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Relating Chemical Structure to Cellular Response:
An Integrative Analysis of Gene Expression, Bioactivity,
and Structural Data Across 11,000 Compounds

B Chen1, P Greenside2, H Paik1, M Sirota1, D Hadley1 and AJ Butte1*

A central premise in systems pharmacology is that structurally similar compounds have similar cellular responses; however,
this principle often does not hold. One of the most widely used measures of cellular response is gene expression. By
integrating gene expression data from Library of Integrated Network-based Cellular Signatures (LINCS) with chemical
structure and bioactivity data from PubChem, we performed a large-scale correlation analysis of chemical structures and
gene expression profiles of over 11,000 compounds taking into account confounding factors such as biological conditions
(e.g., cell line, dose) and bioactivities. We found that structurally similar compounds do indeed yield similar gene expression
profiles. There is an �20% chance that two structurally similar compounds (Tanimoto Coefficient ������������ 0.85) share significantly
similar gene expression profiles. Regardless of structural similarity, two compounds tend to share similar gene expression
profiles in a cell line when they are administrated at a higher dose or when the cell line is sensitive to both compounds.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 576–584; doi:10.1002/psp4.12009; published online on 29 September 2015.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � A central premise in systems pharmacology is that struc-
turally similar compounds have similar biological responses, yet this principle often does not hold. • WHAT QUESTION
DID THIS STUDY ADDRESS? � Do structurally similar compounds have similar biological responses? • WHAT THIS
STUDY ADDS TO OUR KNOWLEDGE � Structurally similar compounds do indeed yield similar gene expression pro-
files; however, the correlation between chemical structure and gene expression highly depends on biological conditions
and bioactivities. There is an �20% chance that two structurally similar compounds (Tanimoto Coefficient � 0.85) share
significantly similar gene expression profiles. • HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERA-
PEUTICS � This work paves the way to leverage over 1 million drug-induced gene expression profiles produced by
LINCS, for repositioning of existing drugs or elucidation of the mechanism of action.

A central goal of systems pharmacology is to understand

the mechanism of biological systems by their response to

molecules. One major tenet that structurally similar mole-

cules have similar biological responses is widely exploited.

Examples include the creation of structurally diverse com-

pound libraries for high-throughput screening.1 However,

the premise may not hold due to the involvement of com-

plex biological processes, the high dimensional nature of

the biological activity landscape, or the way of computing

similarities.2,3 For example, the two diabetes drugs rosiglita-

zone and troglitazone possess very similar structures, but

they exert different side effects: rosiglitazone may increase

the risk of cardiovascular events4 while troglitazone may

lead to drug-induced hepatitis.5

Due to the advances of genomics and high-throughput
technologies, a recent trend has evolved to measure chemi-
cal similarity using biological response data (e.g., bioactivity
and phenotypic data) in addition to structure data. The bio-
logical fingerprints composed either by binding affinities
against a panel of proteins or by inhibition rates against a
panel of cell lines and assays have been used to relate
molecules.6–8 Drug side effect similarity has been also

employed to predict drug targets.9 The combination of simi-
larities based on multiple structural, biological, and pheno-

typic features has led to the discovery of new drug
indications.10 The correlation between chemical structures

and other biological/phenotypic features has been explored

as well.11–14

One critical way to assess chemical similarity is to exam-
ine the similarity of cellular response upon compound treat-

ment. Gene expression profiling is one of the most widely
used techniques in the characterization of cellular

response. It has been intensively employed to understand
drug mechanism, identify drug targets, and find new uses

for existing drugs.10,15–17 Structurally similar compounds
tend to interact with similar proteins. It has been shown

that there is a 30% chance that a compound that is �0.85

(Tanimoto coefficient (TC)) similar to an active compound is
itself active.1 However, it remains unanswered as to

whether their gene expression is changed similarly after
additional biological processes take place. In addition, gene

expression profiles are very sensitive to biological condi-
tions (e.g., cell line, dose, and treatment duration).18,19

Relating compound structure and gene expression may
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help understand the mechanism of drug action at cellular
levels and gain a better understanding of the biological
systems.

