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ABSTRACT: Severe traumatic brain injury (TBI) is a heterogeneous pathophysi-
ologic entity where multiple interacting mechanisms are operating. This viewpoint 
offers an emerging, clinically actionable understanding of the pathophysiologic 
heterogeneity and phenotypic diversity that comprise secondary brain injury 
based on multimodality neuromonitoring data. This pathophysiologic specifica-
tion has direct implications for diagnostic, monitoring, and therapeutic planning. 
Cerebral shock can be helpfully subanalyzed into categories via an examination 
of the different types of brain tissue hypoxia and substrate failure: a) ischemic 
or flow dependent; b) flow-independent, which includes oxygen diffusion limi-
tation, mitochondrial failure, and arteriovenous shunt; c) low extraction; and d) 
hypermetabolic. This approach could lead to an alternative treatment paradigm 
toward optimizing cerebral oxidative metabolism and energy crisis avoidance. Our 
bedside approach to TBI should respect the pathophysiologic diversity involved; 
operationalizing it in types of “brain shock” can be one such approach.

KEY WORDS: brain tissue hypoxia; intracranial pressure; neuromonitoring; 
shock; traumatic brain injury

Outcomes after severe traumatic brain injury (TBI) have not substan-
tially changed over the last 30 years with mortality of 30–40% (1). 
This, despite almost 200 randomized controlled trials of various 

interventions for patients in the moderate to severe spectrum (2). A central 
problem is the current “one-size-fits-all” clinical approach (3–5). The assump-
tion that patients within the traditional groupings (mild-moderate-severe) are 
homogeneous in terms of types of brain injuries, pathologies, and clinical tra-
jectories, is erroneous (6–8). This viewpoint offers an emerging, clinically ac-
tionable classification of the pathophysiologic heterogeneity and phenotypic 
diversity that comprise secondary brain injury (SBI) based on multimodality 
neuromonitoring data. The goal is to also motivate terminology that suggests a 
pathophysiology-based differential diagnosis, such as “Brain Shock” (9). Shock 
is a life-threatening systemic form of acute circulatory failure associated with 
inadequate oxygen and energy-substrate delivery and utilization (10). The re-
sult is cellular dysoxia, a switch from aerobic to anaerobic metabolism, energy 
crisis, and if not reversed tissue necrosis. Shock results from a number of often 
combining mechanisms. This pathophysiologic specification has direct impli-
cations for diagnostic, monitoring, and therapeutic planning. Cerebral shock 
can be helpfully subanalyzed into categories via an examination of the dif-
ferent types of brain tissue hypoxia and substrate failure: a) ischemic or flow 
dependent; b) flow-independent, which includes oxygen diffusion limitation, 
uncoupling due to mitochondrial failure, and arteriovenous shunt; c) low ex-
traction; and d) hypermetabolic. All types of hypoxias share a failing cerebral 
metabolic rate of oxygen consumption (CMRo2) (11); they differ in their varied 
pathomechanisms and consequently on their management approaches (Fig. 1 
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illustrates the mechanisms discussed; Table 1 reviews 
pathophysiology, neuromonitoring signatures, and 
targeted management).

FLOW-DEPENDENT

Ischemic hypoxia (low cerebral blood flow [CBF]) has 
long been thought as the predominant cause of SBI. This 
paradigm motivated management strategies directed at 
enhancing oxygen delivery by augmentation of cerebral 
perfusion pressure (CPP) and CBF, either via the increase 
of mean arterial pressure (MAP) or via reduction of in-
tracranial pressure (ICP). However, clinical strategies 

using indiscriminate augmentation of CPP did not im-
prove, and may be associated with worse, clinical out-
comes (13, 17). On pathophysiologic grounds and based 
on the CBF pressure autoregulation curve, the most vul-
nerable time for ischemia occurs when the relationship 
between MAP and CBF is linear, or codependent, and 
below the lower inflection point of the autoregulatory 
curve (exceeding the upper inflection point risks hyper-
emia, breakthrough loss of vascular reactivity leading to 
vasodilation, luxury perfusion, and intracranial hyper-
tension) (18). The ability to address ischemic hypoxia 
due to inadequate CBF, and prevent hyperemia, may 
be enhanced by using bedside techniques that assess 

