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A B S T R A C T   

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been circulating since 2019, and its global 
dominance is rising. Evidences suggest the respiratory illness SARS-CoV-2 has a sensitive affect on causing organ 
damage and other complications to the patients with autoimmune diseases (AD), posing a significant risk factor. 
The genetic interrelationships and molecular appearances between SARS-CoV-2 and AD are yet unknown. We 
carried out the transcriptomic analytical framework to delve into the SARS-CoV-2 impacts on AD progression. We 
analyzed both gene expression microarray and RNA-Seq datasets from SARS-CoV-2 and AD affected tissues. With 
neighborhood-based benchmarks and multilevel network topology, we obtained dysfunctional signaling and 
ontological pathways, gene disease (diseasesome) association network and protein-protein interaction network 
(PPIN), uncovered essential shared infection recurrence connectivities with biological insights underlying be-
tween SARS-CoV-2 and AD. We found a total of 77, 21, 9, 54 common DEGs for SARS-CoV-2 and inflammatory 
bowel disorder (IBD), SARS-CoV-2 and rheumatoid arthritis (RA), SARS-CoV-2 and systemic lupus erythematosus 
(SLE) and SARS-CoV-2 and type 1 diabetes (T1D). The enclosure of these common DEGs with bimolecular 
networks revealed 10 hub proteins (FYN, VEGFA, CTNNB1, KDR, STAT1, B2M, CD3G, ITGAV, TGFB3). Drugs 
such as amlodipine besylate, vorinostat, methylprednisolone, and disulfiram have been identified as a common 
ground between SARS-CoV-2 and AD from drug repurposing investigation which will stimulate the optimal 
selection of medications in the battle against this ongoing pandemic triggered by COVID-19.   

1. Introduction 

COVID-19, commonly known as SARS-CoV-2, is a highly contagious 
viral respiratory infection that swept over the world. It has gotten even 
worse, infiltrating people’s lungs most and rapidly weakening their 
immune systems. Several health issues associated with COVID-19 
emerged over time and AD is the most common of them. AD is a form 
of disease where the body’s immune system mistakenly attacks healthy 
tissue [1]. COVID-19 patients with AD have experienced respiratory 
problems and organ damaging issues. Patients infected with COVID-19 
who already have AD are more at risk as SARS-CoV-2 and AD have 
characteristics and parthenogenesis in common [2,3]. So, we explored 

the correlations between SARS-CoV-2 and AD including IBD, RA, SLE 
and T1D, in view of the fact that these are the most widespread and 
jeopardizing to humans. 

IBD refers to two disorders (Crohn’s disease and ulcerative colitis) 
that are characterized by significant inflammation in the gastrointestinal 
system, according to the Crohn’s & Colitis Foundation of the United 
States [4]. The most recent SARS-COV-2 strain has spread quickly to 
areas where IBD is more widespread, revealing a growing risk of infec-
tion in IBD patients [5]. COVID-19 has also considered hazardous in IBD 
patients as the aqueous version of ACE2 is thought to perform as a strong 
cofactor for SARS-CoV-2, protecting viruses and inhibiting them from 
adhering to the cellular full-length ACE2 protein [6]. Respiratory 
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disease is a relatively uncommon consequence of IBD though Patients 
with IBD who are affected by SARS-COV-2 suffer odd, recurrent, and 
perplexing respiratory symptoms, including a prolonged productive 
cough [7,8]. RA is an AD that causes inflammation and injury to joints 
all over the body. It also damages other organ systems and causes 
inflammation, including the lungs, eyes, skin rash, and even the heart. 
COVID-19 is directly connected with RA and it affects the lungs, and RA 
patients are at threat of this. Other than this, according to a Matched 
Cohort Study, there is a direct connection between RA and SARS-CoV-2 
[9]. 

Some researchers’ findings indicate a high incidence of severe and 
even lethal infections, confirming that, despite some treatment, patients 
with SLE are at a high risk of a negative outcome with SARS-CoV-2 [10, 
11]. SLE is an inflammatory condition in which the immune system 
attacks its own tissues, resulting in extensive inflammation and tissue 
damage in the organs along with respiratory systems such as lungs. 
Lupus has no cure, and it is a danger to COVID-19 patients. T1D has been 
identified as one of the key comorbidities related to SARS-CoV-2 and 
impacting its frequency in epidemiological research [6,12]. T1D is also 
an AD in which the body’s immune system destroys insulin-producing 
beta cells in the pancreas. The coronavirus spike protein’s receptor 
produced in pancreatic beta cells has been identified as 
angiotensin-converting enzyme 2 (ACE2), which is more susceptible to 
SARS-CoV-2 infection [13]. Besides this, diabetic patients were more 
likely to have chronic airflow obstruction where influenza and pneu-
monia make them worse [14]. Changes in daily activities in people with 
T1D have been shown to affect glucose levels and they are more likely to 
suffer physically and psychologically from lockdown [15,16]. 

In summary, the above discussion provides substantial evidences of 
pathological and biological relationship between COVID-19 and AD, but 
the prevalence of the relationship among them has not yet been thor-
oughly investigated. It is crucial to understand the biological and mo-
lecular interaction processes underpinnings between COVID-19 and AD, 
that are still poorly understood. Thus, a systems biology and bioinfor-
matics framework was designed and carried out to uncover and 
comprehend these linkages and interactions between COVID-19 and AD, 
as identifying the origins of these correlations might give significant 
understandings into the mechanisms which mostly influence both SARS- 
CoV-2 and AD. Datasets were analyzed and subsequently common 
differentially expressed genes (DEGs) associated with illnesses were 
discovered. Further experimentations and analyses including ontolog-
ical and pathway enrichment analysis, DEGs-transcription factors 
interaction analysis, DEGs-miRNAs interaction analysis were performed 
out using these common DEGs to elucidate a better understanding of the 
biological processes of genome-based expression investigations. As part 
of forecasting new therapeutic strategies based on hub genes, pro-
tein–protein interaction network (PPIN) is also crafted from common 
DEGs to search out hub gene characteristics. Along with that gene- 
disease association analysis found out disease relationships and drugs 
derived from drug repurposing might lead to finding additional and new 
treatment for SARS-CoV-2 in terms of its relationship with AD. 

