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and Jie Bai1*

1 Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 2 Shanghai Key Laboratory of
Magnetic Resonance, East China Normal University, Shanghai, China

Objective: This study was conducted in order to investigate the association between
radiomics features and frontal glioma-associated epilepsy (GAE) and propose a reliable
radiomics-based model to predict frontal GAE.

Methods: This retrospective study consecutively enrolled 166 adult patients with frontal
glioma (111 in the training cohort and 55 in the testing cohort). A total 1,130 features were
extracted from T2 fluid-attenuated inversion recovery images, including first-order
statistics, 3D shape, texture, and wavelet features. Regions of interest, including the
entire tumor and peritumoral edema, were drawnmanually. Pearson correlation coefficient,
10-fold cross-validation, area under curve (AUC) analysis, and support vector machine
were adopted to select the most relevant features to build a clinical model, a radiomics
model, and a clinical–radiomics model for GAE. The receiver operating characteristic curve
(ROC) and AUCwere used to evaluate the classification performance of the models in each
cohort, and DeLong’s test was used to compare the performance of the models. A two-
sided t-test and Fisher’s exact test were used to compare the clinical variables. Statistical
analysis was performed using SPSS software (version 22.0; IBM, Armonk, New York), and
p <0.05 was set as the threshold for significance.

Results: The classification accuracy of seven scout models, except the wavelet first-order
model (0.793) and the wavelet texture model (0.784), was <0.75 in cross-validation. The
clinical–radiomics model, including 17 magnetic resonance imaging-based features
selected among the 1,130 radiomics features and two clinical features (patient age and
tumor grade), achieved better discriminative performance for GAE prediction in both the
training [AUC = 0.886, 95% confidence interval (CI) = 0.819–0.940] and testing cohorts
(AUC = 0.836, 95% CI = 0.707–0.937) than the radiomics model (p = 0.008) with 82.0%
and 78.2% accuracy, respectively.
November 2021 | Volume 11 | Article 7259261

https://www.frontiersin.org/articles/10.3389/fonc.2021.725926/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.725926/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.725926/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:fccchengjl@zzu.edu.cn
mailto:gyang@phy.ecnu.edu.cn
mailto:baijie13783501377@126.com
https://doi.org/10.3389/fonc.2021.725926
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.725926
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.725926&domain=pdf&date_stamp=2021-11-22


Gao et al. Radiomics for Prediction of GAE

Frontiers in Oncology | www.frontiersin.org
Conclusion: Radiomics analysis can non-invasively predict GAE, thus allowing adequate
treatment of frontal glioma. The clinical–radiomics model may enable a more precise
prediction of frontal GAE. Furthermore, age and pathology grade are important risk
factors for GAE.
Keywords: radiomics, glioma, glioma-associated epilepsy, frontal lobe epilepsy, T2 fluid-attenuated
inversion recovery
INTRODUCTION

Glioma-associated epilepsy (GAE) is a common diagnosis of
glioma patients, which may be attributed to several factors,
including tumor location, peritumoral edema, genetic
background, and alterations in the microenvironment (1–3).
Currently, there is no broadly acknowledged method for GAE
interpretation. The frontal lobe is the most common glioma
location associated with epilepsy (4), and frontal glioma is the
most common cause for frontal lobe epilepsy (FLE) with lesions
(5). FLE impairs the recognition and comprehension of patients,
and particularly for frontal GAE, if patients do not receive
treatment, there is a risk for status epilepticus (5, 6). Early
prediction, increased awareness, and proper treatment of GAEs
are vital to protect neurocognitive function and improve the
quality of life of the patients (7, 8). With respect to the location of
epileptic discharges, the propagation mode, and the experience
of the patients, FLE differs from epileptic discharges in extra
frontal regions (5); therefore, we independently analyzed frontal
GAE in this study.