Figure 1. Mechanisms of secondary injury after brain trauma. Illustration of the various mechanisms discussed in the text. 1. According 
to the Fick principle, the total amount of oxygen that crosses the blood-brain barrier into the cerebral tissue must be equal to the product 
of the cerebral blood flow (CBF) and the arteriovenous oxygen content difference (AVDo2) (see Rosenthal et al [12]); 2. The Lassen 
CBF pressure autoregulation curve is depicted with right and left shifts, as well as U-shape relationship described between the pressure 
reactive index (PRx) and cerebral perfusion pressure (CPP) (see Aries et al [13]); 2′. Depiction of normal (pressure-reactive) versus 
partially collapsed (pressure-passive) microvasculature; 3. Illustration of barrier to oxygen diffusion (see Menon et al [14]); 4. Relationship 
between CBF and arteriovenous oxygen tension difference (see Rosenthal et al [12]); 5. Mitochondrial dysfunction; 6. Cortical spreading 
depolarization and depression (see Hartings et al [15]); 7. Shunt physiology due to increased capillary transit time heterogeneity (see 
Bragin et al [16]). Cao2 = arterial oxygen content, CiO2 = concentration of interstitial oxygen, CMRo2 = cerebral metabolic rate of oxygen 
consumption, CSD = cortical spreading depression, CvO2 = cerebral venous oxygen content, ISD = isoelectric spreading depression, 
LDH = lactate dehydrogenase, NAD = nicotinamide adenine dinucleotide, NADH = nicotinamide adenine dinucleotide + hydrogen,  
ICP = intracranial pressure, Pbto2 = partial brain tissue oxygen tension, PvO2 = partial venous oxygen tension, TCA = tricarboxylic acid.
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in real time the status of cerebrovascular pressure re-
activity, and to determine patient-specific optimal CPP 
(19, 20). Flow dependency is not only an issue for ox-
ygen but also for glucose delivery; neuroglycopenia can 
be an independent cause for energy crisis (21). Recent 
studies employing multimodality imaging and invasive 
tissue monitoring suggest that flow-dependent cerebral 
energy crisis—that is, ischemia due to low CPP/CBF—is 
not the sole and may not be the dominant SBI mech-
anism beyond the resuscitative phase (21–23).

FLOW-INDEPENDENT

Augmenting CBF may not correct critically low 
CMRo2 in the presence of a barrier to oxygen 

diffusion or a primary failure in oxygen utilization 
due to mitochondrial dysfunction (14,24). These 
mechanisms are being deciphered by combining 
neuroimaging (MRI, PET) and tissue monitoring 
modalities that provide partial brain tissue oxygen 
tension (Pbto2) and biochemical parameters via ce-
rebral microdialysis (CMD) (22, 25). The latter, by 
assaying brain tissue lactate and pyruvate provides 
for an indicator of cellular redox state, the lactate/
pyruvate ratio (LPR), as well as cerebral glucose (23, 
26). Shunt physiology is characterized by reduc-
tions in CMRo2 without corresponding increase in 
oxygen extraction fraction (OEF). Explanations for 
this failure to enhance OEF could fit with diffusion 
limitation or uncoupling hypoxia resulting from 

TABLE 1. 
Brain Shock: Pathophysiologic Types, Neuromonitoring Signatures, and Management

Type Pathophysiology Neuromonitoring Pattern Management

Flow-dependent Inadequate CBF ↓Pbto2 ↓glucose ↓pyruvate Cerebral perfusion pressure augmentation;  
optimize hemodynamics; assess pressure  
reactivity; improve rheology

↑Lactate

↑LPR

Flow-independent,  
diffusion barrier

Intracellular and/or  
interstitial edema;  
microvascular  
failure

↓Pbto2 Decrease cerebral edema; hyperoxia(?)

≅ Glucose

↑Lactate

↑LPR

Flow-independent,  
mitochondrial  
failure

Primary  
mitochondrial  
failure

≅ Pbto2 Cyclosporine and succinate have been tried; 
hyperoxia (?); ketones (?)