Due to the high cost of measuring gene expression

experimentally, large-scale expression profiling of chemical

compounds under a wide range of biological conditions

remains challenging. Inferring gene expression by leverag-

ing structural features may overcome the challenge. One

approach to inferring gene expression relies on using gene

expression data of a structurally similar compound as a

proxy for the gene expression profile of the compound, or

using gene expression data collected under a different bio-

logical condition as a proxy for the gene expression profile

of the compound under the biological condition in ques-

tion.12,15,20 But the foremost question that we address is

whether structure-based similarity (referred to as structural

similarity) correlates with gene expression-based similarity

(referred to as transcriptomic similarity) across a large num-

ber of compounds and biological conditions.
The recent effort on the large-scale creation of the

National Institutes of Health (NIH)-funded Library of Inte-

grated Network-based Cellular Signatures (LINCS) offers

an unprecedented opportunity to connect and compare

compound structure and gene expression. LINCS contains

gene expression profiles measured upon treatment with

>11,000 compounds on 10 or more cell lines. The increas-

ing gene expression profiles provided by LINCS are actively

explored to understand drug action.21–24 A set of 1,000

landmark genes were selected for profiling in LINCS, and

their expression measurements can be used to infer

expression of the rest of the genome. PubChem is a pub-

licly available repository for chemical compounds and their

bioactivities across thousands of assays.25 By integrating

gene expression data from LINCS with compound structure

and bioactivity data from PubChem, we performed a com-

prehensive correlation analysis of chemical structures and

gene expression profiles taking into account confounding

factors such as biological conditions (e.g., cell line, dose,

treatment duration), physical properties, and bioactivities.

METHODS
Datasets
A full matrix composed by 476,251 signatures and 22,268

genes including 1,000 landmark genes was downloaded

from the LINCS website (http://www.lincscloud.org/) as of

September 2013. The meta-information of the signatures

(e.g., cell line, treatment duration, dose) was retrieved via

the LINCS Application Program Interfaces (APIs) (http://api.

lincscloud.org/a2/). Chemical structures, physical proper-

ties, and bioactivities were retrieved from PubChem. The

details of data collection and processing are provided in the

Supplemental Material.

Similarity measures
Structural similarities of compound pairs were computed

using the ChemAxon packages (Supplementary Material).

Fingerprints Extended Connectivity Fingerprint 4 (ECFP4)26

and Pharmacophore Fingerprint (PFP)27 were used sepa-

rately. Transcriptomic similarities of perturbagen pairs were

measured by Spearman correlation coefficient and Pearson
correlation coefficient of their gene expression profiles. Cor-
relations were converted into P values, followed by the
Benjamini-Hochberg’s correction for multiple hypothesis
testing. Both landmark genes and the whole genome were
analyzed separately. For those perturbagen pairs where
one of the compounds has multiple profiles due to multiple
experiments (e.g., different batches, cell lines, doses, or
treatment durations), these profiles were treated individu-
ally, leading to multiple pairs of profiles.

We grouped structural similarity at 0.5 intervals. For
example, the group labeled by structural similarity as 1
includes all the pairs with TC 5 1, and the group labeled by
structural similarity as 0.95 includes all the pairs with TC �
0.95 and TC < 1. Within each group the mean of the tran-
scriptomic similarities of all the pairs of profiles was com-
puted. The groups with the total number of pairs less than
30 were ignored.

