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Abstract: Radiometric calibration of the Dual-Wavelength Echidna® Lidar (DWEL), a full-waveform
terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm,
provides accurate dual-wavelength apparent reflectance (ρapp), a physically-defined value that
is related to the radiative and structural characteristics of scanned targets and independent of
range and instrument optics and electronics. The errors of ρapp are 8.1% for 1064 nm and 6.4%
for 1548 nm. A sensitivity analysis shows that ρapp error is dominated by range errors at near
ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric
calibration combines a generalized logistic function to explicitly model telescopic effects due to
defocusing of return signals at near range with a negative exponential function to model the fall-off
of return intensity with range. Accurate values of ρapp from the radiometric calibration improve the
quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from
different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral
information added to 3D scans by novel spectral lidars.

Keywords: terrestrial lidar; vegetation structure; radiometric calibration; DWEL; dual-wavelength
lidar; full-waveform lidar

1. Introduction

Light detection and ranging (lidar) is an active remote sensing technique using an instrument
that emits coherent laser light. Targets along the laser transmission path scatter the light, and the lidar
instrument records the travel time and intensity of the scattered light received by its detector. A new
and important application of lidar is the quantification of forest structure, principally measures of
the physical dimensions of trees, the amount and location of leaves and gaps between and within
tree canopies, through the 3D information acquired by lidar instruments on different remote sensing
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platforms (terrestrial, airborne and spaceborne). Studies have shown the capability of lidars to facilitate
our understanding and management of forest ecosystems [1–4] by describing the heterogeneity of
forest structure in 3D space and its relation to forest function [5,6].

A lidar instrument measures the range to a target through the product of the speed of light
and the one-way travel time of light between the instrument and the target. The travel time can be
measured using either pulse ranging or continuous wave ranging techniques [1]. For lidar remote
sensing of vegetation, which is the application of concern in this paper, pulse ranging lidar is much
more commonly used [1], and thus, we will confine our discussion here to pulsing lidar, unless
otherwise noted.

Of the spatial location and intensity (while the term “intensity,” as defined in optical physics,
refers to the energy flow rate in W¨ sr´1 from a point source of emission, we will use “intensity” here to
refer to a measure, normally in digital counts, of the response of the detector-amplifier-digitizer system
to the return of energy from a laser pulse or power of a continuous wave scattered by a target into the
aperture of the telescope of the lidar instrument and reaching the detector system), the two primary
attributes of scattering events recorded by lidar, location by range and zenith and azimuth angles
(or as resolved into Cartesian coordinates) has found wide use in the retrieval of forest structural
parameters [7], such as diameter at breast height (DBH) [8], tree and canopy height [9–11], timber
volume [12,13], Leaf Area Index (LAI) [14–18] and others [19,20].

More complete inference of vegetation structure requires using intensity, the other attribute of the
return signal. However, intensity information does not provide straightforward interpretation and
has been underutilized. Intensities in digital counts output by lidar instruments neither give actual
backscattered energy from targets nor relate directly to target physical properties. Accordingly, they
are usually processed to remove electronic effects and normalize the decrease of observed intensity
with range. The processed intensities thus provide the relative distribution of target return energy
from which forest structural parameters can be inferred directly or through empirical regressions, such
as gap fraction/probability [21], canopy height profile [22], basal area and aboveground biomass [23]
and others [20]. Normalized intensity has also been used in target classification/recognition [14,24–26]
and estimation of biochemical properties of vegetation [27,28].

Although these studies have documented the usefulness of lidar intensity values, their simple
and empirical normalization is primarily arbitrary and only provides “relative reflectance” or
“pseudo-reflectance” values through scaling of lidar intensities to adjust the contrast and overall
“brightness” of lidar scans [29]. Empirical normalization limits the intercomparison of instruments,
makes merging data from two or more instruments or scanning campaigns difficult and causes
trouble in the interpretation of normalized intensity values. We need rigorous radiometric calibration
to provide a value that is physically interpretable with regard to the properties of targets, such as
surface reflectance.

The need for a consistent definition of calibrated lidar intensity is also driven by the recent design
or fabrication of bi- or multi-spectral lidar instruments using lasers at different wavelengths or white
lasers to exploit the spectral signatures of targets [30–37]. For example, the Dual-Wavelength Echidna
Lidar (DWEL) instrument, which is the focus of this paper, uses two coaxial lasers at 1064 nm and
1548 nm wavelengths to differentiate leaves from branches, trunks and ground by taking advantage of
the distinctive spectral response of leaves at the two wavelengths [30,38].

For airborne lidar scanning (ALS), recent studies have reviewed the physical concepts of return
intensity and radiometric calibration [39–41]. Various calibration targets and procedures for ALS
data have been proposed and evaluated for several calibration scenarios, including different scanning
campaigns with the same instrument [42–44], different instruments at the same wavelength [45] or
different wavelengths [46].

In terrestrial lidar scanning (TLS), calibrated intensities have been used to measure canopy
structure. Examples include retrieval of the multiangle gap probability and then LAI [17], the clumping
index estimate [18] and target classification with calibrated intensity alone [47] or along with pulse
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width from full-waveform data [48]. However, with the exception of a few recent studies on both
pulse-ranging TLS [49–51] and continuous-wave ranging TLS [52], radiometric calibrations of TLS
data are currently scattered among various application studies and are poorly documented or rely on
undocumented proprietary calibration algorithms from instrument manufacturers. The radiometric
calibration of TLS data faces unique challenges, including: (1) a very large variation in intensity with
range that can induce saturation of the detector system by bright targets in the near field and reduced
intensities that merge with the noise in the far range; and (2) strong telescopic effects, with defocusing
that produces weak signals at near range.

This paper addresses these and other challenges for a dual-wavelength, full-waveform terrestrial
laser scanner, the DWEL. No evaluation of the radiometric calibration of TLS data similar to the
DWEL has yet been documented for different wavelengths. We present a simultaneous calibration of
returns from DWEL’s two lasers, which demonstrates how calibration can ensure both radiometric and
spectral fidelity in a unified process, thus providing a pathway for the calibration of other dual- and
multi-wavelength terrestrial lidars that may now be in various stages of development and application.

In the paper, we begin with the theoretical lidar equation for canopy structure study using TLS
data and then describe the processing of the DWEL waveform data. Our calibration model, based
on a generalized logistic function for telescope efficiency and an inverse power fall-off with range, is
fitted to stationary scans of panels with different reflectance values at different ranges. We conclude
by evaluating the calibration accuracy of dual-wavelength point clouds from DWEL, as well as the
sensitivity of the calibration accuracy to errors in both range and intensity measurements.

2. Physical Background

2.1. Basic Lidar Equation for Forest Canopies

The goal of our radiometric calibration is to obtain range-independent, instrument-independent
and physically well-defined measurements for canopy structure modeling and estimation from
returned power as detected and recorded by the lidar instrument’s optical and electronic systems.
Previous studies [53,54] formulated lidar equations as a function of canopy structure parameters to
model large-footprint airborne lidar waveforms, but did not identify a realizable quantity for lidar
radiometric calibration. To establish the basis of the lidar calibration for the canopy structure study, we
formulate the lidar equation from the basic scattering lidar equation [55] using Ross’s framework of
radiation regime modeling of the vegetation canopy [56]. This lidar equation describes the interaction
of the laser beam with vegetative elements and identifies the objective variable of the calibration
(“apparent reflectance”).