↓Glucose  

≅↑Pyruvate  

↑Lactate  

↑LPR  

Flow-independent, 
capillary transit  
time heterogeneity

Microvascular  
shunting; luxury  
perfusion

↑CBF⇒↓Pbto2 Intracranial pressure control; hyperventilation;  
hypothermia(↑Glucose↑lactate?)

Low extraction Low Pao2 low  
hemoglobin

↓Pbto2 Improve oxygenation; transfuse; optimize  
conditions for hemoglobin oxygen  
offloadingLow pressure at  

50% hemoglobin  
saturation

 ≅ Glucose ↓pyruvate

↑Lactate

↑LPR

Hypermetabolic Pathologic increase  
in substrate  
demand

↓Pbto2 ↓glucose ↓pyruvate Temperature control; sedation; monitor and control 
seizures and cortical spreading depression and 
cortical spreading depolarizations; glucose-
sparing hypertonic lactate or ketones (?)

↑Lactate

↑LPR

≅ = denotes no change or cannot predict, CBF = cerebral blood flow, LPR = lactate pyruvate ratio, Pbto2 = partial brain tissue oxygen 
tension.
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mitochondrial failure (27). Differentiating could 
have clinical implications if hyperoxia, as has been 
proposed, may be used to overcome diffusion limi-
tation (28), whereas mitochondrial failure could be 
a target for novel neurotherapeutics (29–31). The bi-
ochemical pattern obtained during mitochondrial 
dysfunction has been described both in experimental 
animal and clinical human studies (24, 32, 33). In a 
flow-dependent state where flow is inadequate, one 
expects decrease in Pbto2 and rapid increase in LPR. 
This is due to anaerobic consumption of pyruvate and 
production of lactate. In addition, as delivery of glu-
cose is also interrupted, pyruvate further decreases 
(LPR thresholds of > 25 and > 40 have been identified 
as critical in the literature; cerebral glucose is con-
sidered critically low below a threshold of 0.8–1 mM) 
(34). Flow-dependency can then be classified by high 
LPR accompanied by low glucose and pyruvate and 
high lactate.

In primary (vs secondary post-ischemic) mito-
chondrial dysfunction, Pbto2 should remain largely 
unaffected; nevertheless, there is a failure of oxida-
tive metabolism and energy crisis. Hyperglycolysis 
ensues leading to large production of lactate driv-
ing a high LPR; however, tissue pyruvate is not 
consumed and remains normal or even slightly 
increases. Other causes for LPR elevation should 
also be considered particularly in mixed patterns or 
when responses to targeted interventions do not fol-
low expectations (35). Another mechanism of more 
direct, anatomical, and functional shunting accords 
with observations of altered capillary flow patterns 
during intracranial hypertension and how they 
affect local oxygen delivery (16, 36). Extreme heter-
ogeneity of RBC transit times across cerebral capil-
laries has been observed, a phenomenon known as 
capillary transit time heterogeneity (CTTH) (37). 
Increases in CTTH were shown to reduce the max-
imum achievable OEF for a given CBF and tissue 
oxygen tension. This creates arteriovenous shunt-
ing, where an increasing proportion of erythrocytes 
pass through the capillary at transit times too short 
to permit proper oxygen extraction. Microvascular 
shunting has been shown to occur under exper-
imental conditions of raised ICP or due to capil-
lary collapse, vasospasm, or microthrombosis (37). 
Luxury perfusion syndrome is caused by increased 
CTTH coupled with high CBF leading to a reduction 

in OEF that may either fail to improve tissue oxy-
genation or lead to a paradoxical reduction in Pbto2 
during episodes of increased CBF (38).

LOW EXTRACTION

Low-extraction hypoxia refers to situations of low 
Pao2 (hypoxemic hypoxia), low hemoglobin con-
centration (anemic hypoxia), or low half-saturation 
tension (high-affinity hypoxia) (11). The main deter-
minants of Pbto2 are thought to be CBF and cerebral 
arteriovenous oxygen tension difference, establishing 
a strong association between brain tissue oxygen ten-
sion and diffusion of dissolved plasma oxygen across 
the blood-brain barrier (12). It follows, both CBF 
and Pao2 ought to be optimized when targeting Pbto2 
levels.