Fraction of transcriptomic similar pairs
The transcriptomic similarities of all the possible pairs were
computed and their P values were corrected. We first iden-
tified transcriptomic similarity pairs with adjusted P < 0.01
and found that 19% of all the pairs are significantly similar.
According to this criterion, any random pair has a high
chance (19%) to be significantly similar. We thus further fit-
ted the similarities of all the pairs to a normal distribution,
from which a significant similarity cutoff is computed (P <
0.01). The significantly similar pairs were those with similar-
ity higher than the significant cutoff and corrected P <
0.01. Provided a structural similarity, the fraction of tran-
scriptomic similar pairs is the ratio between the total num-
ber of significantly similar pairs and the total number of
pairs. The ratio indicates a chance that two compounds
share significantly similar gene expression profiles.

Statistics
Unless otherwise specified, Spearman correlation was used
to compute correlation. A two-sided t-test was used to com-
pute the difference between two groups. The 95% confi-
dence interval was used to present the correlations.

RESULTS

Two distinct compounds were paired up if both were tested
under the same condition (i.e., same cell line, treatment
duration, dose). The workflow and one example for the pair
of testosterone and medroxyprogesterone are shown in
Figure 1a,b and the similarity measures are shown in
Figure 1c. In total, 6,855,476 pairs consisting of 11,016
distinct compounds were identified. In addition, we paired
up replicates of the same compound. The replicates can be
those profiled either in the same plates or in different
plates. In total, we collected 53,800 pairs of replicates, out
of which there were 448 pairs, in which the replicates of
each pair came from the same plate.

The transcriptomic similarity of a pair of compounds is
computed as the correlation of the gene expression profiles
of the two compounds under the same conditions. As only
1,000 landmark genes are profiled for expression in LINCS,
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we separately tested the effect of inferred expression of the

remaining genes. Structural similarity was computed as the

TC between the fingerprints of two compounds. The tran-

scriptomic similarity was normally distributed ranging

between 21 and 1, while the structural similarity was

skewed on the right ranging between 0 and 1 (Supporting

Figure S1).

Correlations between transcriptomic and structural

similarity
We computed correlations between structural similarity and

transcriptomic similarity of all the pairs using different similar-

ity measures. The best overall correlation coefficient is 0.026
when ECFP4 and Pearson of landmark genes are used. This

is consistent with previous findings.12 However, when we
grouped the pairs according to their structural similarity, and

averaged their transcriptomic similarity within each group, we

observed a clear trend that the group with higher structural
similarity tends to have higher transcriptomic similarity

(Figure 2a). We also noticed that within the same structural
similarity, using landmark genes leads to higher transcrip-

tomic similarity than using the imputed whole genome, and
using Pearson correlation yields higher transcriptomic simi-

larity than using Spearman correlation. We did not notice any

Figure 2 Structural similarity vs. transcriptomic similarity. The pairs are grouped according to their structural similarities. (a) The mean
of transcriptomic similarity within each group is plotted. The groups with the number of pairs less than 30 are ignored. (b) The distribu-
tion of transcriptomic similarity within each group is plotted. ECFP4 and Pearson landmark are used for measuring structural and tran-
scriptomic similarity, respectively.

Figure 1 (a) Workflow of comparing transcriptomic similarity and structural similarity; (b) an example of comparing structural similarity
and transcriptomic similarity between testosterone and medroxyprogesterone; (c) similarity measures.
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superior measure regarding structural similarity. In the follow-

ing analysis, ECFP4 and Pearson correlation of landmark

genes are the default similarity measures for structural simi-

larity and transcriptomic similarity, respectively.
When two distinct compounds are structurally identical

(TC 5 1), the transcriptomic similarity using Pearson correla-

tion of landmark genes reaches a correlation value of

0.37 6 0.004 (range 20.56 to 0.97). When structural similarity

is less than 0.75 (TC < 0.75), transcriptomic similarity

becomes flat, with average values less than 0.11 (Figure 2a).

This indicates that structural similarity does not correlate with

transcriptomic similarity when two compounds are not struc-

turally similar (e.g., TC < 0.75), regardless of the similarity

measures used. We found that the variation of transcriptomic

similarity within each group is large, with average standard

deviation 0.21 (Figure 2b).