2. Methodology 

2.1. Datasets employed in this study 

Since multiple observational experiments have already shown that 
people with AD are at elevated risk of COVID-19 intervention. Both Rna- 
seq, the outcome of rapid advancements in nanotechnology and con-
ventional microarray based gene expression analysis are extensively 
used and efficient tools for evaluating and assessing viral infections at 
the molecular scale [17,18]. To figure out the complex molecular effects 
and correlations alluded to SARS-CoV-2 and AD, both microarray and 
RNA-Seq datasets were retrieved from the Gene Expression Omnibus 
(GEO) database of the National Center for Biotechnology Knowledge 
(NCBI) [19]. The RNA-Seq dataset [20] of SARS-CoV-2 (GEO Accession: 

GSE147507) is a gene expression profiling of COVID-19 lung biopsy in 
reaction to respiratory illnesses with 30 control groups and 80 disease 
samples utilizing high throughput sequencing on the Illumina NextSeq 
500 platform. The IBD dataset (GSE Accession: GSE59071) is a micro-
array dataset consisting of 11 controls and 105 disease samples obtained 
from IBD patients who received biopsies in the most affected regions but 
far from ulcerations [21]. Then microarray analysis was carried out on 
the U133A Array platform between 20 control and 59 disease groups 
using a rule-based classification in the RA dataset (GSE Accession: 
GSE55457) [22]. The SLE dataset (GSE Accession: GSE81622) was a 
gene expression profile of peripheral blood mononuclear cells from 25 
healthy controls and 30 SLE patients with HumanHT-12 Beadchips and 
Illumina Human Methy450 chips [23]. The T1D dataset (GSE Accession: 
GSE106148) was analyzed residual beta cells and alpha cells persisting 
in the islet endocrine compartment from 5 healthy controls and 3 T1D 
patients; this high throughput sequencing experiment was performed on 
Illumina HiSeq 2500 platform [24]. Fig. 1 illustrates a general overview 
of the work process obtained in this study. 

2.2. Data preprocessing and identification of differentially expressed 
genes 

This study obtained both RNA-Seq and microarray datasets from the 
NCBI’s GEO. When there is a statistically relevant discrepancy between 
multiple experimental conditions at the transcription phase, a gene is 
classified as expressed differently. We normalized the gene expression 
data incorporating control state and disease state by applying Z-score 
transformation (Zij) for each dataset to prevent experimental compli-
cations; this conversion enables direct comparison of the values of gene 
expression of different diseases on different platforms. 

Zij =
gij − X

σi
(1)  

where σi initiates the standard deviation and gij indicates the gene 
expression magnitude i in sample j. This modification enables clear and 
simple measurements of gene expression traits and morbidity. For 
evaluation of selectively expressed genes in patients compared to 
normal samples, unpaired T-test static was included. In order to perform 
the dataset analysis, R programming language environment and Bio-
conductor packages were selected. We normalized datasets by log2 
transformation and utilized the statistical strategy using the R package 
Linear Models for Microarray Data (Limma) [25] with Benjamini 
-Hochberg correction to control the level of false discovery rate. Sub-
sequently, high throughput sequencing datasets were analyzed centered 
on the negative binomial distribution to classify gene expression data 
using DESEq2. Based on the standard statistical criteria, a threshold of at 
least 1 log2 fold change (logFC) and an Adj. p-value of 0.05 
(Adj. p − value < 0.01 and |logFC| >= 1.0) was followed to extract 
significant DEGs. Cutoff conditions (Adj. p − value < 0.01 and 
logFC >= 1.0) for up-regulated genes and other criteria 
(Adj. p − value < 0.01 and logFC <= − 1.0) for down-regulated genes 
were selected. From each dataset, gene symbols as well as names were 
extracted to continue further analysis; empty or incomplete gene symbol 
records were eliminated from each disease dataset. To locate common 
DEGs that each AD shares with SARS-CoV-2, a Venn analysis was per-
formed using the web tool Jvenn [26]. 

2.3. Identification of ontological terms and enriched pathways 

Gene ontology (GO) and pathway enrichment test was undertaken 
using Enrichr (https://maayanlab.cloud/Enrichr/) – a robust gene set 
enrichment web tool [25] to get more insights into functional biological 
terms and signal pathways interleaved between SARS-CoV-2 and AD. 
Gene set enrichment analysis is a key empirical task to reveal hidden 
biological insights, such as biological processes or chromosome 
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locations affiliated with different closely linked diseases [27]. GO as 
well as functional process was explored into three categories: biological 
process, cellular component, and molecular functions and 4 pathway 
databases: KEGG [28], WiKi [29], Reactome [30], Bio Carta [31] were 
considered for pathway analysis. 

2.4. Gene disease association network 

Diseases are correlated to each other when at least one significantly 
dysregulated gene is shared by diseases among themselves [32]. In order 
to determine correlations among SARS-CoV-2 and AD, we employed 
neighborhood benchmarking and topological strategies to place a 
gene-disease association network (GDAN). As a result of the process, we 
generated a GDAN utilizing Cytoscape (version 3.7.1) to presume and 
represent diseases associated with SARS-CoV-2 and AD. For this anal-
ysis, we regarded a collection of human diseases labeled by D and a set of 
human genes also labeled by G to seek out whether there is an attach-
ment or presence of a gene g ∈ G with the disease d ∈ D. 