Consider an angular voxel, an elemental volume enclosed by a laser beam between range r and
r ` ∆r from the lidar instrument. Vegetative elements inside one such angular voxel are modeled
as a turbid medium composed of tiny thin facets of different orientations in space. We shall not
specify the size and thickness of these facets nor their location inside the angular voxel [56]. Laser
radiation incident to this angular voxel can be absorbed, reflected back toward the lidar instrument or
transmitted through it without interaction with vegetative facets. Simulations of lidar waveforms with
Monte Carlo ray tracing have shown that multiple scattering by vegetative elements in the canopy
largely has no effect on return waveform shapes and contributes little to return energy, especially for
the small laser beam divergence that we use here [57]. Thus, it is reasonable to assume only single
scattering in the interaction between laser beams and vegetative facets.

The probability that a laser beam in a given direction reaches an angular voxel at range r without
interaction with vegetative facets is given by the gap probability Pgap prq :

Pgap prq “ e´G
r r

0 uLpr1qdr1

(1)

where G is the Ross G-function, which describes the projection of a unit vegetative area in a given
direction; uL prq (m2 ¨m´3) is the total upper side surface area of all tiny facets (no mutual-shading
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between facets, i.e., no clumping is considered) within a unit volume at range r along the laser beam [56].
Note that in the expressions below, we will consider only a single laser beam and omit the laser beam
direction in Pgap prq and G.

Let J0 be the total outgoing laser radiation energy (units: J) within an infinitesimal time, i.e., an
impulse laser energy. The return energy ∆ J (units: J) from the angular voxel between range r to r` ∆r
received by the telescope of the lidar instrument is:

∆J “ J0Pgap prq ¨ ∆β ¨ K prq ¨ ηsysηatm

∆β “
r

ΩT“AT{r2
1
π

Γ pr, Ωi Ñ Ωvq dΩv ¨
r r`∆r

r uL
`

r1
˘

dr1
(2)

In these equations, J0Pgap prq (J) is the laser radiant energy that reaches the angular voxel at
range r; ∆β (dimensionless) is the effective backscatter ratio of the angular voxel, i.e., the proportion
of the incident laser radiation energy that is scattered back from the angular voxel into the solid
angle subtended by the telescope receiving area; the expression p1{πq Γ pr, Ωi Ñ Ωvq (sr´1) is the
area scattering phase function at range r, i.e., the portion of the radiant energy onto a unit area of
vegetative facets in direction Ωi that is scattered in the direction Ωv within a unit solid angle, a term
that contains both the radiative and structural characteristics of the vegetative facets [56]; ΩT (sr) is
the solid angle subtended by the area of the telescope aperture (AT) of the lidar instrument from
range r; K prq (dimensionless) is telescope efficiency at range r (see Section 2.1.3); and ηsys and ηatm

(dimensionless) are transmission factors that account for energy loss due to the sensor system and
atmosphere, respectively.

2.1.1. Apparent Reflectance

In the simplest case: (1) only one angular voxel along a laser beam is filled with vegetative
elements at range r, that is Pgap prq “ 1, and all laser radiation energy of this beam falls onto this voxel;
(2) all of the vegetative facets in the angular voxel are Lambertian with the same diffuse reflectance ρd
(dimensionless), and all faces are orthogonal to the laser beam, that is p1{πq Γ pΩi Ñ Ωvq “ ρd{π; and
(3) all of the vegetative facets together fill the whole laser beam, that is

r r`∆r
r uL

`

r1
˘

dr1 “ 1. The return
energy from such a voxel is then:

∆J “ J0 ¨ ρd ¨
AT

πr2 ¨ K prq ¨ ηsysηatm (3)

This simplest case is equivalent to an extended Lambertian panel (by “extended panel,” we
describe a panel that is large enough to intercept the whole cross-section of a laser beam at a given
range) with reflectance ρd that fills the laser beam orthogonally at range r. The expression AT{

`

πr2˘

in Equation (3) is the proportion of the total hemispherical backscattering that is intercepted by the
telescope aperture given this simplest case. Assuming ηsys and ηatm are constant with the range of
our instrument operation and the laser wavelength in consideration, we may simplify Equation (3) by
combining all constants into Φ0 (J ¨m2), i.e.,

∆J “ Φ0 ¨
ρd ¨ K prq

r2

Φ0 “ J0
AT
π

ηsysηatm

(4)

The reflectance ρd, describing the physical properties of targets in the simplest case, is computable
from the received energy and also is range independent and instrument independent. For the general
case observed in reality, we cannot retrieve the anisotropic reflectance value of each vegetation facet,
but may identify a variable called apparent reflectance, ρapp (dimensionless), to represent the overall
structural and radiative characteristics of all of the vegetative facets as a whole illuminated by a laser
beam. The ρapp for the general case is calculated in the same way as ρd for the simplest case, i.e.,
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∆J “ Φ0 ¨
ρapp ¨ K prq

r2 (5)

Comparing Equation (5) to Equation (2), we also have,

ρapp “ Pgap prq
∆β

AT{
`

πr2
˘ (6)

Apparent reflectance, our range-independent and instrument-independent quantity, provides
the objective variable for our lidar calibration for the canopy structure study for two reasons.
First, ρapp can be modeled to derive canopy radiative and structural information. According to
Equation (6), ρapp includes Pgap prq, as determined by the structural characteristics of vegetative
facets in the canopy, and ∆β, as determined by both the radiative and structural characteristics of
the vegetative facets of the canopy. Second, ρapp can be interpreted as the reflectance value of a
diffusely-reflecting, partly-absorbing panel filling the laser beam orthogonally that would return the
same laser energy received by the lidar as the actual target at the same range. It can be realized as the
ratio of (dark current corrected) ∆J, the lidar intensity from a target to ∆Jw, the intensity from a white
Lambertian panel (orthogonal to the laser beam, reflectance ρw “ 1) at the same range, as shown in
Equation (7):

ρapp “
∆J

∆Jw
¨ ρw “

∆J
∆Jw

(7)

Thus, ρapp is theoretically useful for the canopy structure study, as well as practically realizable
for lidar calibration. It was introduced in Parkin et al. [58] and used in data interpretation by
Jupp et al. [17].

2.1.2. Physical Interpretation of Apparent Reflectance

When the thickness of the angular voxel ∆r Ñ 0 , we have the differential form of Equation (2) as:

J prq “
B J
Br
“ J0Pgap prq ¨ β prq ¨ K prq ¨ ηsysηatm

β prq “
Bβ

Br
“

r
ΩT

1
π

Γ pr, Ωi Ñ Ωvq dΩv ¨ uL prq
(8)

where J prq (J ¨m´1) is the received laser energy from range r per unit length of laser beam travel;
β prq (m´1) is the effective volume backscatter ratio at range r, i.e., the proportion of the incident laser
radiation energy that is scattered back into the solid angle subtended by the telescope receiving area at
range r per unit length of laser beam travel. The quantity p1{πq Γ pr, Ωi Ñ Ωvq ¨ uL prq (sr´1 ¨m´1) is
the volume scattering phase function, which defines the part of the radiant energy onto a unit volume
of vegetative facets in the direction Ωi that is scattered in the direction Ωv within the unit solid angle.
The quantity β prq is the integral of the volume scattering phase function over the solid angle subtended
by the telescope aperture from range r. Accordingly, we have the differential apparent reflectance
ρapp prq (m´1) from Equations (5) and (6), respectively.