Radiomics is an emerging method to obtain predictive or
prognostic information from medical images by several
quantitative image features (9, 10). Although such features are
not directly apparent to clinical practitioners, these can
potentially produce reliable diagnostic and prognostic models
in conjunction with other information sources. Radiomics has
been proven helpful for clinical diagnosis, treatment choice, and
prognosis assessment based on tomographic imaging (computed
tomography, CT; magnetic resonance imaging, MRI; and
positron emission tomography, PET) (11–14).

MRI is an essential preoperative examination for patients
with glioma, and radiomics based on MRI is one of the focus
areas for glioma research. The MRI sequences selected for glioma
in previous radiomics research were mostly based on
conventional MRI sequencing, such as T2-weighted imaging
(T2WI), T2 fluid-attenuated inversion recovery (T2 FLAIR)
imaging, apparent diffusion coefficient maps, and contrast-
enhanced T1-weighted sequences (15–20). Given its high
spatial resolution and the fact that it does not require
materials, T2 FLAIR MRI sequences are considered to provide
more tumor information than T2WI in glioma research (21).
Radiomics analysis in T2WI has been previously applied to GAE
(22–24) and has proven effective to predict the occurrence and
type of GAE. However, these studies focused on low-grade
glioma (LGG) and neglected the influence of brain tumor
location on the seizure propagation mode. Therefore, we used
the radiomics features extracted from T2 FLAIR imaging to
2

investigate the association between radiomics features andWHO
II–IV grade frontal lobe gliomas concurrent with epilepsy.
MATERIAL AND METHODS

Patients and Magnetic Resonance
Imaging
This retrospective study was approved by the Ethics Committee
of Scientific Research and Clinical Experiments of the First
Affiliated Hospital of Zhengzhou University, which waived the
requirement for written consent. We enrolled 166 consecutive
patients with frontal glioma who underwent MRI scanning
before surgery at our hospital from August 2016 through
August 2019. Inclusion criteria were a) a single tumor and
peritumoral edema defined in the frontal lobes by
neurosurgery and imaging findings, b) pathologically
confirmed single frontal gliomas (WHO II–IV) according to
the 2016 WHO criteria, and c) available presurgical T2 FLAIR
imaging data. Exclusion criteria were a) satellite tumors of the
frontal glioma located beyond the frontal lobe and WHO grade I
glioma, b) patients who underwent puncture biopsy and started
antitumoral therapy before the MRI scan, and c) frontal glioma
patients with other recent lesions that could cause epilepsy, such
as cerebral hemorrhage, stroke, and other brain tumors. The
preoperative diagnosis of GAE was based on clinical signs,
electroencephalography (EEG), and imaging findings (25).
According to clinical preoperative diagnosis, the enrolled cases
included 89 patients with epilepsy and 77 patients without. The
dataset was randomly split into a training cohort (n = 111,
epilepsy/no epilepsy = 61/50) and a test cohort (n = 55, epilepsy/
no epilepsy = 28/27). The sex and age of the patients, the tumor
grade, and tumor location (left/right/both) were recorded. The
whole workflow is illustrated in Figure 1.

MR images scanned with 3.0 T MRI scanners (Magnetom
Trio TIM/Prisma, Verio or Skyra, Siemens Healthcare; Discovery
750, GE Medical Systems) were retrieved from the Picture
Archive and Communication System of the hospital. MRI T2
FLAIR images had a 256 × 256-pixel matrix and a 240 × 240-mm
field of view, inversion time = 2,400–2,500 ms, echo time = 81–
135 ms, and repetition time = 8,000–8,500 ms, with section
thickness = 5 mm and intersection gap = 1 mm.

Tumor Masking and Image Preprocessing
One volume of interest (VOI) including the entire tumor and
peritumoral edema was manually drawn slice-by-slice on T2 FLAIR
images using the ITK-SNAP (version 3.6.0; www.itksnap.org)
November 2021 | Volume 11 | Article 725926
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software by a Ph.D. candidate in imaging for medicine (AG, 5 years
of experience in neuro-oncology). Next, the segmentation results
were reviewed and modified if necessary by a neuroradiologist with
20 years of experience in neuroradiology (JB) using the same
software. All images were normalized to a [0, 1] range before
feature extraction.