Besides, we consider that if Ga and GB have the association of disease 
Da or Db with the substantial up and down-regulated genes respectively, 
then the amount of shared dysregulated genes (ng

ab) associated with both 
diseases Da and Db is quantified; the following estimation is defined as 
follows [17]: 

ng
ab =N(Ga ∩ Gb) (2) 

Jaccard coefficient methods [24] were employed to recognize shared 
neighbors and co-occurrence is the number of common genes between 
two diseases in the GDAN 

E(a, b)=
N(Ga ∩ Gb)

N(Ga ∩ Gb)
(3)  

2.5. Protein-protein interaction network analysis 

PPIN is central to all cell functions as they resemble the physical 
interactions between two or more protein entities. We utilized STRING 
(https://string-db.org/) (version 11.0)-a web platform and database to 
build PPIN network of proteins encoded from our shared DEGs as 
STRING provides insights into PPIN leveraging active channels of 
interaction which includes text mining, experimental databases, co- 
expressions, culture, gene fusions, and co-occurrences [33]. In the 
STRING, PPIN network can be built with different confidence scores and 
we set the highest confidence score to produce our PPIN. Then we pull 
our PPIN to Cytoscape (Version-3.7.1) for more perceptual observations 
and evaluation of other PPIN experimental studies. Cytoscape (v.3.7.1)- 
an open-source network visualization software where multiple datasets 
are combined to create improved performance for various interactions 
such as PPIN, genetic interactions, and protein-DNA interactions [34]. 
Cytohubba plugin was used to create extended networks of target mol-
ecules only [35]. 

The identification of initial participants and other substances by 
means of topological analysis is a convenient technique for recognizing 
its biological importance. Concerning topological analysis, we concen-
trated on the centrality analysis of our PPIN derived from shared DEGs. 
Topological analysis was conducted by Network Analyzer-a built in 
Cytoscape plugin and NetworkAnalyzer is a useful platform that quan-
tifies and demonstrates a wide range of topological parameters such as 
node count, centralization, and so on [26]. Closeness centrality metric 
was applied to determine how rapidly data will flow from one node to 
another and also measured shortest paths [36] between nodes following 
equation (2). 

CC(a)=
N − 1

∑
bd(a, b)

(4)  

where a and b imply node, dab is the length of the shortest paths between 
nodes a and b in the network and N is the number of nodes. Betweenness 
centrality base depends largely on the communication flow of nodes in 
the network; the node with the maximum betweenness centrality is 
essentially in the transmission path and therefore can simultaneously 
regulate the flow of information. Besides that, the node with the most 
betweenness centrality represents proteins that are involved in signaling 
pathways that ultimately influence drug target prediction as well as a 
therapeutic design [22] following equation (3). 

CB(ni)=
∑

j<k
gjk(ni)

/
gjk

(5)  

where gjk is the number of shortest paths connecting jk and gjk(ni) is the 
number that node i is on. 

The most interconnected proteins known as hub proteins in PPIN 
have determined based on topological parameters (degree ≥ 15). Sub-
sequently, topological analysis of hub proteins was performed to delve 
more into their biological significance. 

2.6. Identification of transcription factors and miRNAs 

To hold on to insights into regulatory molecules such as transcription 
factors (TFs) and miRNAs at the transcriptional and post-transcriptional 
level which regulate with shared DEGs, we have analyzed both DEGs- 
TFs and DEGs-miRNAs interaction networks via NetworkAnalyst-a 
comprehensive web portal for meta-analysis of gene expression data 
and insights into metabolic processes, activities, and understandings 
[37]. The NetworkAnalyst has a filtering function feature that allows 
users to construct interaction networks related to a specific tissue’s 
intent, so we chose the lung tissue as the root of our two disease origins. 
DEGs-TFs interaction network originated from the Jasper database, 
while DEGs-miRNAs interaction network was derived from the mir-
Tarbase and Tarbase databases. JASPAR is a widely open directory of 
TFs profiles from various species across six taxonomic groups [38] and 
the foremost exploratory validity resources for miRNAs-target gene 

Fig. 1. The overall workflow of the proposed methodologies.  
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interactions are Tarbase and mirTarbase [39]. To give a boost to visi-
bility and appearance, both DEGs-TFs and DEGs-miRNAs interaction 
networks were incorporated into Cytoscape (v.3.7.1). 

2.7. Drug repurposing analysis 

Specific drugs for the proper treatment of SARS-CoV-2 have not yet 
been found, and researchers from all around the globe are working 
tirelessly to discover a cure for COVID-19 so that the world can be rid of 
this dreadful pandemic. Drug repurposing, also known as repositioning, 
is a scientific approach to testing current accessible drugs against dis-
eases other than those for which they were developed, in order to cut 
costs and time in the formation of new drugs. To repurpose the drugs of 
AD and SARS-CoV-2 interconnected with individual and shared genes, 
we utilized a transcriptomic-based computational drug repurposing 
process that will eventually take the ongoing SARS-CoV-2 drug place-
ment one step further. L1000CDS2 (https://maayanlab. 
cloud/l1000cds2/#/index) is a drug repurposing web tool developed 
by Ma’ayan Lab using the L1000 dataset [40,41]. For acquiring the 
shared drugs, we submitted our list of common up and down regulated 
DEGs shared by AD and SARS-CoV-2 to L1000CDS2; we have also 
uploaded list of up and down regulated DEGs of each AD and 
SARS-CoV-2 in order to obtain drugs for individual disease. After sub-
mitting the list of up and down regulated DEGs to L1000CDS2, the tool 
has returned the top 50 drug findings, which are ranked in descending 
order based on the overlap of genes between the input and tested sig-
natures weighted by the actual input (intersection of input genes and 
L1000 genes). From the returned top 50 drug list, we chose drugs that 
were unique with an overlap or inhibition score close to 1 (100%) and 
also had accessibility in Drugbank-a web-based repository for keeping 
detailed molecular information on drugs, their mechanisms, in-
teractions, and targets [42]. Before moving on to additional studies with 
this drug list, it is necessary and vital to examine other elements of drugs 
such as structural score, as well as harmful side effects [41]. We 
retrieved the SMILE (Simplified molecular-input line-entry system) 
format of our listed drugs from drugbank and used the SMILE format to 
evaluate each drug’s structural score employing SwissADME (http 
://www.swissadme.ch/index.php) - Systems and processes such as 
BOILED-Egg, iLOGP, and bioavailability locator are part of the Swis-
sADME online service, which gives free exposure to a collection of swift 
but powerful prediction models for physicochemical characteristics, 
pharmacokinetics, drug similarities, and medicinal chemistry compati-
bility [43]. Lipinski’s rules’ violations are followed and applied to 
measure the structure and the more rules a drug violates the less 
structural score it receives. We used SIDER (http://sideeffects.embl.de/) 
- an online platform that captures and keeps information about adverse 
reactions to drugs including side effect frequency, drug and side effect 
classifications, and connections to additional information on the 
marketplace gleaned from public documents and package instructions to 
determine each drug’s side effect score [41]. We listed the side effects 
and label percentage score of each drug retrieved from SIDER. Further 
analyses were discarded for drugs with a higher sctrural score (1 ≤
sctrural score) and no side effect score or both. 