ρapp prq “ J prq ¨
r2

Φ0 ¨ K prq
(9)

ρapp prq “ Pgap prq
β prq

AT{
`

πr2
˘ (10)

Equation (9) shows how to practically calculate and interpret apparent reflectance from the
received laser energy. Equation (10) shows how to theoretically model apparent reflectance from
the radiative and structural characteristics of the canopy. To separate the radiative and structural
information about canopy from ρapp prq, we assume Lambertian facets and the same diffuse reflectance
ρd for all vegetative elements that contribute to the received laser energy from which ρapp prq is
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calculated. Then, p1{πq Γ pr, Ωi Ñ Ωvq can be approximated by G2 ¨ ρd{π (see Appendix A1 for the
derivation). From Equations (8) and (9), we have,

ρapp prq “ Pgap prq ¨ G2 ¨ uL prq ¨ ρd (11)

Applying the differentiation of Equation (1) to the above,

Phit prq “ ´
BPgap prq
Br

“ Pgap prq ¨ G ¨ uL prq (12)

ρapp prq “ ´
BPgap prq
Br

¨ G ¨ ρd (13)

Here, Phit prq (m´1) is the laser beam interception density [53], i.e., the interception fraction by
vegetative facets per unit length along the laser beam. Taking the integral over range on both sides of
the Equation (13),

ż r

0
ρapp

`

r1
˘

dr1 “
`

1´ Pgap prq
˘

¨ G ¨ ρd (14)

Thus, we can estimate Pgap over range from the integral of differential apparent reflectance
over range calculated with Equation (9) from received laser energy if the G-function and leaf
diffuse reflectance are known. The gap probability with range is an important function for indirect
measurement of canopy structure, such as LAI, clumping index and foliage profile [17,59,60].
Calibrating lidar return intensity to apparent reflectance enables better estimates of gap probability
than just counting numbers of points returned from targets along a laser beam [17].

Note that Equation (14) omits the laser beam direction and implies two assumptions: (1) the
G-function is constant over range; and (2) vegetative facets are all Lambertian with the same diffuse
reflectance ρd. These two assumptions might not be true for vegetative elements traversed by a single
laser beam. In practice, ρapp prq from multiple laser shots are often averaged together (e.g., over all
azimuth angles within zenith angle ranges), which will reduce the variance in estimating Pgap prq for
the canopy as a whole.

The foregoing discussion has not considered wavelength (λ) in the lidar equation and ρapp.
From Equation (11), it is clear in the case of a bi- or multi-spectral lidar that ρd pλq of the scattering
volume may be inferred from ρapp pλq, where the bi- or multi-spectral pulse encounters the same
scattering volume at the same range and from the same direction. The difference in ρapp pλq of a
scattering volume is theoretically caused only by the spectral reflectance ρd pλq, as the other terms
in Equation (11) describe structural characteristics independent of wavelength. This conveniently
provides a mechanism for the discrimination of different types of scattering materials based on their
bi- or multi-spectral reflectance values ρd pλq.

2.1.3. Telescope Efficiency

The telescope efficiency function K prq is needed by geometric laser systems using a telescope to
focus the return power. It arises because the telescope is focused at infinity, and near-range objects
are thus out of focus at the detector, which reduces the energy falling on the detector. The function is
theoretically zero at zero range (the focal point of the telescope) and rises to unity at the range at which
the focused return beam falls entirely within the detector. K prq is usually omitted in the airborne
lidar equation [39] because ground targets are sufficiently far enough from the instrument for K prq to
reach unity. For terrestrial lidar, many returns are from near-range targets, which requires including
K prq [30,50].
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2.2. Recorded Return Waveforms and Apparent Reflectance

2.2.1. Recording Return Waveforms

The basic lidar equation above describes return laser energy (J) by assuming an impulse of
outgoing laser energy. For a pulsing laser, the actual recording of return power over time, i.e., the
return waveform, further involves: (1) the spatial distribution of outgoing laser energy (non-uniform
laser beam cross-section, [61,62]); (2) the temporal shape of the outgoing laser pulse, P0 ptq (J ¨ s´1)
(the spread of J0 over a finite time); and (3) the characteristics of the detector-amplifier system of
the instrument.

We shall not model the effects of the nonuniform beam cross-section on return waveforms here,
because in processing terrestrial lidar data for the gap probability estimate, returns from many laser
shots are usually aggregated together, which greatly reduces any variance due to the nonuniform
shape of the beam cross-section.

We may express the pulse shape as a function of range, P0 prq (J ¨m´1), by converting the time to
apparent range with r “ c

`

t´ tp
˘

{2, where tp is the time at which the outgoing pulse peak occurs
and c is the speed of light. As J0 in Equation (4) changes to P0 prq, the term Φ0 becomes Φ0 prq, and the
return signal P prq becomes the convolution of ρapp prq and Φ0 prq:

P prq “
r r

0 Φ0
`

r´ r1
˘

¨
ρapp

`

r1
˘

¨ K
`

r1
˘

r12
dr1 “ Φ0 prq ˚

ρapp prq ¨ K prq
r2

Φ0 prq “ P0 prq
AT
π

ηsysηatm

(15)

As P prq is altered by the detector-amplifier system, the final recorded return waveform in digital
counts I prq is,

I prq “ SR prq ˚
„

ρapp prq ¨ K prq
r2



(16)

where SR prq is the result of Φ0 prq being altered by the detector-amplifier system [63].

2.2.2. Modeling Return Waveforms

To get ρapp prq, we need to deconvolve SR prq from I prq. However, deconvolution is very sensitive
to noise. To reduce the effects of noise on data interpretation, we modeled ρapp prq as a sequence of
Dirac delta functions marking Nh (Nh ě 1) scattering clusters of vegetative facets corresponding to one
or multiple return pulses in a waveform. This so-called delta-sequence model conceptually distributes
vegetative facets in the j-th (j “ 1 ¨ ¨ ¨Nh) cluster at the range of Rj inside a very thin angular voxel
(i.e., ∆r Ñ 0); that is, ρapp j prq is a Dirac delta function, and a scattering cluster is a target with spatial
extent of zero,

ρappj prq “ ρapp j

`

Rj
˘

δ
`

r´ Rj
˘

(17)

The apparent reflectance of the j-th voxel, ρappj , which is the integral of differential apparent
reflectance over range, is given by,

ρappj “

ż

ρapp j prq dr “
ż

ρappj

`

Rj
˘

δ
`

r´ Rj
˘

dr “ ρappj

`

Rj
˘

(18)

Using the delta-sequence model, I prq is given by:

I prq “
řNh

j“1 ψj prq

ψj prq “ SR
`

r´ Rj
˘

¨
ρappj ¨ K

`

Rj
˘

R2
j

(19)
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where ψj prq is the j-th return pulse resolvable from a return waveform. The peak intensity of
ψj prq, αj is,

αj “ ψj
`

Rj
˘

“ SR p0q ¨
ρappj ¨ K

`

Rj
˘

R2
j

(20)

For a given detector-amplifier system, SR p0q is a constant, denoted as C0. Thus, the peak intensity
of a return pulse, αj, is directly related to our calibration objective, apparent reflectance ρappj of an
angular voxel filled with vegetative facets as follows,

ρapp j “ αj ¨
R2

j

C0 ¨ K
`

Rj
˘ (21)

If the spatial extent of a target is not zero (violation of the Dirac delta model),
r

ρapp j prq dr will

be larger than ρapp j

`

Rj
˘

. In other words, the actual apparent reflectance of the angular voxel will
be larger than the value calculated from the Equation (21). This underestimate of ρapp j due to the
assumption of the Dirac delta model for clusters of vegetative facets can be compensated by correcting
αj according to the shape of return pulse ψj prq and will be pursued in future.

