLs

In this study, we identified eight MQTLs with R2 values of more than 20%. MQTL6.4
explained 26% of the phenotypic changes. This MQTL included two QTLs associated
with drought stress, two QTLs associated with toxicity and mineral deficiency, and nine
QTLs associated with salinity stress. In MQTL5.8, 11 QTLs for shoot dry weight, root-to-
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shoot ratio, proline content, root length, shoot dry weight/plant, and harvest index were
identified for drought stress. Moreover, one QTL for leaf injury score under salinity stress
controlled 26% of phenotypic variation [77].

In total, thirty-two QTLs detected in drought stress, toxicity and mineral deficiency, water-
logging, and salinity were included in MQTL3.2, which explained 23% of phenotypic variation.

In MQTL1.2, 14 QTLs were located that controlled different traits under drought,
waterlogging, and salinity stresses and explained 22% of phenotypic variation. Two QTLs
were located to control root dry weight under drought stress. Root length, root dry weight,
and root-shoot ratio are some of the traits that help the plant to tolerate drought stress [35].
Additionally, the relative water content and stomatal conductance, osmotic regulation, deep
root, high shoot weight, high root volume, and high root weight have a positive correlation
with stress tolerance [78].

The diversity generated by MQTL1.3 was controlled by several QTLs, some of which
controlled drought stress traits. We found that one QTL controlled the traits under toxicity
and mineral stress, 3 QTLs controlled traits under water stress, and 10 QTLs controlled
traits under salinity stress. MQTL1.3 explained 22% of the phenotypic variation. The QTLs
under salinity stress were related to stomata length. Speed and accuracy of measuring
stomatal traits are the main obstacles to its use in breeding programs. Stomatal traits are
length and width, stomata pores, length, width, and volume of guard cell, length, stomatal
density, and index). However, these traits significantly contribute to the barley’s salinity
tolerance and grain yield [79].

In total, eighteen QTL controlling traits under drought stress, toxicity and mineral
deficiency, flooding, and salinity could explain 22% of MQTL1.6 phenotypic variation.

MQTL2.5 could explain 22% of the phenotypic variation and included 14 QTLs related
to drought stress, five QTLs related to waterlogging stress, and 4 QTLs related to salinity
stress. Moreover, two, two, and one QTLs controlling grain yield, spike length, and leaf
chlorosis were detected under waterlogging conditions. Higher values of plant height,
peduncle length, leaf area, ear length, number of seeds, dry weight, grain yield, harvest
index, potassium accumulation (K+), and the potassium to sodium concentration ratio
(K+/Na+) belong to salinity tolerant genotypes. Therefore, the use of MQTLs containing
these traits can be used in breeding programs [80].

In total, twelve QTLs were located in MQTL7.6, which only controlled traits under drought
and salinity stresses. This MQTL was able to explain 22% of the phenotypic variation.

3.4. Candidate Genes

The total length of the barley genome map used in this study is approximately
21,234.43 cM. In this study, a total of 2593 candidate genes were placed in 52 MQTLs
related to abiotic stress tolerance, with an average of 4.86 candidate genes per MQTL.
Of the identified candidate genes, 306, 512, 695, 247, 176, 241, and 416 were located on
chromosomes 1 to 7, respectively. MQTL3.6, MQTL6.1, and MQTL6.2 had the highest
number of genes, with 407, 115, and 109 genes, respectively.

Among the identified candidate genes, 192 genes were significant. MQTL3.6, with
41 genes, contained the most significant candidate genes, followed by MQTL2.1 and
MQTL2.2, with 16 and 15 significant candidate genes. In MQTL1.2, MQTL1.3, MQTL3.1,
MQTL3.2, MQTL4.1, MQTL4.2, MQTL4.3, MQTL4.4, MQTL4.5, MQTL4.6, MQTL5.2,
MQTL5.5, MQTL5 6.6, MQTL5.7, MQTL5.8, MQTL5.9, MQTL6.3, MQTL7.6, MQTL7.7
and MQTL7.8, the identified candidate genes were non-significant (Table S4).