3. Result 

3.1. Gene expression analysis and mutual DEGs identification 

When a gene behaves differently from its normal form, it is recog-
nized as DEGs. The gene expression analysis was conducted to distin-
guish significant and common DEGs that are shared by SARS-CoV-2 and 
AD, paving the way for a molecular investigation of the relationship 
between SARS-CoV-2 and AD. We used the R language environment and 
the limma package to assess both microarray and RNA-Seq datasets from 
NCBI GEO counting on quantitative parameters. According to the 
analysis, based on significant terms (Adj. P-value < 0.01 & |logFC|≥1) 

620 genes were differentially expressed, with 112 genes up-regulated 
and 508 genes down-regulated for SARS-CoV-2 response. In the same 
way, 705 DEGs (519 up-regulated and 186 down-regulated) for IBD, 472 
DEGs (250 up-regulated and 222 down-regulated) for RA, 68 DEGs (19 
up-regulated and 49 down-regulated) for SLE, 1399 DEGs (580 up- 
regulated and 819 down-regulated) for T1D. The overall gene expres-
sion analysis is depicted in Table 1. Besides that, using the Jvenn tool, 
cross-comparison analysis revealed common DEGs between each AD and 
SARS-CoV-2; the Venn diagram depicted in Fig. 2 shows the overall 
common DEGs assessment. We found that SARS-CoV-2 shares 77, 21, 9, 
54 DEGs with IBD, RA, SLE, and T1D, respectively. Moreover, we also 
found that AD shares 15, 1, and 6 significantly up-regulated DEGs for the 
IBD, RA, and T1D whereas 10, 3, 2, and 25 significantly down-regulated 
genes for the IBD, RA, SLE, and T1D respectively. SARS-CoV-2 and SLE 
have not shared any up-regulated DEGs among them. 

3.2. Identification of ontological terms and enriched pathways 

Enrichr was utilized to obtain understanding across ontological ter-
minologies and enriched pathways that are commonly expressed by 
each AD and SARS-CoV-2. An ontology is a collection of procedures that 
characterize a body of knowledge in a particular sense. GO takes in gene 
mechanisms and their attributes to include a broad variety of compu-
tational knowledge tools. In addition, ontology also encompasses a 
model of a biological structure, which is useful in biological applications 
[44]. The GO study was divided into three functional sections (biolog-
ical process, cellular component, molecular function) with annotations 
originating from the GO database. The top 10 biological terms of each 
functional section are summarized in supplementary Table I Pathways 
are essential to stimulus-response in cells, and pathway-based assess-
ment is a newly formed framework for understanding how diverse dis-
orders can be coupled by their corresponding molecular pathways to 
each other [45]. Pathways were extracted using the Enrichr once more 
to obtain insight into SARS-CoV-2 and AD complications using four 
different pathway databases as origins. Both overly represented path-
ways and ontological terms were discarded; pathways and terms that 
fulfilled the preceding metric (P-value < 0.05) were listed to get hold of 
significant pathways. The significant pathways shared between each AD 
and SARS-CoV-2 are listed in supplementary Table II. 

3.3. Identification of gene-disease association 

We have already perceived from our cross-comparison investigation 
that SARS-CoV-2 shares significantly up and down-regulated DEGs with 
AD. The following are the most important up-regulated genes: (a) 
STAT1, HLA-DQA1, RNF213, PARP9, IFITM2, MX2, ZBP1, SAMD9L, 
IFI6, OAS2, LOXL2, KYNU, SELL, LAMP3, MLKL between SARS-CoV-2 
and IBD (b) IFIH1 between SARS-CoV-2 and RA, (c) IFIT3, DDX58, 
ISG15, NCOA7, SMTNL1, SLC25A48 between SARS-CoV-2 and T1D. The 
following are the most significantly down-regulated genes: (a) SEMA5A, 
CYP2B7P, PAG1, PCDH20, SLC17A4, METTL7A, GSTA1, MT1H, NAA-
LADL1, SULT1A2 between SARS-CoV-2 and IBD, (b) BMX, IL6R, 
CYP3A5 between SARS-CoV-2 and RA, (c) CD163, CRISPLD2 between 
SARS-CoV-2 and SLE, (d) THBS2, CD200, ADAMTS2, MMP1, NDNF, 
TGFB3, NELL2, KCNJ8, FAM162B, HLA-L, MRC1, ADGRG5, PTPRCAP, 
CAPN8, PIK3C2B, JAKMIP1, ADAMTSL2, CLIC5, DDR1, HAO1, PAC-
SIN1, ITGB3, CNTN5, PARM1 between SARS-CoV-2 and T1D. 

As a consequence, to acquire statistically significant associations 
between SARS-CoV-2 and AD, we constructed both up and down- 
regulated gene-disease or diseasome association network concen-
trating on SARS-CoV-2, with a connection outlined between a disease 
and a gene when mutants in that gene are expected to induce the viral 
illness, which can be seen in Fig. 3 and Fig. 4. Also, if two or more 
disorders show evidence of associativity, they are consigned to as 
comorbid. 
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3.4. Protein-protein interaction network (PPIN) analysis 

Proteins are the foundation chunks of our bodies that enable us to 
function at maximum capacity. We have used STRING-a web resource to 
explore the PPIN triggered by our collective common DEGs of AD and 
SARS-CoV-2, then the network brought into Cytoscape for additional 
sub-module analysis. When two or more diseases share commonly 
associated protein subnetworks, they are considered to be inter-
connected [46]. As shown in Fig. 5, the PPIN is constituted of 103 nodes 
and 388 edges. Then topological analysis was determined by the Net-
workAnalyzer feature in Cytoscape and the most significant as well as 
highly interacting proteins are extracted which is also known as hub 
gene. Fig. 6 elucidates the generalized and more summarized 
sub-network of PPIN. This sub-network highlights the inclusion of 
existing and relevant functional pathways in our enriched gene sets, 
which would be helpful for therapeutic goals in the long run. The 
overview of hub proteins is put on view in Table 2. 