3. Instrument and Data Preprocessing

3.1. The Dual Wavelength Echidna Lidar

The scientific objective of DWEL instrument design is to separate leaves and woody materials
in forests readily in three-dimensional space using their different spectral reflectance values at
near-infrared (NIR, 1064 nm) and shortwave infrared (SWIR, 1548 nm) wavelengths. At the SWIR
wavelength, the laser power returned from leaves is much lower than from woody materials, such
as trunks and branches, due to absorption by liquid water in leaves. In contrast, returned power
from leaves and woody materials is similar at the NIR wavelength. The two infrared lasers emit
unpolarized pulses with a full-width half-maximum (FWHM) of 5 ˘ 0.1 ns; the two laser beams are
aligned coaxially to less than 1 mrad. The collimated beam diameters of the two lasers are 6 mm. The
beam divergences of both lasers are 2.5 mrad for the DWEL scans presented here. The laser scanning
step is 2 mrad, slightly smaller than the beam divergence, which ensures continuous coverage of the
hemispheres. A third continuous-wave green marker laser is also aligned with the two infrared signal
lasers; since it is readily visible, it is used to position the triple beam or mark the scan path in the
laboratory. More details of the DWEL instrument design and specifications are presented in [30,38].

3.1.1. Internal Calibration Objects

Two scattering objects are fixed to the instrument to calibrate range and outgoing laser intensity.
First, a fine stainless steel (removable) wire crosses the edge of the outgoing beam before it hits the
scan mirror, thus scattering a small fraction of each outgoing pulse into the telescope and detectors.
This allows a small part of the outgoing laser pulse to be present in the recorded signal, which assures
the temporal alignment of individual waveforms and gives range precision values of one-sigma error
of 4.75 cm at 1064 nm and of 2.33 cm at 1548 nm [38]. Second, a small circular Spectralon® panel with
nominal reflectance of 0.99 is affixed to the case so that each mirror rotation will acquire samples of
outgoing pulses from this fixed target at a fixed range. These sampled waveforms are used primarily to
track drifts in laser output power that occur through the scan, but can also establish the mean outgoing
pulse times of the lasers for each mirror rotation in the absence of a wire signal or refine the temporal
alignment of waveforms by a wire signal.
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3.1.2. Signal Recording and System Response

Figure 1 shows the mean of multiple samples of SR prq given DWEL’s system response at each
wavelength after background noise is removed. The pulses are normalized by peak intensity. The
“ringing” response after the maximum is produced by the modulation transfer function of the
combined detector-amplifier.Sensors 2016, 16, 313 9 of 24 

 

 

Figure 1. DWEL system response pulse. The two pulse peaks at the two wavelengths are aligned. 

3.2. Preprocessing of DWEL Waveform Data 

Before extraction of return pulse peaks and radiometric calibration, the raw waveforms from 

DWEL are preprocessed to: (1) remove background noise; (2) convert digitizer time to apparent range 

by aligning each waveform to the peak of the outgoing pulse using the signals from the scattering 

wire or internal Spectralon panel; (3) detect and correct saturated return pulses (see Section 3.2.1);  

(4) correct laser power drift, typically due to instrument temperature change, by scaling recorded 

intensities according to mean intensities observed from the internal Spectralon panel for each mirror 

rotation; and (5) calculate cross-covariance between waveforms and the system response function. 

This cross-covariance function changes the original asymmetric return pulses 𝐼(𝑟)  seen in each 

DWEL waveform to symmetric pulses. The new waveform of symmetric return pulses 𝐼𝑝(𝑟)  is 

written as (⋆ denotes cross-correlation), 

𝐼𝑝(𝑟) = 𝑆𝑅(𝑟) ⋆ 𝐼(𝑟) = 𝜑(𝑟) ∗ [
𝜌𝑎𝑝𝑝(𝑟) ⋅ 𝐾(𝑟)

𝑟2
] (22) 

where 𝜑(𝑟) = 𝑆𝑅(𝑟) ⋆ 𝑆𝑅(𝑟)  is a symmetric pulse after cross-covariance calculation. The 

preprocessed waveform 𝐼𝑝(𝑟) then provides the input to point cloud generation, thus avoiding pulse 

peak shifts due to the asymmetry of the original DWEL return pulse in later processing. An additional 

significant benefit of this operation is that it reduces uncorrelated noise and increases the signal-to-

noise ratio prior to extraction of the signal in later processing. 

Saturation Correction 

Terrestrial laser scanners, in contrast to airborne scanners, will provide returns from close 

targets, sometimes within one meter for a placement in a forest with a dense or patchy understory, 

while also detecting targets at ranges of 100 m or more. This large relative variation in range provides 

a wide variation in return power that can exceed the limits of detector-amplifier systems (linear or 

nonlinear) and/or digitizers available for terrestrial scanners, and as a result, close targets can 

produce saturated pulse waveforms. Moreover, direct solar irradiance or specular reflectance may 

also produce saturated waveforms. The result may be either detector saturation, which produces an 

overloaded signal that persists through multiple digitizer bins or even multiple pulses, or digitizer 

saturation, which produces a flat-topped return pulse as the return signal exceeds the quantization 

range of the digitizer. In either case, the result is an unusual return pulse shape that cannot be used 

in calibration or to generate a scattering point with a correct apparent reflectance value. 

In the DWEL instrument, detector saturation occurs in the rare case of a pulse striking an 

orthogonal specular target or corner reflector; normal target returns are well within the incoming 

power bounds of the DWEL’s detector-amplifier (Thorlabs PDA10CF) given the outgoing laser 

Figure 1. DWEL system response pulse. The two pulse peaks at the two wavelengths are aligned.