Radiomics Feature Extraction
Feature extraction was performed with the PyRadiomics (version
3.0) (26) package in Python (3.7.6). For each case, 3D shape
features (n = 14) were extracted from the VOI before first-order
statistics features (n = 18); texture features (n = 75) were
extracted from each of the following image types: 1) original
T2 FLAIR images, 2) each of the three Laplacian-of-Gaussian
(LoG) filtered images (sigma = 1.0, 3.0, 5.0), and 3) each of the
eight sub-bands of 3D wavelet-transformed image sub-bands
using the Haar wavelet. The texture features extracted in this
study included features based on a gray-level co-occurrence
matrix (GLCM), gray-level run length matrix (GLRLM), gray-
level size zone matrix (GLSZM), neighboring gray tone difference
matrix (NGTDM), and gray-level dependence matrix (GLDM).
A total of 1,130 features were extracted for each case.

Feature Selection and Model Building
To remove the imbalance from the training dataset, upsampling
by repeating random cases was applied to balance the GAE and
non-GAE group samples.

A total of 1,130 radiomics features were extracted for each
case; however, dealing directly with such an extensive feature
number limits the robustness and effectiveness of the model.
Thus, to reduce the dimensions of the features and select the
appropriate ones for radiomics model building, we used a
heuristic approach. First, all features were divided into
subgroups according to their category, such as first-order,
shape, and texture, and a scout model with those features was
built for each subgroup using the training dataset. The scout
Frontiers in Oncology | www.frontiersin.org 3
models were evaluated with a 10-fold cross-validation; the
optimal model in each subgroup was selected by its
performance on cross-validation with the training cohort.
When the area under the receiver operating characteristic
curve (AUC) of the optimal scout model on cross-validation
was >0.7, all features in the model were used for the final model
building. Otherwise, no subgroup features were further used.

To build the scout model, all features were normalized to the
[0, 1] range. Thereafter, Pearson correlation coefficient (PCC)
values between all feature pairs were calculated, and if the PCC
value between two features was >0.99, one of them was removed.
To determine the best number of features to be retained in the
model, three feature selectors were compared: recursive feature
elimination (RFE), which repeatedly builds the model and
eliminates the least important feature; relief, which calculates a
feature score for every feature and ranks them accordingly; and
the Kruskal–Wallis test (KW), which eliminates the most likely
feature from the same distribution in both GAE and non-GAE
samples. For the classifier, we compared the performance of
linear support vector machine (SVM), logistic regression (LR),
and random forest (RF) for their good interpretability and
demonstrated good performance in diagnosis based on
medical imaging.

To find the best model, we tested different combinations of
feature selectors and classifiers. Therefore, nine models (three
features selectors and three classifiers) were built for a scout
model, and the one with the best cross-validation AUC was used.
Multimodel building and comparison were implemented
semiautomat ica l l y wi th an open-source so f tware ,
FeAtureExplorer (FAE, version 0.3.3) (27), which uses scikit-
learn (version 0.23.2) as backend for machine learning.

As mentioned above, the features retained in qualified scout
models were used to build a radiomics model. We also
established a clinical model using only clinical variables (sex,
age, tumor grade) and a clinical–radiomics model using both
selected radiomics features and clinical variables to distinguish
FIGURE 1 | Radiomics workflow.
November 2021 | Volume 11 | Article 725926

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gao et al. Radiomics for Prediction of GAE
GAE from non-GAE. The process for building the above models
was similar to those used in scout model building, but without
PCC dimension reduction, due to the relatively small number of
input features.

Performance Evaluation of the Models
The receiver operating characteristic curve (ROC) and AUC
were used to evaluate the classification performance of the
models in each cohort. DeLong’s test was used to observe AUC
differences in the models. The accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV) were also calculated at the cutoff value that maximizes the
Youden index value in the training cohort. Calibration curves
and decision curve analysis (DCA) (28) served to assess the
clinical usefulness of radiomics signatures.