3.5. Evaluation of MQTLs in Geneinvestigator Software

Examination of the geneinvestigator software showed that 191 effective genes for
tolerance to salinity abiotic stresses were identified in the MQTLs of this study. Of the 191
candidate genes, 24, 43, 61, 7, 9, 15, and 17 genes were located on chromosomes 1 to 7,
respectively. MQTL3.6, MQTL2.2, and MQTL2.1 had the highest number of genes, with 38,
16, and 15 genes, respectively. The expression of genes under abiotic stresses under shoot
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stress treatment (35.5 h), root stress treatment (35.5 h), PEG stress treatment (6 h), PEG stress
treatment (24 h), NaCl stress treatment (6 h), NaCl stress treatment (24 h), PEG + NaCl
stress treatment (6 h) and PEG stress treatments were investigated. The highest significant
gene expression was observed in MQTL3.6, of which 51 genes had a significant increase in
expression and seven genes had a significant decrease in expression. The least significant
genes were found in MQTL2.7, MQTL2.8, MQTL5.4, and MQTL6.4. In each of the above
MQTLs, only one gene with a significant decrease in expression was observed (Table S5;
Figure 4).
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4. Discussion
4.1. Mega MQTLs
4.1.1. Mega MQTL6.3

Mega MQTL6.3 had the greatest impact on explaining variation by clarifying more
than 55% of phenotypic variation. This mega MQTL consists of 19 QTL associated with
drought tolerance, 9 QTL with toxicity and mineral deficiency tolerance, 1 QTL with
waterlogging tolerance, and 9 QTL with salinity tolerance.

There are essential drought tolerance traits in this region in which QTL played an
important role: proline content, thousand kernel weight, grain yield, shoot dry weight,
number of tillers, number of kernels, harvest index, number of spikes, and flag leaf width.
In fact, drought tolerance is a multigene trait, and identifying the genetic structure helps
describe the gene network that controls drought tolerance [53,81]. Proline accumulation
is an adaptive metabolic reaction to drought stress. Drought gradually decreases the
water content and increases the proline and abscisic acid content in the roots and leaves
of genotypes [82]. Leaf wilting score is a simple measure of a plant’s ability to tolerate
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drought that is associated with drought stress-induced metabolites such as proline. Studies
showed a significant correlation between proline content and leaf wilting score [36]. Barley
is relatively sensitive to water restriction in the stages of stem formation, grain formation
and filling, and with a significant decrease in relative water content, number of fertile
spikes, number of seeds per spike, 1000-seed weight, grain, and biomass yield, and increase
in ion leakage. The amount of proline is associated with catalase and guaiacol peroxidase
enzyme activity in flag leaves [49]. The significant QTLs identified in this MQTL, which
are related to proline content, are QPC.S42.6H and QPC.S42.6H.

Numerous QTLs were identified for salinity stress tolerance in this MQTL [78,80]. The
important QTL detected in this MQTL is qSHT-6b. Salinity is one of the most important
abiotic stresses that affect barley grain yield and quality [83]. Salinity above the threshold
level causes osmotic and ionic stress in the plant and significantly reduces plant yield [84].
The most negative effect of salinity stress on the plant occurs during the early stages of
growth and germination. Salinity tolerance is a complex physiological trait involving
several mechanisms [85].

QTLs have been identified in this MQTL for nitrogen uptake, storage, and remobiliza-
tion and their relationship to agronomic characteristics. The genetic correlation between
traits was different at different nitrogen application levels. In other words, nitrogen con-
sumption positively affected the correlation between traits [40].

Nitrogen is one of the essential elements needed by plants to increase yield. Absorption of
this vital element into the plant is done in three stages: uptake, assimilation, and remobilization.