3.2. Preprocessing of DWEL Waveform Data

Before extraction of return pulse peaks and radiometric calibration, the raw waveforms from
DWEL are preprocessed to: (1) remove background noise; (2) convert digitizer time to apparent range
by aligning each waveform to the peak of the outgoing pulse using the signals from the scattering
wire or internal Spectralon panel; (3) detect and correct saturated return pulses (see Section 3.2);
(4) correct laser power drift, typically due to instrument temperature change, by scaling recorded
intensities according to mean intensities observed from the internal Spectralon panel for each mirror
rotation; and (5) calculate cross-covariance between waveforms and the system response function.
This cross-covariance function changes the original asymmetric return pulses I prq seen in each DWEL
waveform to symmetric pulses. The new waveform of symmetric return pulses Ip prq is written as
(‹ denotes cross-correlation),

Ip prq “ SR prq ‹ I prq “ ϕ prq ˚
„

ρapp prq ¨ K prq
r2



(22)

where ϕ prq “ SR prq ‹ SR prq is a symmetric pulse after cross-covariance calculation. The preprocessed
waveform Ip prq then provides the input to point cloud generation, thus avoiding pulse peak shifts
due to the asymmetry of the original DWEL return pulse in later processing. An additional significant
benefit of this operation is that it reduces uncorrelated noise and increases the signal-to-noise ratio
prior to extraction of the signal in later processing.

Saturation Correction

Terrestrial laser scanners, in contrast to airborne scanners, will provide returns from close targets,
sometimes within one meter for a placement in a forest with a dense or patchy understory, while also
detecting targets at ranges of 100 m or more. This large relative variation in range provides a wide
variation in return power that can exceed the limits of detector-amplifier systems (linear or nonlinear)
and/or digitizers available for terrestrial scanners, and as a result, close targets can produce saturated
pulse waveforms. Moreover, direct solar irradiance or specular reflectance may also produce saturated
waveforms. The result may be either detector saturation, which produces an overloaded signal that
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persists through multiple digitizer bins or even multiple pulses, or digitizer saturation, which produces
a flat-topped return pulse as the return signal exceeds the quantization range of the digitizer. In either
case, the result is an unusual return pulse shape that cannot be used in calibration or to generate a
scattering point with a correct apparent reflectance value.

In the DWEL instrument, detector saturation occurs in the rare case of a pulse striking an
orthogonal specular target or corner reflector; normal target returns are well within the incoming
power bounds of the DWEL’s detector-amplifier (Thorlabs PDA10CF) given the outgoing laser energy
of DWEL. If the field of view of the telescope includes the Sun or the Sun’s aureole, the pulse may be
lost completely as the detector and/or digitizer saturates or records high levels of continuous noise
through the entire waveform. This situation is easy to detect, and such waveforms are identified
as solar-saturated.

Digitizer saturation, however, is commonly encountered in pulses returned from near objects.
Here, a “saturation correction” is employed (Figure 2). Saturation creates a flat-topped pulse as the
digitizer reaches its limit; however, the side-lobe trough and secondary peak are recorded correctly. By
comparing saturated and unsaturated waveforms acquired from targets with high and low reflectance
at the same range, we determined empirical ratios between the magnitudes of the side lobes and
the unsaturated peak. These ratios are used to generate a pulse peak that is located at the mean
range of the saturated bins. This pulse is identified as a “desaturated” pulse (saturation fixed) for
further processing.
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Figure 2. Example of saturated pulse and saturation correction.

4. Radiometric Calibration Procedures

4.1. Calibration Model Setup

The calibration needs to mathematically model two important components of the lidar equation,
the telescope efficiency function K prq and the negative exponential fall-off of return intensity with
range. To set up the calibration model, we may choose between two alternatives: a physical model
based on the optical design of the instrument or an empirical model designed to best fit the data.
A physical model describing the returned power of the DWEL instrument was derived from first
principles [30].

However, initial tests of this model with the calibration data were not satisfactory. While the
general shape of the response function fits the observations, the model showed significant departures
from the behavior actually observed for the instrument, especially at near range. We believe that
second-order effects, such as imperfect alignment interacting with the Gaussian beam cross-section,
departure of divergence from nominal specifications or unmodeled electronic effects, were responsible
for this variance.
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Accordingly, we used a semi-empirical model to fit the data. According to Equation (21), for
each extracted point with range R and digital count intensity α, we need the constant C0 and the
function K prq to calculate apparent reflectance ρapp. To find these unknowns, we require a collection

of data points of
´

Rj, αj, ρappj

¯

from targets of different reflectance values at multiple ranges. The
quantities Rj and αj are derived from the extraction of pulse peaks; apparent reflectance ρappj may be
taken as the diffuse reflectance ρd of an extended Lambertian target held perpendicular to the laser
beam. The telescope efficiency function K prq (see Section 2.1.3) is modeled with a generalized logistic
function [64]. The empirical calibration function for the DWEL is thus:

ρapp
`

Rj
˘

“ αj ¨
Rb

j

C0 ¨ K
`

Rj
˘

K prq “
1

`

1` C1 ¨ e´C2¨r
˘C3

(23)

where five parameters need to be estimated for the DWEL calibration, pC0, C1, C2, C3, bq. Of the three
parameters for K prq, C1 and C3 together affect the range at which the function approaches its asymptote
of one; C2 controls the rate at which telescope efficiency rises from zero to one in the near range.

Note that the exponent of range is now taken as a variable, b, for two reasons. First, a calibration
target surface, for example a manufactured Spectralon Lambertian panel, may not provide perfectly
isotropic diffuse reflectance [65]. An anisotropic target may preferentially reflect radiation into a small
solid angle in the direction of the instrument’s observation (i.e., it may be specular, to some degree).
Then, from Equation (2), a smaller ΩT at farther ranges would yield an integral over directions where
the area scattering function, p1{πq Γ pr, Ωi Ñ Ωvq, has higher values, thereby causing a larger ∆β and
larger return energy J than if the target were perfectly isotropic. However, the reflectance value of a
calibration panel is typically taken as a constant, for example measured by an integrating sphere, and
is assumed to be isotropic in the calibration model. From Equation (5), if ρapp is kept constant, but J
becomes larger, the exponent of range r will be smaller to compensate. Second, previous studies have
also suggested that the exponent may need to accommodate electronic effects [48]. The exponent has
therefore been treated as a variable in the calibration. Although the number of model parameters is
large and they are not independent of each other, the calibration function can be fitted across its full
range of application, thus avoiding issues of extrapolation beyond the limits of the fitting.

4.2. Calibration Data Collection

To acquire the calibration data, three panels of different reflectance values (Figure 3a) were
scanned by the DWEL from a nearly perpendicular direction at 33 range locations from 0.5 m
to 70 m (Table 1). The range sampling intervals were based on a provisional calibration, made
at the time of commissioning, that established the general shape of the K prq curve. The instrument
was set in stationary mode, i.e., without the scan mirror or azimuth platform rotation (Figure 3b). The
green marker laser was used to manually point the co-aligned lasers to the center of each panel at each
placement (Figure 3c). The panel sizes are large enough to intercept the whole laser beam at 70 m. For
each panel at each range, we collected around 150,000 waveform samples as candidates for calibration
model fitting and evaluation.

The three panels included a white Spectralon panel and two foam boards painted with flat interior
wall paint in light and dark gray tones derived by mixing black and white paints together. The
gray panels provide unsaturated returns at near ranges. The ρapp value of the Spectralon panel uses
the actual reflectance from the manufacturer’s specification. The ρapp values of the gray panels are
calculated according to the Equation (7) as follows. First, we calculated the ratio of return intensities
between gray panels (J) and the Spectralon panel (Jw) at each range, eliminating any saturated values.
Then, we averaged the product values of the ratio and Spectralon panel reflectance at all ranges to
obtain the ρapp values of the gray panels.
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Table 1. Range sample design.