3.5. DEGs-TFs and DEGs-miRNAs interaction network analysis 

TFs are the proteins of gene expression in all living organisms that 
regulate at the transcription level which plays a vital role in the cellular 
process. Again, miRNAs are the short RNA species involved in the post 
transcriptional level [65]. To get comprehensions into regulatory ele-
ments shared mutually by each AD and SARS-CoV-2 at the transcrip-
tional and post-transcriptional level, we analyzed both DEGs-TFs 
interaction networks as shown in Fig. 8 and DEGs-miRNAs interaction 
network via NetworkAnalyst as shown in Fig. 7. 

3.6. Identification of repurposed drugs 

Drug repurposing is the process of using drugs that have been 
approved for use in other diseases, and it is particularly useful for 
speeding up and lowering the cost of silico drug repurposing since it lists 
the numerically ranked ranking of re-established drugs for the diseases. 
To get additional insight into drug discovery, drug repurposing studies 
have already been conducted on other illnesses such as Alzheimer’s, 
small cell lung cancer, breast cancer, and so on [66]. The utilization of 
drug repurposing for AD and SARS-CoV-2 is essential since it might lead 
to major interconnections between the diseases and existing drugs, as 
both ad and covid have shared underlying mechanisms. We have come 
across 4 drugs namely amlodipine besylate, vorinostat, methylprednis-
olone and disulfiram shared between SARS-CoV-2 and IBD, 2 drugs 
namely glimepiride and finasteride between SARS-CoV-2 and T1D; 
vorinostat was commonly found for IBD and RA. The founded drugs are 
listed on Table 3. Further analysis was conducted on those initiated 
drugs. 

4. Discussion 

SARS-CoV-2 has a considerable susceptibility of inducing respiratory 
difficulties and organ dysfunction in AD patients. Similarly, people with 
severe lung conditions are more likely to be infected with COVID-19, 
and patients with AD often experience shortness of breath. In this 
study, a methodology is formulated to investigate the quality verbal-
ization plans from two types of datasets (one is RNA-Seq and another 
one is microarray) of COVID-19 patients and AD; distinguished sub- 
atomic focuses that may help as possible biomarkers shared between 
SARS-CoV-2 and AD. It could likewise give significant data about their 
impacts on arising explicit illnesses or conditions. Articulation profiling 
by high throughput sequencing datasets is utilized in biomedical and 
system biology research has become a crucial asset for recognizing 
biomarker applicants of various illnesses. We uncovered common DEGs 
associated with SARS-CoV-2 and AD through investigating microarray 
and RNA-Seq datasets. Essentially, these significant common DEGs were 
required to assess further experiments in this study. 

GO refers to the ‘Gene Ontology’ is an enormous bioinformatics 
project that looks to normalize the depiction of gene and gene items 
ascribed to all living beings. One of the key functions of the GO is to do 
improvement research on consistency sets. It evaluates progressively by 
knowing biological terms about gene activities and their synchroniza-
tion of several metaphysical elements [44,67,68]. Enrichr was used to 
evaluate three types (biological process, cellular component, molecular 
function) of functional enrichment with our common DEGs. IBD and 
SARS-CoV-2’s pathological features have driven out that ECM was 
responding highly in both diseases [60,61]. As per the authors in 
Ref. [69], SARS-CoV-2 infection could exacerbate angiocentric inflam-
mation in COVID-19 induced respiratory failure. Again, it was observed 
that angiogenesis in COVID-19 patients is rapid and huge; further 
investigation is necessary to clarify how intussusceptive angiogenesis 
hinders COVID-19 therapeutic efficacy [70]. SARS-CoV-2 interaction 

Table 1 
Summarization of datasets employed to this study.  

Disease Name GEO Platform Tissue/Cell GEO 
Accession 

Case 
Samples 

Control 
Samples 

Up regulated 
genes 

Down Regulated 
genes 

SARS-CoV-2 Illumina NextSeq 500 primary human lung epithelium GSE147507 80 30 112 508 
Inflammatory Bowel 

Disorder 
Affymetrix Human Gene 
1.0 

colonic mucosal GSE59071 105 11 519 186 

Rheumatoid arthritis Affymetrix Human 
Genome U133A Array 

synovial membrane GSE55457 59 20 250 222 

Systemic Lupus 
Erythematosus 

Illumina HumanHT-12 
V4.0 

peripheral blood mononuclear cell GSE81622 30 25 19 49 

Type 1 Diabetics Illumina HiSeq 2500 stable Beta cells and alpha cells 
remain in the islet endocrine 

GSE106148 3 5 580 819  

Fig. 2. Venn graph reflects the distribution of common DEGs among SARS- 
CoV-2 and AD. 
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with immune cells modifies mitochondrial functions in host cells and 
generates a responsive intracellular environment for viral replication in 
infected cells, which may lead to disease progression in COVID-19 cases 
[71]. The pathogenesis of COVID-19 has been tied to elastic fiber pa-
thologies as well as vitamin K deficiencies, which may contribute to the 
discovery of the missing piece between lung damage and thromboge-
nicity [72]. During the COVID-19 disease outbreak, it was realized that 
interferon-alpha response was closely linked with COVID-19 infection in 
terms of determining clinical, pathologic, and laboratory characteristics 
in patients with chilblain-like lesions [73]. Histidine has a significant 
impact on SARS-CoV-2 infection on serum amino acid levels, according 
to metabolomics studies, and tends to decrease, particularly in the 
moderate-high IL6 group [74]. Responsive and intrinsic immune re-
sponses were shown to be involved and modulated endothelial cell 
proliferation in SLE and RA diseases [75]. In the cellular component 
(gene regulates function), SARS-CoV-2 and its spike protein are specif-
ically accountable for accelerating platelet activity, particularly alpha 
granule [76,77]. The authors in Ref. [78] recommended further in-
vestigations into MHCII alleles as it has recognized as emerging 
COVID-19 risk factors. COVID-19 T cell receptor assemblies sequenced 
by Next-Generation sequencing gained crucial insight into SARS-CoV-2 
adaptive immunity, and the authors in Ref. [79] delivered a 
much-needed resource for the scientific world to bring up to date clinical 
principles and vaccine production. From the molecular function obser-
vations, it has been found that the irregularity of the tyrosine kinase 
receptor (TKR) family and its signaling mechanisms are closely aligned 