Biological conditions as confounding factors
Gene expression changes are highly dependent on biological

conditions; hence, we examined the correlations between

compound structure and gene expression under different bio-
logical conditions. The most relevant conditions are cell line,
dose, and treatment duration. The pairs of compounds were
observed in five primary cell lines (i.e., MCF7 (20.0%), VCAP
(16.8%), PC3 (13.4%), A549 (12.6%), HA1E (8.9%)), with
two primary doses (i.e., 10 lm (97.0%) and 5 lm (2.3%))
and with two primary treatment durations (i.e., 24 hours
(46.8%), and 6 hours (53.2%)) (Figure S2). Within each con-
dition (e.g., cell line MCF7), we only kept the pairs complying
with that condition and further assessed the correlation
between structural similarity and transcriptomic similarity.

The trend that compounds with higher structural similarity
tend to have higher transcriptomic similarity still holds when
we examine individual cell lines (Figure 3a). Interestingly,
some cell lines exhibit very different patterns. For example,
any two compounds, regardless of their structural similarity,
tend to have higher transcriptomic similarity in PC3 cells
than in VCAP cells (two-sided t-test, P < 0.01). Both cell
lines are actually prostate-related cancer cell lines. When
structural similarity is 1, the transcriptomic similarity is

Figure 3 Structural similarity vs. transcriptomic similarity across (a) cell lines, (b) doses, and (c) treatment durations. ECFP4 and Pear-
son landmark are used for measuring structural and transcriptomic similarity, respectively.
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0.49 6 0.009 and 0.31 6 0.008 in PC3 and in VCAP, respec-

tively, while when structural similarity is relaxed to 0.95,

transcriptomic similarity drops to 0.47 6 0.02 in PC3, and to

0.18 6 0.01 in VCAP. This indicates two structurally similar

compounds are likely to share more similar gene expres-

sion profiles in PC3 than in VCAP.
The positive relationship between structural and tran-

scriptomic similarity holds under different doses; however,

when two structurally similar compounds (TC � 0.85) are

administered at a higher dose (i.e., 10 lm), they tend to

have higher transcriptomic similarity than at a lower dose

(i.e., 5 lm), regardless of the cell lines used (P < 1E-16)

(Figure 3b). No explicit difference was observed when two

compounds were administered for different treatment dura-

tions (Figure 3c).

Compound physical properties and bioactivities as

confounding factors
In addition to the biological conditions, the properties of the

compounds themselves obviously will affect the correlations

between compound structure and gene expression. It is

possible that two chemotherapy drugs may induce the

same apoptosis pathway, leading to similar gene expres-

sion changes, regardless of their chemical structure similar-

ity. By contrast, it is also possible that treatment with two

structurally similar chemical compounds with slightly differ-

ent bioavailability may result in vastly different gene expres-

sion changes. We therefore quantitatively examined the

effect of physical properties and bioactivities on the

correlations.
We first found that the “Rule of Five” properties do not

affect the correlation between structural similarity and tran-

scriptomic similarity (Supplementary Figures S3, S4). We

next examined the effect of bioactivities. Compound bioac-

tivity or cytotoxicity, which is measured by its growth inhibi-

tion, has been previously tested in the NCI human tumor

cell line growth inhibition assays. Compounds with loga-

rithm of concentration required for 50% inhibition of growth

(LogGI50) less than 26 are considered active. Three cell

lines (MCF7, PC3, and A549) that have the most number

of compounds with activity and gene expression data were

selected for further analysis. In each cell line, the com-

pounds were grouped based on their bioactivity (see Meth-

ods). The heatmap in Figure 4a illustrates the gene

expression changes in MCF7 for 6 hours at 10 lm concen-

tration, and bioactivity of the compounds tested in MCF7.