The only QTL related to waterlogging tolerance detected in this MQTL can be referred
to QWl.YyFr.6H. Barley (H. vulgare L.) is one of the most important crops in the world
that is very sensitive to waterlogging stress. Waterlogging causes multiple plant reactions
and creates complex non-biological stresses with many factors such as temperature, plant
growth stage, nutrition, and soil type. An efficient approach to withstand this stress is to
produce tolerant varieties.

The double haploid lines resulting from the Erleng × Franklin intersection show a sig-
nificant correlation between salinity tolerance and waterlogging tolerance. Genetic evidence
suggests that salinity-tolerant and waterlogging-tolerant QTLs share some physiological
mechanisms [44].

4.1.2. Mega MQTL4.8

After Mega MQTL6.3, the highest percentage of diversity justification (33%) belonged
to Mega MQTL4.8. In this Mega MQTL, 36 QTLs, including 18 QTLs for drought tolerance, 2
QTLs for low-temperature tolerance, 3 QTLs for tolerance to toxicity and mineral deficiency,
there were 3 QTLs for waterlogging tolerance, and 10 QTLs for salinity tolerance.

The first part of the plant that perceives drought stress signals is the roots [86]. Abiotic
stresses generally affect the roots more than the shoots. Due to the limited access to the roots
compared to the shoot and leaf of the plant, significantly less study has been done on the
effect of abiotic stresses on root structure and development. The size and structure of the
root systems are important agronomic characteristics of a plant. The roots perform many
essential functions, including the uptake of water and nutrients, the storage of nutrients, plant
resistance in the soil, and the establishment of biological interactions in the rhizosphere. In
drought conditions, root traits are positively and significantly correlated with yield.

Root structure development can vary according to the physical characteristics of the
soil, such as soil depth, the presence of impermeable layers, and the amount of moisture
in the growing environment. Lack of water and nutrients limits grain growth and grain
yield in many ecosystems [87]. Among the QTLs located in this MQTL, we can mention
QRdw.S42.4H, which is in the confidence range of 116.978 and 145.021. This QTL had
genetic control of root length, root shoot ratio, and thousand kernel weights [35]. Important
QTLs detected in this MQTL can be referred to as QSPS.S42.4H.a, QSPS.S42.4H.b, and
QTILS.S42.4H.a.
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The qCOLD-4S in this MegaMQTL has been shown to control low-temperature tol-
erance stress at confidence levels of 0 and 47.423 [47]. Moreover, two QTLs identified in
this MQTL are qCOLD-4S and qCOLD-4L. Low temperature is one of the major biological
stresses that affect the geographical distribution of plants and even plant life. Chlorophyll
content and photosynthesis significantly decrease under temperature stress [88]. The results
showed that not all barley chromosomes played a role in low-temperature tolerance, which
was consistent with the Li et al. study [16].

Among the mineral elements, nitrogen has a greater effect on plant height, leaf chloro-
phyll content, and barley yield. It is also effective in improving the yield of wheat com-
ponents such as biochemical reactions, photosynthesis intensity, growing period, and
accumulating dry matter in the shoots. However, excessive use of thresholds has a negative
effect on barley grain quality [89]. The results showed that not all barley chromosomes
played a role in low-temperature tolerance, which is consistent with the Li et al. study [16].
Three QTLs detected in this MQTL are QYld.S42.4H.a, QYld.S42.4H.b, and QYld.S42.4H.c.

MQTL4.8 included 2 QTLs (yfy2.1-3, yfy2.2-3) for leaf yellowing ratio and one QTL
(yfmas) for reduction of plant biomass in waterlogging stress tolerance [53]. Waterlogging
stress causes anaerobic conditions in the roots that occur due to the water saturation of the
soil. This stress causes significant damage to the products. Sudden root growth, energy
metabolism, aerosol formation, biomass depletion, photosynthesis rate, and plant hormone
signaling are different plant responses to this stress. These disorders can lead to reduced
yields in barley, wheat, and corn [90]. The lack of oxygen due to waterlogging stress
leads to de-nitration and rapid nitrate loss from the soil, reducing the leaf emergence rate.
This, in turn, reduces the number of leaves and delays maturation. The plant’s growth,
appearance, and physiological function are rapidly affected by nitrate deficiency, and the
leaves begin to turn yellow. The level of leaf yellowing is directly related to the duration of
waterlogging [91]. Transient reductions in biomass accumulation occur under waterlogging
stress, but grain yield depends on plant capacity for post-waterlogging and pre-maturity
recovery. If the barley is affected by stress late in its life cycle, it will no longer be able to
produce new tillers and compensate for lost stem biomass [92].