Range (m) Range Interval (m) Measurement Positions

[0.5, 10] * 0.5 20
(10, 15] 1 5
(15, 40] 5 5
(40, 70] 10 3

* “[” or “]” means inclusive of range boundary while “(” means exclusive of range boundary.

Table 2 shows the ρapp values and the measured reflectance by a FieldSpec Pro spectrometer
(Analytical Spectral Devices) of the three panels. The difference between the ρapp values and
the measured reflectance values for the gray panels is most likely caused by two effects. First,
the spectrometer measures reflectance at 0˝ incidence angle and 10˝ view angle rather than by
retroreflection, and the values appeared to be underestimated slightly due to reflectance anisotropy.
Moreover, the reflectance of flat wall paint may have changed with time as the paint slowly cured
between the spectrometer measurements and the acquisition of calibration data (about 20 weeks).

Table 2. Reflectance values of panels used in calibration.

Target NIR Reflectance SWIR Reflectance Dimension
(cm by cm)

Measured 1 ρapp
2 Measured 1 ρapp

2

White Spectralon panel 3 0.99 0.98 30.5 ˆ 30.5
Gray Painted Panel 1 0.436 0.574 0.349 0.447 38.0 ˆ 30.5
Gray Painted Panel 2 0.320 0.431 0.245 0.329 38.0 ˆ 30.5

1 From the spectrometer with the illuminated probe; 2 calculated according to Equation (7); 3 manufacturer’s
calibrated value.
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Figure 3. Calibration data collection. (a) Three panels for calibration, from top to bottom: painted light
gray panel, white Spectralon panel and painted dark gray panel; (b) DWEL was set up in stationary
mode with the laser pointing along the measuring tape laid out on the floor; panels were placed
at 33 range locations along the tape; (c) the green laser was used to point the infrared lasers to the
center of the panels.

4.3. Calibration Model Fitting

To take advantage of the difference in spectral reflectance values of leaves and those of other
targets at the NIR and SWIR bands, we not only try to minimize errors in ρapp at individual wavelengths
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in calibration model fitting, but also try to ensure the two wavelengths have the same or similar relative
errors in ρapp in order to minimize artificial variations in spectral difference due to different errors
in ρapp at the two wavelengths. Thus, we estimate the calibration parameters of NIR and SWIR
bands together in a joint calibration model. The objective error function for the fitting of this model
includes both relative errors in ρapp from individual wavelengths and spectral constraints from both
wavelengths as follows:

f
`

C
˜

˘

“ f1
`

C
˜

˘

` f2
`

C
˜

˘

f1
`

C
˜

˘

“

N f
ř

i“1

ˆ

ˆρNi ´ ρNi
ρNi

˙2
`

N f
ř

i“1

ˆ

ˆρSi ´ ρSi
ρSi

˙2

f2
`

C
˜

˘

“ var
` ˆNDI

˘

`

N f
ř

i“1

ˆ

ˆρNi ` ˆρSi ´ ρNi ´ ρSi
ρi ` ρSi

˙2

ˆNDI “
ˆρN ´ ρ̂S
ˆρN ` ρ̂S

(24)

where C
˜

is the vector of five calibration parameters for NIR and five parameters for SWIR; f
`

C
˜

˘

is
the objective error function as a sum of two components, including the error f1

`

C
˜

˘

from individual
wavelengths, and the spectral constraints f2

`

C
˜

˘

from both wavelengths; subscript i represents the
i-th data point, and subscript N and S represent NIR and SWIR; N f is the total number of data points
used in calibration fitting; ρ̂ is the apparent reflectance of panels estimated from the calibration model,
while ρ is the actual apparent reflectance of panels; ˆNDI is a normalized difference index to identify
the spectral difference of target reflectance between NIR and SWIR; var

` ˆNDI
˘

is the variance of NDI
of data points in calibration fitting. In addition, we constrained the calibration parameters C1 and C3

to be equal across NIR and SWIR models. The objective error function f
`

C
˜

˘

has many local minima
due to the high nonlinearity of the DWEL calibration model brought about by the K prq function.
We first used the genetic algorithm implemented in MATLAB [66] to search for initial parameter
values that approach the global minimum. Then, we used the Nelder–Mead method [67] to reach the
global minimum.

All of the return waveforms from the panels contain single returns at known nominal ranges. We
searched maximum bins from the waveform sections around the nominal ranges and interpolated
peaks using quadratic fitting of three bins around the maximum bin [68] to output intensities and
ranges of these single returns. Saturated waveforms were excluded from calibration model fitting
to avoid uncertainty from the saturation fix procedure. We randomly divided the remaining returns
(about 24,000 samples for each range) into a training set (80 percent) and a validation set (20 percent). In
the training set, return intensities were normalized by the corresponding panel reflectance to provide
equivalent target reflectance values of 1.0 and then averaged together for each range to reduce noise in
the data. Mean normalized intensities and mean ranges at 1064 nm and 1548 nm were paired according
to panel range locations. Thirty pairs of data points from 1064 nm and 1548 nm were used to estimate
the calibration parameters of 1064 nm and 1548 nm jointly by minimizing the error function f

`

C
˜

˘

.

5. Results and Discussion

5.1. Radiometric Calibration

5.1.1. Fitting of the Semi-Empirical Model

Table 3 provides values for the model coefficients derived from the model and procedure described
in Section 4; they may be taken as examples, since recalibration will be necessary during the lifetime of
the instrument.
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Table 3. An example set of DWEL calibration parameters.

Parameter
Wavelength

1064 nm 1548 nm

C0 5788.265818 22,054.218342
C1 0.000319 0.000319
C2 0.808880 0.540762
C3 25,176.835032 25,176.835032
b 1.384297 1.585985

Figures 4 and 5 (first row) show the fits of the calibration functions (Equation (23)) for the two
wavelengths to the training and validation data. The adjusted coefficient of determination (R2) of
modeled intensity at both wavelengths for both training and validation data (Table 4) indicates that
the proposed calibration function and estimated parameters predict the return intensity well. The
linear regressions between measured and modeled intensity for both training and validation data
(Figures 4 and 5 second row) yield values of slope very close to unity, as well as very small intercepts,
indicating very good fits.
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Figure 4. Estimation and validation of calibration of 1064 nm data. In both rows, the left column
(a,c) shows the calibration function as fitted to training data, and the right column (b,d) shows the
fit to the validation data. First row (a,b): measured and modeled intensity normalized by reflectance.
Second row (c,d): scatter plots of measured against modeled intensity. The vertical error bars in
(a) and horizontal error bars in (c) are one standard deviation of measured intensities normalized
by reflectance.
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Figure 5. Estimation and validation of calibration of 1548 nm data. In both rows, the left column
(a,c) shows the calibration function as fitted to training data, and the right column (b,d) shows the
fit to the validation data. First row (a,b): measured and modeled intensity normalized by reflectance.
Second row (c,d): scatter plots of measured against modeled intensity. The vertical error bars in
(a) and horizontal error bars in (c) are one standard deviation of measured intensities normalized
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Table 4. Assessment of calibration fitting and validation.