to a significant percentage of diagnosed cancers. According to the study 
[80] of interference between SARS-CoV-2 and tyrosine kinase receptor 
signaling in cancer, propositioning of clinically formulated anti-TKR 
cancer drugs in COVID-19 as therapeutic agents could be useful for 
treating various types of cancer. Phosphoinositide 3-kinase was inhibi-
ted in the first phase of canon and non-canonic autophagy of 
SARS-CoV-2 at a nano-molar level that could be a forthcoming focus for 
the treatment of COVID-19 [81]. The defensive action towards 
COVID-19 at various levels is required to include zinc chelating agents 
such as citrate and ethylenediaminetetraacetic acid (EDTA) alone or in 
conjunction [82]. Any use of chemical compounds including MG132, 
epoxomycin, and bortezomib to constrain the proteasome helps to trim 
down virus entry into eukaryotic cells and hence the necessity for 
SARS-CoV-2 protein expression [83]. Proportionally, proteasome in-
hibitors could open up new prospects for the treatment of SARS-CoV-2. 

In bioinformatics, pathway inspection approaches may be castoff to 
identify key proteins within a previously defined pathway based on a 
complex obsessive disorder or to rebuild a pathway from proteins that 
have been identified as key affected components. Pathway analysis is the 
systematic opportunity to review an organism’s reactions to internal 
modifications [32]. SARS-CoV-2 responded about T cell (cTFH) activa-
tion and it worked against SARS-CoV-2 spikes to recover patients [84, 
85]. Relatedly, T cell activation is capable of controlling the AD and 
T-cell co-stimulatory pathways are actively evolving in IBD [86–88]. 
Then again, IL6 signaling pathway can be accelerating the treatment of 
SARS-CoV-2 and it has provisory intention towards another disease in 

Fig. 3. Up-regulated gene-disease association network (GDAN) between SARS-CoV-2 and AD; the common up-regulated gene nodes are distinguished by light green 
color in the shape of circle node which is interlinked to different types of disease nodes symbolized by red color in the shape of hexagon node. 
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RA [89,90]. LCK and Hub protein FYN tyrosine kinases in the initiation 
of the T cell receptor activation pathway are very much responsive to 
SARS-CoV as well as considerably affected in SLE [91,92]. The impact of 
pertussis toxin-insensitive CCR5 signaling pathway in SARS-CoV-2 is 

astonishing and can play an effective character in SARS-CoV-2 treatment 
[93]. Nevertheless, CCL5 levels were lower in remitters and positively 
correlated with HbA1c, indicating a Th1-related development of the 
T1D [94,95]. 

From the PPIN, we attained the most interacted genes also known as 
hub proteins. Kinase inhibitors are the major substance of human body 
that control funcitoning, cell signaling and many other processes. Recent 
studies have discovered FYN to be a prominent kinase inhibitor and a 
therapeutic target for COVID-19 in order to manage the infectious life 
cycle and mitigate lung-damaging signs of illness [47,48]. Clinically 
pro-inflammatory cytokine IL-6 was shown functioning at an elevated 
concentration in the pathophysiology of COVID-19 [47,51]. FYN, one of 
the hub proteins, initiates a phosphorylation immunorceptive motive of 
tyrosine-based motivation, eventually leading to the release of IL-6 
proinflammatory cytokines. The use of IL-6 antagonists like Tocilizu-
mab during the COVID-19 drug trial has been evidenced in this IL-6 
overproduction [49]. FYN activity was found to be quite high in CD4+

T cells from SLE patients, according to Anna Kozlowska and his team 
[50]. In addition, the tyrosine-protein kinase ITK, which promotes 
cytokine production, was shown to be substantially elevated in CD4+ T 
cells from SARS-CoV-2 patients with gastric cancer. SARS-CoV-2 infec-
tious pathogenesis evaluation has uncovered how cytokine storm plays a 
critical part in COVID-19 treatment, and ITK suppression has been 
proposed as a viable therapeutic option against COVID-19 [47]. 