In total, ten QTLs were identified in this MegaMQTL to salinity stress tolerance,
which controls traits such as seed dry weight, seedling fresh weight, and total leaf number.
Moreover, one QTL was identified for the stem diameter trait that explained 10.9% of the
phenotypic variation (LOD = 2.515) [7]. Increasing the amount of sodium and potassium
ions in the leaves under the influence of salinity stress reduces yield. The decreased growth
of the plant’s leaf and shoot also occurs due to receiving a large amount of energy from the
aerial parts to counteract the effects of salinity [93]. The qSDW12-4a was identified for the
stem diameter trait with a coefficient of determination of 10.6 and a LOD of 2.422, and the
parent Badia increased this trait [22].

4.1.3. Mega MQTL3.5

In total, thirty-one QTLs were located in MegaMQTL3.5, which explains 31% of the
phenotypic variation. This MegaMQTL includes 5 QTLs to control drought-tolerant traits,
18 QTLs related to stress toxicity and mineral deficiency traits, and 8 QTLs related to salinity
stress tolerance.

In drought stress, plants use different strategies or mechanisms for growth and sur-
vival, such as growing excess roots to increase water uptake or reducing leaf transpiration
from water shortage damage [94]. Strong, positive, and very significant correlations were
observed between yield and root length, root dry weight and root–shoot ratio under
drought stress [33]. In this MegaMQTL, QTGW.S42.3H was located for the thousand-grain
weight trait in this study, which explains 5.85 of the phenotypic variation [33]. Drought
stress limits grain filling and reduces thousand-grain weight. Grain yield showed a positive
and significant correlation with the performance components the number of grains per ear,
grain weight per ear, and thousand-grain weight [95].



Genes 2022, 13, 2087 21 of 28

Although barley is more sensitive to the toxicity of aluminum among fine-grained
crops, tolerance to aluminum varies among different varieties of the barley plant. Prevent-
ing root growth and shortening is the first effect of acidic soil toxicity. Additionally, the
toxicity of aluminum in acidic soils may limit the absorption of water and nutrients and
thus reduce yield [96,97]. In total, two QTLs were located for root length in this MegaMQTL
for aluminum tolerance. Aluminum tolerance is controlled by one or more genes and is
quantitatively inherited [71]. We located five QTLs in this MegaMQTL, which explains
more than 20% of the phenotypic variation. Additionally, eight other QTLs that explain
more than 20% of the phenotypic changes were identified in this MegaMQTL to control the
traits tolerant to toxicity stress and mineral deficiency. Reducing the number of mineral
elements increases the length of the roots and decreases the height of the plant [98].

A QTL was detected in this MegaMQTL to control plant height trait, which explains
14.5% of phenotypic changes. Under salinity stress, plant height had a positive and
significant correlation with grain yield, flag leaf width, and grain weight per spike [99].
Due to its genetic and physiological complexity, control of salinity tolerance traits is done
by quantitative trait loci (QTLs). Osmotic stress occurs immediately after plant exposure to
salinity stress in the root environment. Induction of stomatal closure and its effect on plant
cell growth and metabolism, slowing down shoot growth, total leaf area, and biological
function [84].