Wavelength 1064 nm 1548 nm

Measured vs. Modeled
Intensity, Adjusted R2

Training 1 0.954 0.983
Validation 2 0.948 0.964

RMSE of Apparent
Reflectance

Training 1 0.108 0.092
Validation 2 0.081 0.064

1 Thirty data points used for training by averaging unsaturated waveforms from three panels at 30 ranges
(19,200 waveforms at each range); no good waveforms from three ranges (0.5, 1.0 and 70 m) out of 33 measured
locations; 2 about 4800 waveforms used for validation. See Sections 4.2 and 4.3 for more details.

The calibration function curves in Figures 4 and 5 (first row), which provide the return intensity
of a target with unit reflectance, increase sharply and then fall exponentially. The normalized 1064 nm
return intensity peaks at ~3.5 m (Figure 4, first row) and the 1548 nm peaks at ~5 m (Figure 5, first
row). The curves of K prq, shown in Figure 6, rise from zero and plateau at about unity at ~10 m for the
1064 nm laser and ~15 m for 1548 nm.
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5.1.2. Apparent Reflectance Error and Its Sensitivity to Intensity and Range

Because all intensities in calibration fitting and validation were normalized by corresponding
panel reflectance values, the error in ρapp hereinafter means relative error, unless otherwise noted. The
estimates of apparent reflectance ρapp by the calibration model from validation data show root mean
squared errors (RMSE) of 0.092 at 1064 nm and 0.108 at 1548 nm (Table 4; Figure 7). The histograms of
errors (Figure 7c,f) are centered near zero, which indicates little or no systematic offset in the apparent
reflectance estimate.

The plots of errors in estimated ρapp against range for the validation dataset (Figure 7b,e) show
larger and dispersed errors at very near range (<~3.5 m for 1064 nm and <~2 m for 1548 nm) and
farther range (>~10 m for 1064 nm and >~20 m for 1548 nm), in contrast to smaller and less dispersed
errors in between. This pattern of errors in ρapp over range is a combination of errors arising from
range uncertainty (∆ r) and return intensity uncertainty (∆α). We observed how ∆r and ∆α contribute
to errors in ρapp separately with our calibration model over the range of our calibration data, 0.5 m to
70 m. We simulated δρα, the relative errors in ρapp only due to different return intensity uncertainty
levels (˘15 DN) at different ranges by keeping range error at zero. Then, we simulated δρr, the relative
errors in ρapp only due to different range uncertainty levels (˘15 cm) at different ranges by keeping
return intensity error at zero. These relative error ranges in the simulation of ∆r and ∆α are more than
three-times larger than the standard deviation of range measurements and root mean squared noise in
normalized intensities.

Figure 8 presents a graphical display of the estimated relative errors calculated using the above
procedure. The total relative error in ρapp, δρ, can be approximated by δρα ` δρr (see Appendix A2
for this derivation). Graphs (a) and (c) in Figure 8 show the relative error in apparent reflectance
(δρα) produced by changes in return intensity (∆α) of ˘15 digital counts (DN) (y-axis), as the error
varies with range. At very near range (<~3 m), small changes in DN produce large errors in apparent
reflectance; this effect arises because the telescope efficiency K prq is very low and the return signal
is weak. At near range between about 2 and 10 m, the signal is much stronger, and thus, the errors
produced are fairly small (green colors). Between near and far range (10 to 70 m), the exponential
decrease in signal provides a smooth transition from low sensitivity of apparent reflectance with DN
error to high sensitivity. At far range (70 m), the signal is sufficiently diminished by fall-off with range
that errors in apparent reflectance are large given a deviation of just a few counts from true values.
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Figure 7. Errors in apparent reflectance. The first row (a–c) shows 1064 nm, and the second row
(d–f) shows 1548 nm. The left column (a,d) is the deviation from calibration fitting with range. The
middle (b,e) column is the deviation of validation points with range. The right column (c,f) is the
histogram of deviations.

In contrast, large relative error in apparent reflectance (δρr) produced by changes in range (∆ rq of
˘15 cm (Figure 8b,d) (y-axis) is limited to the very near range (<~5 m). The weak signal in this range
provides large errors, which decrease rapidly as the telescope efficiency function K prq increases the
signal strength. Beyond this range, the relative error in apparent reflectance remains low.

From this analysis, we see that the error in apparent reflectance due to error in range (δρrq

dominates at near ranges, while the error due to return intensity (δρα) dominates at far ranges. The
exact range at which δρα surpasses δρ and becomes dominant depends on the uncertainty level of
return intensity given the calibration model. Thus, we see larger and more dispersed errors at very near
ranges in validation data (Figure 7b,e), mainly due to range uncertainty, and at far ranges, mainly due
to return intensity uncertainty. The range accuracy is therefore more critical in the near-range target
calibration, while the return intensity accuracy becomes more critical in the far-range target calibration.

The problem for calibration here is that returns from far ranges have a lower signal-to-noise
ratio, but their calibration is highly sensitive to return intensity uncertainty. Thus, the noise level of
lidar return intensity needs to be characterized to find the range at which the reflectance uncertainty
δρ exceeds a desirable level given the calibration model. For returns from far ranges, the apparent
reflectance should be used carefully. For returns from near ranges, δρ could be very high if the range
uncertainty is not low enough. However, lidar instruments generally give range measurements of
high accuracy.

5.2. Calibration Comparison of the Two Wavelengths

The two telescope efficiency functions K prq at the two wavelengths (Figure 6) suggest different
optical characteristics of the two beam pathways through the DWEL instrument. As noted earlier, each
pathway uses a separate wavelength-dependent divergence optic and focusing lens in the detector
assembly, which can produce small differences in beam width and detector field of view. Moreover,
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the two laser beams may not be exactly coincident due to small errors in alignment. As a result, the
two functions show different shapes.
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Figure 8. Sensitivity of the ρapp estimate on errors in return intensity and range. The image color
shows relative error in the ρapp estimate (estimate ´measurement). The color map scale is unified for
all images for comparison purposes, but the actual error ranges of the four images are different and
given here: (a) δρα at 1064 nm [´0.928, 0.928]; (b) δρr at 1064 nm, [´0.226, 0.290]; (c) δρα at 1548 nm,
[´0.574, 0.574]; (d) δρr at 1548, [´0.133, 0.154].

In addition, the range exponent values b for the two wavelengths are different, but both are
smaller than the theoretical value of two that applies to scattering from a perfectly diffuse surface. As
noted in Section 4.1, the observed value may depart from two for a number of reasons, including slight
misalignment, electronic effects in the detector-amplifier-digitizer systems and the partial specularity
of target surfaces. Moreover, as a free parameter in the model inversion, the range exponent may be
adjusted by the nonlinear fitting procedure to better shape the telescope efficiency function. While
a more physical model grounded in instrument optics and first principles of scattering might be
desirable, an empirical model will capture the data trend more accurately in the face of physical and
electronic unknowns. As shown above, our calibration functions fit the data well, predicting observed
intensities from calibration targets and retrieving reflectance from observed intensities with low errors.