Statistical Analysis
Age is reported as mean and range, and their difference between
the GAE and non-GAE groups was assessed by a two-sided t-test.
Sex and glioma position and grade were reported as frequency
and proportions, and differences between the GAE and non-
GAE groups were assessed by Fisher’s exact test. Statistical
analysis was performed using SPSS software (version 22.0;
IBM, Armonk, New York), and p <0.05 was used as the
threshold for significance.
RESULTS

Demographic and Clinical Data
The main clinical and pathological characteristics of all 166
patients are listed in Table 1. There were significant differences
between the GAE and non-GAE groups with respect to age, sex,
and glioma grade (p < 0.05). Thus, younger, male, and LGG
patients had a higher risk of GAE. Age distribution and glioma
subtypes in the full cohort of patients are listed in Appendix 1.

In the GAE group (89/166), 18 patients (18/89) had
preoperative EEG [ambulatory EEG (n = 10), video EEG (n =
6), conventional EEG (n = 1), and intracranial EEG (n = 1)], and
two of them (2/18) showed interictal epileptiform abnormalities
(IEAs) in the EEG recording; the others (16/18) had a normal
Frontiers in Oncology | www.frontiersin.org 4
EEG recording. All patients in the non-GAE group had no
EEG recordings.

Performance of the Models
To find valuable features to build the radiomics model, we
divided all radiomics features into seven categories and built a
scout model for each. Using the features retained in scout
models, we built a final radiomics model. Additionally, a
clinical model using clinical variables and a clinical–radiomics
model using both radiomics features and clinical variables were
built. All models and features are listed in Appendix 2.

The performance of all models is listed in Table 2. The ROC
curves and the predicted probability of clinical, radiomics, and
clinical–radiomics models are shown in Figure 2. The
classification accuracy of the scout models was <0.75 in cross-
validation, except the wavelet first-order and wavelet texture
models. Among all models, the clinical–radiomics model
including 17 radiomics features and two clinical features
achieved a performance with a classification accuracy = 0.82
and AUC = 0.886 [95% confidence interval (CI), 0.819–0.940] in
the training cohort and a classification accuracy = 0.782 and
AUC = 0.836 (95% CI, 0.707–0.937) in the testing cohort. The
clinical–radiomics model achieved the best performance on the
testing cohort (Table 3). DeLong’s test showed a p-value <0.05
(p = 0.008) between the radiomics and clinical–radiomics models
(Table 4). The calibration curve and DCA for the clinical–
radiomics model are shown in Figures 3A, B, and its
calibration performance, as evaluated with the Brier score, is
reported in the legend. Figure 4 shows a comparison between
two representative patient cases with similar image and clinical
representation; the clinical–radiomics model effectively
distinguished between individuals with GAE and without GAE
among glioma patients; the DCA curve revealed that for a high-
risk threshold between 0.1 and 0.7, the clinical–radiomics model
can be more beneficial than the clinical and radiomics models.
DISCUSSION

Despite the higher incidence of epilepsy in LGG than in high-
grade glioma (HGG) (29, 30), HGG is more common, and
TABLE 1 | Clinical characteristic of patients in the training and testing cohorts.

Characteristics All cohort (n = 166) p-
value

Training cohort (n = 111) p-
value

Testing cohort (n = 55) p-
value

Non-GAE
group

GAE group Non-GAE
group

GAE group Non-GAE
group

GAE group

Sample size 77 89 – 50 61 – 27 28 –

Male/female 32/45 60/29 0.001 24/26 43/18 0.020 9/19 17/10 0.031
Age mean ± SD (range) 49 ± 12 (15–74) 41 ± 12 (12–

66)
<0.001 48 ± 11 (15–73) 41 ± 12 (12–

65)
0.005 50 ± 12 (25–74) 41 ± 12 (17–

66)
0.014

Glioma position (left/right/
both)