Authors in Ref. [51] found high levels of ACE2 expression in endo-
thelial cells as a major participant and regulator of SARS-CoV-2 as well 
as inflammatory responses. While VEGFA has already been implicated in 
endothelial stimulation and dysfunction, it has also been attained 
up-regulated VEFGA in infected lungs in patients who have died of 
COVID-19. Authors also speculated that therapies aiming signaling 
pathways generated by VEGFA might be more prosperous for COVID-19. 
The level of enrichment of VEGFA in AD has been highly observed and 
targeting this biomarker might make available more insights on the 
challenges and activities of AD patients [52]. Likewise, VEGFA inter-
fering pathway with SARS-CoV-2 spike protein has already been 
detected to interact with pain signals and destabilization of the VEGFA 
signaling pathway boosts neuropathic pain [47]. Shrinking consistency 
of the KDR known as vascular endothelial growth factor receptor 2 
(VEGF2) might well be connected to the development of COVID-19 and 
also leading to pathogenesis [55]. In RA interpretation, a higher KDR 
serum was noticed that has several actions progressing to RA [56]. In 
monocyte-derived dendritic cells, the SARS-CoV-2 has opened a 
diminished interferon response, and therefore this lessened immune 
response to SARS-CoV-2 is aligned with viral antagonism of STAT1 
phosphorylation [57]. It was assumed that a catastrophic cascade of 
failures was led by COVID-19 pathophysiology which is initiated by 
NSP1 and ORF6 proteins -the gene products of SARS-CoV-2. Afterward, 
these molecules provoke STAT1 malfunction as well as accommodative 
STAT3 hyperactivation; the study [58] has also alluded that maximi-
zation of STAT1 activity and restriction of STAT3 functions might well 
be undermined the worsening STAT3 cycle that is indispensable to 
COVID-19. In SARS-CoV-2 infected cells, STAT1 was also involved in 
regulation [96]. CTNNB1 was a cytotoxin and gene control target of 
miRNAs encoded from SARS-CoV-2 [53]. The propensity of MALAT1’s 
to suppress fibroblast-like synoviocyte proliferation and inflammation 
by fostering CTNNB1 promoter methylation and retarding the Wnt 
signaling pathway could be used as a diagnostic biomarker for RA [54]. 
Further, hub gene B2M was shared by all AD [97]. The authors of [60] 
emphasized that the level of B2M should be closely monitored in 
COVID-19 patients because the tier of IL-6 somehow doesn’t signifi-
cantly decrease during treatment with Tocilizumab-an immunosup-
pressive medication employed to combat RA and systemic juvenile 
idiopathic arthritis and that it’s been recommended as a promising 
biomarker in the advancement of a treatment strategy for Tocilizumab. 
Ivermectin, an anti-parasite medicine that received FDA approval, can 
significantly avert the reproduction of SARS-CoV-2 in vitro, and B2M 

Fig. 4. Down-regulated gene-disease association network (GDAN) between 
SARS-CoV-2 and AD; the common down-regulated gene nodes are distinguished 
by light green color in the shape of circle node which is interlinked to different 
types of disease nodes symbolized by red color in the shape of hexagon node. 

Fig. 5. Protein interaction network (PPIN) of common DEGs between SARS- 
CoV-2 and AD. The hexagon nodes stand for top most interacted genes, 
whereas circle nodes symbolize DEGs and edges constitute interactions between 
nodes. The PPI network includes 103 nodes and 388 edges. String was utilized 
to obtain this PPIN network and then conceptualized in Cytoscape. 
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was claimed to be regulated by Ivermectin [98]. Again, from the analysis 
of peripheral blood immune cells in COVID-19 patients [61], it was 
unearthed that the CD3G hub gene had a downregulated expression 
level in the cluster of blood immune cells known as CD4+ and CD8+, 
both cells are also associated with COVID-19 patients with gastric cancer 
[47] and AD disease activities [50]. Following low-density lipoprotein 
particle receptor pathway activity in transcriptome study, ITGAV gene 
expression was found downregulated in COVID-19 patients [62]. ITGAV 

is integrins and integrins signals related gene; ITGAV was unpredictably 
expressed at a very high level in the lungs, signifying that it was more 
vulnerable to assaulting lung cells than other cells of the respiratory 
tracts and nasopharynx, according to an analysis of the transcriptome of 
COVID-19 patients with nasopharyngeal samples and other SARS-CoV-2 
infections [97]. Most lung diseases are caused by oxidative stress, and 
TGFB3 was attained to be a target for lung damage and recovery [63]. To 
open up the engagement between Bacille CalmetteGuérin vaccination 

Fig. 6. The streamlined hub PPIN is portrayed in Cytoscape with the inclusion of the Cytohubba plugin. The hexagon nodes in this illustration show the major hub 
genes and their interactions with other molecules, which are signified by the circular nodes. The network consists of 82 nodes and 354 edges. 

Table 2 
An overview of hub proteins derived from PPIN.  

Hub 
Gene 

Degree Closeness 
Centrality 

Betweenness 
Centrality 

Remarks Ref 

FYN 25 0.52406417 0.29810382 Considered as key kinase inhabitor and medicinal targets for COVID-19 remedy; engaged in the release 
of the proinflammatory cytokines, therefore leads to the initiation of COVID-19; found highly occupied 
in CD4+ T cells from SLE patients and connectivity with COVID-19 theraputics. 

[47–50] 

VEGFA 22 0.46666667 0.11766869 Stayed upregulated in lung infected paitents who have died from COVID-19 and recognized as 
conceivable theraputic target for COVID-19 treatment; acquired highly enriched in AD activities and 
severity. 

[51,52] 

CTNNB1 22 0.44545455 0.13809635 Identified as gene control target of miRNAs encoded from SARS-CoV-2; Identified as a diagnostic 
biomarker for RA. 

[53,54] 

KDR 18 0.44144144 0.08063474 Involved in the development of COVID-19 and its leading pathogenesis; noticed several actions in the 
progression of RA. 

[55,56] 

STAT1 18 0.4516129 0.2131105 Aligned with immune response activities of SARS-CoV-2; involved in regulation of SARS-CoV-2 
infected cells; 

[57,58] 

B2M 16 0.41350211 0.06292203 Engaged in AD; claimed to be regulated by ivermectin drug of SARS-CoV-2. [59,60] 
CD3G 16 0.406639 0.05465393 Detected in the cluster of blood immune cells (CD4+ and CD8+) from COVID-19 patients. [61] 
ITGAV 16 0.42241379 0.05534754 Expressed in downregulated level in surviving patients with COVID-19; Identified more vulnerable to 

invading lung cells than other cells of the respiratory tracts and nasopharynx. 
[62,63] 

TGFB3 15 0.37984496 0.04488816 Redirected to adopt Bacille CalmetteGuérin vaccination in a tuberculosis pathway enrichment test. [64]  
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and SARS-CoV-2 [64], TGFB3 was redirected to take on Bacille Calm-
etteGuérin vaccination in a tuberculosis pathway enrichment test. 