4.2. Gene Ontology

Gene ontology (GO) analysis was performed for 52 identified MQTL regions. Gene
ontology (GO) analysis was classified into three categories: biological process, molecular
function, and cellular components. The most important biological processes involved
included the cellular process, metabolic process, response to stimulus, primary metabolic
process, organic substance metabolic process, response to stress, catabolic process, and
nitrogen compound metabolic process. The main cellular components involved were
the cellular anatomical entity, membrane, intracellular anatomical structure, organelle,
cytoplasm, and extracellular region. The most important molecular functions are binding,
catalytic activity, transferase activity protein binding, organic cyclic compound binding,
and heterocyclic compound binding (Table S6; Figure 5).
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antioxidant enzymes, osmolytes, and transporters, are the two main categories of proteins
involved in stress tolerance [4].

In MQTL3.6, 407 genes were observed, of which 41 genes showed significant expres-
sion changes. HORVU.MOREX.r3.3HG0310640 gene in this MQTL explains the transcrip-
tion factor, TCP. Os01t0924400 gene in rice is similar to this gene, which describes the Similar
to Auxin-induced basic helix-loop-helix transcription factor. Wall-associated receptor-like
kinases (WAKs) are important candidates for directly linking the extracellular matrix with
intracellular compartments and play a role in growth and stress response processes. The
WAK gene family has been identified in plants such as Arabidopsis and rice [100].

Significant genes related to kinase in barley include HORVU.MOREX.r3.1HG0049480,
HORVU.MOREX.r3.3HG0281000, HORVU.MOREX.r3.4HG0379400, HORVU.MOREX.r3.5-
HG0425730, which are related to the protein kinase domain and wall-associated receptor
kinase, galacturonan-binding domain, were identified in this study. Kinase-like receptors
are divided into two main groups in terms of their biological role in plants. The first
group plays a role in growth and development, and the second group is more active in
response to biotic and abiotic stresses [101]. Rajiv et al. (2021) identified 91 WAK (wall-
associated kinases) genes in the barley genome, which were classified into five groups
and distributed in different chromosomes. The number of WAK genes in rice and barley
is very high compared to Arabidopsis, suggesting that HvWAKs underwent a duplication
event during evolution [102]. Class III peroxidases are secretory enzymes that belong to a
ubiquitous multigene family in higher plants and have been identified to play a role in a
broad range of physiological and developmental processes [103]. Heterologous expression
of peroxidase genes affects the morphology and stress responses of several crops [104]. In
total, sixty significant genes related to plant peroxidase were identified in this study for
barley, and the genes similar to these genes in rice explain Similar to Class III peroxidase.
Cytochrome P450 monooxygenase genes (CYPs) are among the largest gene families in
plants, which are effective in various biological processes, including response to biotic
and abiotic stresses. Moreover, P450 genes are prone to expanding due to gene tandem
duplication during evolution, resulting in generations of novel alleles with neo-function or
enhanced function [105].