The compounds are linked if their structures are similar

(TC � 0.85). We observed that active compounds tend to

cluster together based on their gene expression regardless

of structural similarity. We also observed similar patterns in

PC3 (Figure S5a) and A549 (Figure S5b). In addition,

active compounds have larger expression changes than

inactive compounds (MCF7: P 5 1.2E-32, PC3: P 5 5.0E-6,

A549: P 5 2.0E-17) (Figure 4b). We further paired up the

compounds into three groups based on their bioactivity:

both are active, one of them is active, and neither of them

are active. In each cell line, the pairs where both com-

pounds are active significantly possess higher transcrip-

tomic similarity (MCF7: P < 1E-200, PC3: P < 1E-200,

A549: P < 1E-200) (Figure 4c). Taken together, bioactivity

is a critical factor responsible for transcriptomic similarity.

How frequently do structurally similar compounds

have similar gene expression profiles?
One simple question we often ask is whether it is reasona-

ble to use the gene expression data from one compound

as a proxy for that of another structurally similar compound.

In addition to understanding the correlation between struc-

tural similarity and transcriptomic similarity, it is important to

quantify how likely the gene expression profiles of two com-

pounds are significantly similar given their structural similar-

ity. To answer this question, we first need to define

structurally similar pairs and pairs of compounds that are

significantly similar by their gene expression. As suggested

by others,1 we define pairs of compounds with TC � 0.85

as structurally similar pairs. We defined the pairs with sig-

nificant transcriptomic similarity based on the distribution of

the transcriptomic similarity of all the pairs (see Methods).

The chance of sharing similar transcriptomic profiles is

�41% for two structurally identical compounds (TC 5 1)

(Figure S6a). We found that when two compounds are

structurally similar (TC � 0.85), there is about a 20%

chance that their transcriptomic profiles are significantly

similar. The chance varies as the biological condition

changes (Figure S6b–d). For example, when two structur-

ally similar compounds (TC � 0.85) are tested in PC3,

there is a 33% chance that they share similar transcrip-

tomic profiles, while the chance is 9% in VCAP.

Unexpected pairs that do not follow the trend
Given the large variation of gene expression profiles, we

further examined the pairs of compounds that do not follow

the structure-gene expression correlation. They include

structurally similar compounds with dissimilar transcriptomic

profiles or structurally dissimilar compounds with similar

transcriptomic profiles.
A list of such “unexpected pairs” is presented in Figure 5.

For example, the two structurally identical compounds pan-

curonium and vecuronium (TC 5 1) are competitive nicotinic

antagonists but exert opposite transcriptomic responses

(Cor 5 20.14, P < 0.01) under the same condition (cell line:

PC3, dose: 10 lm, time: 6 hours) (Figure 5a). Gene annota-

tion enrichment analysis27 of differentially expressed genes

between the two compounds identifies different mechanisms

of actions: pancuronium regulates immune response and

mitochondrial-related genes, while vecuronium regulates

oxidation reduction-related genes. The structurally similar

pairs that exert variable gene expression profiles may be due

to off-target effects, activity cliffs, technical variation, or the

way of computing similarity.
Interestingly, “unexpected” phenomena sometimes appears

only under a specific condition. For example, two structurally

similar compounds, testosterone and norethindrone

(TC 5 0.90), have similar profiles in VCAP (Cor 5 0.50, P <

0.01), but different profiles in A375 (Cor 5 20.08, P > 0.01)

after 6 hours treatment at 10 lm concentration (Figure 5b).