30/26/21 35/45/9 0.009 21/16/12 25/30/7 0.107 8/10/9 10/16/2 0.051

Glioma grade (WHO II/III/IV) 22/16/39 56/19/14 <0.001 16/10/24 38/13/10 0.001 7/6/14 18/6/4 0.006
No
vember 2021 | Volume 11 | Article
p-values of age are the results of independent-samples t-tests; p-values of gender and tumor grade are the results of Fisher’s exact tests.
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epilepsy in HGG patients always suggests tumor progression
(31). Therefore, a non-invasive way to predict the occurrence of
epilepsy in both LGG and HGG patients is needed to improve
care, treatment, and timely surgery. Radiomics, which can
transform medical images into useful data, has been widely
used to classify glioma grade- or subtype-associated mutations
and predict tumor proliferation, patient prognosis, etc. (15–
20, 22).
Frontiers in Oncology | www.frontiersin.org 5
In this study, T2 FLAIR-based radiomics was used to
automatically extract 1,130 quantitative features, and the
optimal model was selected from 10 models for predicting the
occurrence of GAE in glioma patients. The best model, which
combined clinical and radiomics features, could distinguish GAE
patients from glioma patients with satisfying accuracy. Among all
scout models, those based on wavelet transform features exhibited
better performance than those based on other features, consistent
A B

D

E F

C

FIGURE 2 | ROC curves of the training and testing cohorts (left column) and the waterfall plot of the distribution of prediction probability on the testing cohort (right
column). (A, B) Clinical model. (C, D) Radiomics model. (E, F) Clinical–radiomics model.
TABLE 2 | The performance of all models in predicting GAE in the training and testing cohorts.

Model Cohort AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

Clinical model Training 0.762 (0.667–0.846) 0.748 0.721 0.780 0.800 0.696
Testing 0.799 (0.672–0.917) 0.782 0.750 0.815 0.808 0.759

Radiomics features-combined model Training 0.879 (0.805–0.939) 0.811 0.770 0.86 0.870 0.754
Testing 0.724 (0.575–0.855) 0.673 0.536 0.815 0.750 0.629

Clinical–radiomics model Training 0.886 (0.819–0.940) 0.820 0.803 0.840 0.860 0.778
Testing 0.836 (0.707–0.937) 0.782 0.750 0.815 0.808 0.759
Novem
ber 2021 | Volume
 11 | Article 7
In the process of establishing scout models to select features, only the cross-validation performance was assessed to avoid information leakage. The bold values is optimal value.
AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.
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with the higher weight of wavelet features in the combined
models. This suggests the effectiveness of scout models to find
useful features. The importance of wavelet features in our models
was also consistent with previous research on epilepsy and
epilepsy-type prediction in LGG (22, 24). Furthermore, in our
study, the features from LoG filtered images were also included
and were contributing features in the final models. LoG features
are closely related to glioma heterogeneity, tumor
microenvironment (10), and personalized tumor information
(32) and are widely used in cancer radiomics (11–13).
Frontiers in Oncology | www.frontiersin.org 6
In the best model, the age of the patients and tumor grade
negatively correlated with GAE, which is also consistent with
former reports (22, 24). Age is known to be related to a decrease
in gamma-aminobutyric acid levels (33), and the metabolism of
glioma may increase neuronal activity (7, 34), which implies that
older glioma patients are more likely to experience GAE.
However, although older patients are more likely to have
HGG, LGG is more frequent in younger patients (35, 36). As
reported by Englot et al. (1), HGGs have a predilection for white
matter, which may preclude epileptogenic development.
A B

FIGURE 3 | (A) Calibration curve of the clinical–radiomics model. (B) DCA curves of the clinical, radiomics, and clinical–radiomics model.
TABLE 3 | Selected features and the coefficients of features in the clinical–radiomics model.