HORVU.MOREX.r3.6HG0579680 gene in MQTL6.2 explains Cytochrome P450 reac-
tion. In plants, heat shock proteins (Hsps) play an important role in response to various
stresses. Hsp20 is the main family of Hsps. Hsp20 is encoded by nuclear genes. Based on
predicted subcellular localization, sequence homology, and function, Hsp20s are divided into
different subfamilies (CI-CVI, MTI, MTII, ER, CP, and PX). CI-CVI subfamilies are located
in cytoplasm/nucleus, MTI and MTII subfamilies are located in mitochondria, ER, CP and
PX are located in the endoplasmic reticulum, chloroplast, and peroxisome, respectively. The
biological function of Hsp20s in plant protection under various stress conditions has been
well documented in several plants, including soybean, tomato, and pepper [106–109]. In
our study, HORVU.MOREX.r3.1HG0037960 gene in MQTL1.4 controls the reaction of α crys-
tallin/Hsp20 domain. Members of the multicopper oxidase (MCO) family of enzymes can
be classified based on substrate specificity [110]. The family of multicopper oxidase (MCO)
enzymes includes three main groups: laccases, ferroxidases that oxidize ferrous iron, and
ascorbate oxidases [111]. In the broadest sense, laccases constitute by far the largest subgroup
of MCOs, originating from bacteria, fungi, plants, and insects. Laccase was first discovered in
the Japanese lacquer tree Rhus vernicifera. MCOs have the ability to combine the oxidation
of a substrate with the four-electron reduction of molecular oxygen to water. The electron
transfer steps in these redox reactions are coordinated in two copper centers that usually
contain four copper atoms. In a redox reaction catalyzed by an MCO, the substrate electrons
are accepted at the mononuclear center (type 1 copper atom) and then transferred to the
trinuclear cluster (one type 2 and two type 3 copper atoms) as dioxygen. The binding site
works by receiving four electrons and reduces molecular oxygen [112]. In this study, the
HORVU.MOREX.r3.1HG0049190 gene controlled Multicopper oxidase, type 1.
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Sugar transporter proteins (STPs) play essential roles in sugar transport, growth, and
development of plants and possess an important potential to enhance plants’ performance
of multiple agronomic traits, especially crop yield and stress tolerance. In a comparative
genomic study, STP genes were identified in seven representative crops of Gramineae,
including Brachypodium distachyon (Bd), H. vulgare (Hv), Setaria italica (Si), Sorghum bicolor
(Sb), Zea mays (Zm). Oryza rufipogon (Or) and Oryza sativa ssp. japonica (Os) was done,
and a total of 177 STP genes were identified and grouped into four clades [113]. In this
study, three genes, HORVU.MOREX.r3.2HG0131100, HORVU.MOREX.r3.2HG0131150,
and HORVU.MOREX.r3.2HG0131170, explaining the sugar/inositol transporter reaction,
were identified in MQTL2.4.

4.3. Markers Selection

The selection of superior plants forms the basis of plant breeding, which was based on
phenotypic traits for a long time. Selection based on phenotype is effective when the genetic
basis of the trait is relatively simple and the genetic effect of the gene is additive. However,
many critical agronomic traits are quantitative traits, such as abiotic stress tolerance or traits
whose phenotypes are difficult to identify accurately. Therefore, measuring the genetic
potential of the trait using phenotype is incorrect, and the selection is inefficient. Genetic
breeders use markers to aid selection, genomic selection (GS), genome-wide selection
(GWS), marker-assisted complex or convergent crossing (MACC), marker-assisted gene
pyramiding (suggest MAGP), and marker-based backcross (MABC). The marker-assisted
or marker-based backcross (MABC) is the simplest form of marker-assisted selection.
Moreover, marker gene pyramiding (MAGP) is one of the most important applications
of DNA markers for plant breeding. This technique has been proposed and applied to
increase resistance to diseases and insects by selecting two or more genes simultaneously.
Marker-assisted complex or convergent crossing (MACC) can be performed to pyramid
multiple genes/QTLs. In this study, we introduced the most important markers to select
lines with significant tolerance to all abiotic stresses (Figure 2).

5. Conclusions

Developing cultivars resistant to abiotic stresses is one of the critical goals of the agricul-
tural industry worldwide. In this study, the highest QTL was identified for drought tolerance
and the lowest for tolerance to low temperatures. The number of these QTLs was different
in different chromosomes and MQTLs. Most overlapping QTLs occurred in MQTL6.3. Our
findings revealed eight Major MQTLs with R2 values of over 20% and three mega MQTLs
explaining over 30% phenotypic variation and controlled various traits under abiotic stresses.
In mega MQTL4.8, with an R2 of 32%, 36 QTLs were observed, which controlled various traits
under all abiotic stresses. Moreover, 2593 candidate genes were identified in fifty-two MQTLs
for abiotic stress tolerance. Our gene expression analysis indicated that the most significant
gene expression was related to MQTL3.6 with 58 genes. The function of the genes identified
in this research was investigated with its counterpart in rice.
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QTLs, studies, and population in MQTLs, Table S4. Gene names and their descriptions, as well as rice gene
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