The genes (MYC, IGFBP3, SPDEF, TIPARP) are highly differ-

entially expressed in the profiles of the two drugs in VCAP, but

not in A375. These two hormones are known to exhibit
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different biological effects. Two structurally similar compounds,
vincristine and vindesine (TC 5 0.91), have similar profiles in
A549 (Cor 5 0.51, P < 0.01) after 24 hours treatment at
10 lm concentration, but different profiles (Cor 5 20.10, P <
0.01) after 6 hours treatment at a 10 lm concentration
(Figure 5c). Their target TOP2A is downregulated by the two
drugs when the cell is treated for 24 hours, but the target is

not affected after 6 hours treatment. Two structurally similar
compounds, idarubicin and doxorubicin (TC 5 0.97, have simi-
lar profiles (Cor 5 0.58, P < 0.01) at 10 lm concentration but
dissimilar profiles (Cor 5 20.22, P < 0.01) at a lower dose,
0.041 lm in MCF7 (Figure 5d). A few genes are downregu-
lated by the two drugs at 10 lm concentration, but they are
not affected at a lower dose. Taken together, two structurally

Figure 4 (a) Expressions of landmark genes with different chemical perturbations in MCF7 with 6 hours treatment at 10 lm concentra-
tion. In the heatmap, each row is one landmark gene and each column is one compound colored by bioactivity in MCF7. Bioactivity is
measured by the growth inhibition rate in MCF7. Green color represents active compounds and blue color represents inactive com-
pounds. Red color shows high expression and blue color shows low expression in the heatmap. (b) Variation of gene expressions for
active compounds and inactive compounds in MCF7, PC3, and A549. Variation is measured as the interquartile range of expression of
landmark genes. (c) Transcriptomic similarity of the pairs consisting of two active compounds, the pairs consisting of two inactive com-
pounds, and the pairs consisting of one inactive and one active compound. Three cell lines—MCF7, PC3, and A549—are used.
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similar compounds may share similar transcriptomic profiles in
a specific cell line with a specific treatment duration at a spe-
cific dose.

We also observed that some structurally dissimilar com-
pounds share similar transcriptomic profiles. When two drugs
share similar gene expression profiles, it indicates they may
result in a similar physiological effect despite the differences
in chemical structures; therefore, one drug might even be
used as a therapeutic for the same indication as the other
drug. For example, the antidepressant drug bupropion is sim-
ilar to busulfan in PC3 (Cor 5 0.85, P < 0.01). Since busulfan
is a prostate cancer drug, it suggests that bupropion might
have anticancer properties as well. A list of examples is pro-
vided in Table S1. The compounds that may hit different tar-
gets in the same pathway, or bind to different sites of the
same target, are likely to share similar transcriptomic profiles.
For example, the nonselective beta-blocker carvedilol and the
alpha-2 selective adrenergic agonist guanabenz have very dif-
ferent structures (TC 5 0.09) but share targets ADRA2A and
ADRA2B, which may account for their similar transcriptomic
profiles (Cor 5 0.55, P < 0.01, HCC515 cell line, 24 hours
treatment and 10 lm concentration). Two structurally dissimi-
lar drugs, phenacetin and 4-androstenedione (TC 5 0.08),
share similar transcriptomic profiles (Cor 5 0.53, P < 0.01,

A549 cell line, 24 hours treatment, and 10 lm concentration);

it is likely because PTGS1, the target of phenacetin, and

AKR1C3, the target of 4-androstenedione, are both involved

in the synthesis of prostaglandin and thromboxanes.

DISCUSSION

Structurally similar compounds tend to interact with similar

proteins, but it remains elusive if they lead to similar gene

expression changes, as biological processes take place

after the interaction. In this work, we systematically exam-

ined the correlation between structural similarity and tran-

scriptomic similarity across over 11,000 compounds tested

in over 10 primary cell lines, two primary treatment dura-

tions, and two primary dose concentrations. We further

assessed the effects of biological conditions, physical prop-

erties, and bioactivities on the correlation.
The overall trend that structurally similar compounds tend

to have similar transcriptomic profiles is very clear regard-

less of the biological condition studied. When TC � 0.85,

there is a 20% chance that they share similar profiles.