HYPERMETABOLIC

The hallmark here is demand exceeding supply. 
Characteristic causes are seizures and hyperthermia. 
Another electrical phenomenon, not captured by 
surface electroencephalography, relates to cortical 
spreading depression (CSD), resulting from self-prop-
agating waves of neural and astrocyte depolariza-
tion known as cortical spreading depolarizations; 
CSD can be elicited by focal ischemic injury, TBI, 
and hemorrhage. These waves may lead to depressed 
spontaneous cortical activity for periods lasting min-
utes to hours, can precipitate energy crisis, and have 
prognostic implications (15). Elevated cerebral glu-
cose demand, if not met will lead to a reduction of 
the cerebral metabolic rate of glucose (CMRgluc) 
and a decreased availability of cerebral extracellular 
glucose (another possible issue is glucose diversion 
to the pentose phosphate cycle during cellular stress 
[39]). Lactate supplementation may be used to com-
pensate for decreased CMRgluc acting as a glucose-
sparing substrate (40–42). There is increasing interest 
in exploring alternative cerebral energy substrates—
such as lactate and ketone bodies (β-hydroxybutyrate 
and acetoacetate) that may further improve mito-
chondrial function (43). Some authors, on the basis 
that the metabolic efficacy of lactate supplementation 
depends on functional mitochondria, recommend 
that a prior assessment of oxidative capability would 
be required before exogenous lactate supplementa-
tion (44).
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LIMITATIONS

Advances in multimodality neuromonitoring aspire 
to move treatments from a one-size-fits-all approach 
toward patient-specific precision. Nevertheless, there 
are several difficulties that should be considered mov-
ing forward. Local Measurements Systemic Actions: 
Indices such as Pbto2 and LPR are derived from re-
gional probes sampling a small volume of brain tissue. 
Therefore, caution is needed as one combines local 
with global (e.g., ICP/CPP) data and in employing 
regional data to inform interventions that have sys-
temic effects. This becomes further salient in situa-
tions where regional heterogeneity would in fact lead 
to conflicting treatment plans (a situation where dif-
ferent parts of the brain demonstrate divergent and 
opposing physiology, e.g., hyperemia and ischemia 
coexisting [25]). Time and Space Heterogeneity: 
There is also a temporal component that needs atten-
tion and should lead to frequent reassessments and 
dynamic treatment decisions. A problem for CMD is 
that until recently, it is implemented via hourly sam-
ples. There is also though the issue of temporal asso-
ciations in how the different variables interact that 
may affect interpretation of observed patterns (e.g., 
see change-point analysis looking at temporal associ-
ation of high-frequency periodic discharges onset and 
Pbto2 reduction [45]). Tissue And Patient Outcomes: 
Local tissue monitoring and targeted interventions 
may be expected to improve the observed local phys-
iology; however, this may not translate to improved 
patient outcomes. The information collected is several 
steps removed from the many factors that interplay 
in delivering long-term clinical outcomes. The aims 
should primarily be understood as deciphering path-
ophysiologic states and informing interventions with 
favorable benefit-risk ratios.

CONCLUSIONS

TBI is a highly heterogeneous pathophysiologic en-
tity where multiple interacting mechanisms are oper-
ating. This becomes evident in examining the known 
or hypothesized routes of neuronal oxidative meta-
bolic compromise. These mechanisms can be use-
fully classified via analysis of the different classes of 
tissue hypoxia and substrate delivery, and several of 
them can now be investigated and monitored at the 

bedside in real time. This approach could lead to an 
alternative treatment paradigm toward CMRo2 tar-
geting and energy crisis avoidance to supplement the 
conventional ICP/CPP targets. The common meas-
ures of augmenting blood flow, increasing perfusion 
pressure and decreasing ICP are going to be appro-
priate only for certain patients but will have no effect 
or can be harmful for others. Furthermore, measures 
such as hyperoxia, control of abnormal electrical 
phenomena, and novel neurotherapeutics may re-
quire further attention to reverse flow-independent 
mechanisms of energy crisis. It is becoming evident 
that to improve neuronal and clinical outcomes, we 
should move away from “one-size-fits-all” and to-
ward precision strategies. Our bedside approach to 
TBI should respect the pathophysiologic diversity in-
volved; operationalizing it in types of “brain shock” 
can be one such approach.
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