Features Coefficients of SVM

Wavelet HHL GLCM correlation 2.109668663
Wavelet LHL GLCM correlation 1.729482221
Wavelet LHL GLRLM run variance 1.691610793
Wavelet HHL GLDM large dependence low gray-level emphasis 1.618789140
LoG sigma 3.0 mm 3D GLDM dependence non-uniformity normalized 1.536185789
Wavelet HHL GLDM low gray-level emphasis 1.513109907
Wavelet HHL first-order kurtosis 1.398738067
LoG sigma 5.0 mm 3D GLDM dependence non-uniformity normalized 1.375653827
Wavelet HHL first-order 10 percentile 1.356330395
Wavelet HHL first-order root mean squared −1.347183074
Pathological grade −1.082656461
Original GLDM high gray-level emphasis 1.032809669
Original GLSZM size zone non-uniformity normalized −0.836530847
Age −0.580041869
LoG sigma 1.0 mm 3D GLSZM small area emphasis −0.444386255
Original first-order mean 0.363086015
Original first-order 90 percentile 0.262011650
Original first-order total energy −0.189844398
LoG sigma 5.0 mm 3D first-order total energy −0.089783744
November 2021 | Volum
GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix; HLL, HHL, LHL, HLH,
considering L and H to be a low-pass (i.e. a scaling) and a high-pass (i.e., a wavelet) function; LoG, Laplacian-of-Gaussian.
TABLE 4 | Comparison of the performance of the models.

Comparison DeLong’s test* (p-value) in the testing cohort DeLong’s test* (p-value) in all cohorts

Clinical model vs. radiomics model 0.456 0.266
Clinical model vs. clinical–radiomics model 0.648 0.014
Radiomics model vs. clinical–radiomics model 0.008 0.047
p-value <0.05 indicated a statistically significant difference. *Test for the comparison of the difference of AUC.
e 11 | Article 725926

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gao et al. Radiomics for Prediction of GAE
Furthermore, some old patients with malignant tumors may not
survive long enough to develop epilepsy or may have other severe
symptoms requiring a visit to a doctor before epilepsy develops.
Therefore, younger patients have a higher risk of GAE than older
patients. Additionally, LGG has a higher IDHmutation rate than
HGG (37). Not only is IDH a vital gene for glioma genotyping
(37), but IDH mutation type is also associated with GAE (7).
Thus, the influence of the age of the patients and tumor grade in
GAE is very complex. SVM coefficients of age and tumor grade
were not very large; however, the clinical–radiomics model,
which used these two variables, still achieved a higher AUC in
the test cohort than the radiomics model. Thus, age and tumor
grade are necessary features to improve the predictive efficiency
of the model.

Tumor location and tumor cell impact on the peritumoral
cortex are important factors for epilepsy occurrence, propagation
mode, and subtype (1–4, 38), which are used in the research of
epilepsy with lesion as critical categorized data (39). It is hard to
accurately describe the glioma location in subregions, as there are
many FLE-originating subregions, including motor areas and the
cingulate gyrus, frontopolar, orbitofrontal, and dorsolateral
cortex (40). Furthermore, most gliomas are ill-defined and
irregular in shape and involve >1 brain subregion. Liu et al.
(22) used the distance from the anterior commissure to the
tumor centroid for a quantitative description of the tumor
subregional location (22) and demonstrated that the
Chebyshev distance significantly contributed to epilepsy
prediction. Although no information on subregional tumor
location was used in our research, all tumors were located in
the frontal lobe and the VOIs included the peritumoral cortex,
and our clinical–radiomics model for frontal GAE prediction
achieved a slightly better result than that of Liu et al. (22).

The present study has some limitations. First, the diagnosis of
GAE was based on clinical presentation rather than EEG
analysis. Most GAE patients have an average EEG performance
without seizures, and a short preoperative waiting period
Frontiers in Oncology | www.frontiersin.org 7
increases the difficulty of capturing an effective EEG. Second,
IDH genotype was not included among the clinical features. In
the future, machine learning methods for preoperative glioma
IDH genotype prediction may improve the precision of GAE
prediction. Third, a multicenter, large-scale prospective clinical
trial is required to address the limitation of the small samples
originating from a single institution in the present study.

In conclusion, radiomics analysis can non-invasively predict
epilepsy to ensure proper treatment of frontal glioma patients. Our
results suggest that the clinical–radiomics model may allow for a
more precise GAE prediction in frontal glioma. Furthermore, age
and pathology grade are important risk factors for GAE.
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