These findings are consistent with Martin et al.,1 who

examined the correlation between chemical structure and

Figure 5 Gene expressions of “unexpected” pairs: (a) Pancuronium and vecuronium; (b) testosterone and norethindrone; (c) vincristine
and vindesine; and (d) idarubicin and doxorubicin. In each plot, transcriptomic similarity (Cor), structural similarity (ECFP4), cell line,
dose, treatment duration, and a few highly differentially expressed genes are annotated.
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biological activity, and showed that there is a 30% chance
that two structurally similar compounds have similar bioac-
tivity. As more biological processes are involved in the reg-
ulation of gene expression, it is not surprising that we
observe a lower correlation with gene expression in com-
parison to biological activity. It should be noted that ECFP4
used in this analysis might lead to a matrix different with
the Daylight Fingerprint used in their work, and the meas-
ures of transcriptomic similarity and biological activity simi-
larity are different. Nevertheless, our work demonstrates
that chemical structure is indeed related to gene expression
profiles, but using chemical structure alone is inadequate to
model expression changes. Even for the same compound,
expression may be changed vastly as the biological condi-
tion is varied.

In addition to the analysis of the pairs consisting of dis-
tinct compounds, we further performed the analysis of
53,800 pairs of replicates, where the same compound was
tested under the same condition (i.e., cell line, dose, and
treatment duration). The transcriptomic similarity of those
pairs is 0.63 6 0.003 and 80% of them are significantly sim-
ilar. When two compounds are structurally identical, the
transcriptomic similarity and the percentage of significantly
similar pairs drop to 0.32 6 0.06 and 41%, respectively.
This indicates that a small change in the chemical structure
can lead to a big change of gene expression profiles. Out
of the 53,800 pairs, there were 448 pairs where the repli-
cates of each pair were profiled in the same plates. The
transcriptomic similarity of those pairs is 0.64 6 0.02. No
significant difference of the transcriptomic similarity was
observed between the pairs from the same plates and
those from different plates, indicating that the batch effect
of those pairs is subtle.

For the pairs of compounds with the same structural sim-
ilarity, their transcriptomic similarity varies largely. The vari-
ation may be due to technical variation or biological
variation (e.g., different cell lines, doses, treatment dura-
tions). The variation leads to a large number of
“unexpected” pairs, including structurally similar compounds
with dissimilar transcriptomic profiles or structurally dissimi-
lar compounds with similar transcriptomic profiles. The lat-
ter may serve as a great source for identifying new
repositioning opportunities or understanding the biological
systems.

Notably, in addition to structure, other factors also
account for transcriptomic similarity. For example, if the cell
line is sensitive to both compounds, regardless of their
structure, they tend to share similar profiles. This may be
because both inhibit cancer cell growth, resulting in a simi-
lar change of cellular state. Likewise, if the cell is treated
with a compound at a high dose, the cell may exhibit similar
cellular change, reflected by the similar change of gene
expression.

Our study has several limitations. We examined the most
common similarity measures while alternative methods can
be used. ECFP4 and PFP are two popular measures often
used to study structural and functional similarity, separately,
but some part of structural features, such as 3D conforma-
tion, are ignored. As the release of 3D structural similarities
of the compounds from PubChem, it will be interesting to

incorporate them in future analysis. For transcriptomic simi-

larity, we used the landmark genes and the whole genome

independently at the beginning of the analysis. We found

that using landmark genes leads to higher transcriptomic

similarity than using the whole genome, so we focused our

analysis on the landmark genes rather than the whole

genome. However, the landmark genes may not be suffi-

cient to capture all the transcriptomic changes of some

compounds. In addition, neither Spearman correlation nor

Pearson correlation considers weighting individual genes,

which may contribute differently to the transcriptomic simi-

larity. We did not try to optimize similarity measures, and

rather followed the conventional ways. However, as the

cost of expression profiling continues to decline and new

datasets become available, a more comprehensive

genome-wide analysis will be feasible. Our study lays a

foundation for exploring the relationship between chemical

structure and gene expression changes across a large

number of compounds and yields interesting insights into

structural and functional relationships between therapeutic

agents.
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