6. Conclusions

We present a thorough derivation of the calibration objective variable, apparent reflectance,
from the basic scattering lidar equation using Ross’s framework of radiation regime modeling of the
vegetation canopy. As an instrument-free measure, apparent reflectance facilitates merging point
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data from multiple instruments, allowing assessment of the effects of angular resolution and beam
divergence on structure retrieval and even providing spectral information for scanners using different
laser wavelengths.

Calibration of our full-waveform, dual-wavelength, terrestrial laser scanner presents a number
of challenges relevant to the next generation of terrestrial laser scanners. The need to scan from near
to far range requires characterizing both telescopic effects, which reduce the near-range signal with
increasing proximity due to defocusing, and saturation effects, which alter the return pulse shape of
near-range scattering events. We show how to overcome these challenges by formulating a flexible
calibration model, acquiring appropriate calibration data, fitting the model with a constraint providing
spectral consistency and testing the results and the sensitivity of errors to uncertainties in range and
intensity. We also provide solutions to the problems of saturated returns, slow change in laser output
pulse energy and variance in the timing of laser pulse emissions.

In addition, dual- or multi-wavelength data must be consistent in spectral performance. By using
a semi-empirical calibration model fitted to data, it is not difficult to add a constraint that optimizes
spectral “flatness” with range using a Lambertian target. This step is particularly useful for the DWEL,
since the laser wavelengths are chosen specifically for their ability to separate hits of water-bearing
leaves from hits of the dry bark of trunks and branches and dry ground surfaces.

The RMSE values (relative errors) of apparent reflectance from our calibration procedure,
8.1 percent for 1064 nm and 6.4 percent for 1548 nm, show that the parameterized model accurately
converts lidar return intensities in digital counts to apparent reflectance. This calibration model
can apply to almost any terrestrial lidar instrument using a telescope to focus the return power. A
sensitivity analysis shows that the apparent reflectance error from radiometric calibration is dominated
by range errors at near ranges, but by return intensity errors at far ranges.

While the calibration of a terrestrial lidar is by nature more difficult than that of an airborne lidar,
one advantage is that controlled laboratory or field calibration measurements can be readily designed
and executed. If stationary operation can fix the beam on the target panel, it is easy to acquire pulses at
measured ranges in a long corridor or outdoor environment. If stationary operation is not possible,
only short scan segments crossing the target need to be acquired. Calibration is also aided by having
targets of different reflectance, so that darker panels can provide unsaturated signals at ranges of
the greatest returns (e.g., 10 to 12 m for DWEL). While our painted panels functioned well, a set of
Lambertian panels with well-characterized diffuse reflectance properties ranging from light to dark
would be desirable.

The next step is to use calibrated data to retrieve forest structural parameters with the new
dual-wavelength data, following the pathways pioneered with the heritage Echidna Validation
Instrument, but extending them to new information from the Dual-Wavelength Echidna lidar. These
are subjects of papers now in preparation.
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Appendix A

A1. Area Scattering Phase Function for Lambertian Facets of the Same Diffuse Reflectance

Let gL pr, ΩLq (sr´1) be the probability function of leaf angle distribution at a location designated
by range r along a laser beam of interest; the Ross G-function is [56],

G pr, Ωq “
1

2π

ż

Ω1

gL pr, ΩLq |cosxΩ, ΩLy| dΩL (A1)

where the integral interval Ω1 defines all of the possible leaf normal directions within an elemental
volume at range r. Let p1{πqγL pΩL, Ωi Ñ Ωvq be the leaf scattering phase function that defines the
part of irradiance in the direction Ωi, which is scattered from the leaf unit area perpendicular to the
direction ΩL to the unit solid angle around the direction Ωv [56]. The area scattering phase function is
derived as,

1
π

Γ pr, Ωi Ñ Ωvq

“
r

Ω1

gL pr, ΩLq

2π

γL pΩL, Ωi Ñ Ωvq

π
|cosxΩi, ΩLy| |cosxΩv, ΩLy| dΩL

(A2)

If all vegetative facets are Lambertian and have the same diffuse reflectance ρd, since lidar
instruments make observations in the backscattering direction, i.e., Ωv “ Ωi ´ π “ Ω, then we have,

1
π

Γ pr, Ωi Ñ Ωvq “
ρd
π

ż

Ω1

gL pr, ΩLq

2π
|cosxΩ, ΩLy|

2 dΩL «
ρd
π

G pr, Ωq2 (A3)

The two G-functions in the area scattering phase function correspond to the two cosine terms in
the integral. One cosine term (|cosxΩi, ΩLy|) accounts for the projected area that intercepts incoming
irradiance per unit vegetative facet area. The other cosine term (|cosxΩv, ΩLy|) accounts for the decrease
of radiant intensity (w ¨ sr´1) with the cosine, i.e., projected area for a Lambertian surface. Furthermore,
we assume the leaf angle distribution is constant within the canopy and so is the G-function and area
scattering function.

1
π

Γ pΩi Ñ Ωvq «
ρd
π

G pΩq2 (A4)

A2. Error in Apparent Reflectance from Two Sources: Range and Return Intensity

According to Equation (23), at a given range r,

α “
C0K prq

rb ¨ ρapp

ρapp “
rb

C0K prq
¨ α

(A5)

We omit the subscript j here for clarity. If the absolute errors in range r and return intensity α are
∆ r and ∆α, respectively:

∆ρr “
pr` ∆rqb

C0K pr` ∆rq
¨ α´ ρapp (A6)

∆ρα “
rb

C0K prq
¨ pα` ∆αq ´ ρapp “

rb

C0K prq
¨ ∆α “

ρapp

α
¨ ∆α (A7)

where ∆ρr and ∆ρα are errors in the apparent reflectance estimate due to ∆r and ∆α separately. Notice
that ∆ρr and ∆ρα both change with range. Now, the total absolute error in apparent reflectance, ∆ρ

due to ∆ρr and ∆ρα, together is:
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∆ρ “
pr` ∆rqb

C0K pr` ∆rq
¨ pα` ∆αq ´ ρapp (A8)

Furthermore, according to Equations (A6) and (A7), we have:

pr` ∆rqb

C0K pr` ∆rq
“

∆ρr ` ρapp

α

∆α “ α ¨
∆ρα

ρapp

(A9)

Combining Equation (A8) and (A9),

∆ρ “
∆ρr ` ρapp

α
¨

ˆ

α` ∆ρα ¨
α

ρapp

˙

´ ρapp “ ∆ρr ` ∆ρα `
∆ρr ¨ ∆ρα

ρapp
(A10)

The relative errors in estimated apparent reflectance due to ∆ r and ∆α separately are denoted as
δρr “ ∆ρr{ρapp and δρα “ ∆ρα{ρapp. Then, the total relative error in the apparent reflectance estimate
due to ∆r and ∆α together is,

δρ “
∆ρ

ρapp

“
1

ρapp

ˆ

δρr ¨ ρapp ` δρα ¨ ρapp `
δρr ¨ ρapp ¨ δρα ¨ ρapp

ρapp

˙

“ δρr ` δρα ` δρr ¨ δρα

(A11)

According to Figure 8, at near range, δρr is large, while δρα is very small. At far range, it is the
opposite. Thus, δρr ¨ δρα is small for any given range, and we can have,

δρ « δρr ` δρα (A12)
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