TFs plays a critical role in determining the transcription of their 
various target genes, allowing them to identify potential biomarkers. In 
this study, we have classified top TFs which are essential as regulators of 
DEGs-TFs interaction network in the pathogenesis of SARS-CoV-2 and 
AD. The acknowledged TFs regulate between SARS-CoV-2 and IBD are 
FOXC1, FOXL1, GATA2, YY1, PPARG, by the same token NFIC and SRF 
between SARS-CoV-2 and RA. Correspondingly, RELA, JUN are between 
SARS-CoV-2 and SLE; E2F1 is between SARS-CoV-2 and T1D. FOXC1, 
FOXL1, NFIC, and SRF were found regulated by potential key genes of 
SARS-CoV-2 and again has been also marked as repurposable drug as-
pirants for COVID-19 [89,90]. RELA was the novel cause behind the 
autoimmune lymphoproliferative syndrome-a primary immune disorder 
distinguished most frequently by deficient lymphocytic apoptosis (in 
immune cells and homeostasis, apoptosis plays a key role. Increased 
apoptosis of the lymphocytes may trigger cell loss of immunodeficiency. 

In contrast, apoptosis inhibition can contribute to autoimmunity or 
lymphoma developments) [99]. In consequence, we revealed that E2F1, 
FOXC1, GATA2, NFIC, and YY1 are broadly line up with lung cancer 
[100–102]. Simultaneously, GATA2 is connected to disseminating of 
parenchymal lung disease and the scarcity of GATA-2 in both children 
and adults was instigating serious pulmonary alveolar proteinosis which 
is a rare lung disorder distinguished by an abnormal accumulation of 
surfactant-derived lipoprotein compounds within the alveoli of the lung 
[103]. Yet again, according to the findings in Ref. [104], PPARG could 
drive as an encouraging treatment approach for lung squamous cell 
carcinoma. Besides this, it was also disclosed that E2F1 was regulated in 
different ways in both bronchoalveolar lavage fluid (a lower respiratory 
tract screening technique in which a bronchoscope is placed through the 
mouth or nose into a compatible trachea of the lungs, a detectable 
volume of fluid is introduced, and then obtained for analysis) and 
COVID-19 cases [105]. Moreover, as JUN expression could be modu-
lated by treatment with Pirfenidone which will be a conceivable 

Fig. 7. DEGs-miRNAs interaction networks between SARS-COV-2 and AD are shwoing for (a) SARS-CoV-2 and IBD (b) SARS-CoV-2 and RA (c) SARS-CoV-2 and SLE 
(d) SARS-CoV-2 and T1D. Hence, miRNAs are labeled by a diamond shape, and miRNAs-targeted genes are denoted by a hexagon shape. 
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treatment of COVID-19 infection; Pirfenidone is a drug that inhibits the 
creation of fibroblasts, fibrosis-associated proteins, and cytokines thus 
mounting biosynthesis and extracellular matrix aggregation through 
cytokine growth factors such as transforming growth factor-beta (TGF-β) 
and platelet-derived development factor. It is also used to cure idio-
pathic pulmonary fibrosis [103]. 

Investigational evidence recommends that miRNAs can patch up an 
intracellular resistance mechanism against some RNA viruses [106]. 
Along with that, we studied the DEGs-miRNAs interaction network to 
spot relevant miRNAs as probable targets for SARS-COV-2 and AD. The 
distinguished miRNAs act together between SARS-CoV-2 and IBD are 
hsa-miR-1273g-3p, hsa-miR-1273e, hsa-miR-6511a-5p, hsa--
miR-196a-5p, hsa-miR-125a-5, hsa-miR-15a-5p, hsa-mir-8066, 
hsa-mir-1307–3p, hsa-miR-149–3p and hsa-mir-1307–3p. In parallel, 
hsa-miR-2052, hsa-mir-410–5p, hsa-miR-1184, hsa-miR-34a-5p, 
hsa-miR-449a and hsa-miR-3691–3p between SARS-CoV-2 and RA, as 
well as hsa-mir-676–3p and hsa-miR-1976 between SARS-CoV-2 and 
SLE. Consequently, hsa-mir-4701–3p, hsa-miR-1270, hsa-miR-138-2-3p, 
hsa-mir-6736–5p, hsa-miR-4262, hsa-mir-1275, hsa-mir-1299 and 
hsa-miR-138–5p among SARS-CoV-2 and T1D. hsa-miR-3691–3p 

miRNAs was sensed to be actively occupied in transforming growth 
factor pathways, inflammatory response, cytokine-cytokine receptor 
interaction and oxidative stress, which prompts pulmonary damage in 
COVID-19 cases [107]. A number of miRNAs such as hsa-miR-1273g-3p, 
hsa-miR-6511a-5p, hsa-miR-1273e, hsa-miR-196a-5p, hsa-miR-125a-5, 
hsa-miR-149–3p, hsa-miR-34a-5p, hsa-miR-4701–3p are culpable for 
lung injuries and growing cancer cells such as lung cancer, squamous 
cell carcinoma, melanoma cancer [108–114]. Conversely, 
hsa-miR-196a-5p was acclaimed as vitally influential in the pathogen-
esis of non-small cell lung cancer by elevating in adherens junctions, 
relaxing signaling pathways, axon guidance, and transcriptional mis-
regulation; hsa-mir-2052 was taken [102] to be a downregulated reac-
tion to SOX2 in small cell lung cancer, which catalyzes cisplatin 
resistance, and it was also alleged to be a prospective candidate for 
chemoresistant therapy in the same way. Once more, hsa-mir-449a in-
hibits cancer cell proliferation and promotes apoptosis which upturns 
the sensitivity to the chemotherapeutic drug resistance, so it has been 
considered as a therapeutic goal to alleviate chemotherapeutic drug 
resistance in cancer that will upsurge the effectiveness of chemotherapy 
[115]. hsa-mir-1184 has deregulated flow in the blood of children 

Fig. 8. DEGs-TFs interaction network between SARS-COV-2 and AD. Hexagon nodes resemble TFs, even as circular nodes portray the molecules that interact as 
target of TFs. Viewings for (a) SARS-CoV-2 and IBD as well as the network consists of 71 nodes and 152 edges (b) SARS-CoV-2 and RA as well as the network the 
network consists of 83 nodes and 183 edges (c) SARS-CoV-2 and SLE as well as the network consists of 90 nodes and 356 edges (d) SARS-CoV-2 and T1D and the 
network consists of 583 nodes and 1441 edges. 
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affected with Sepsis (Sepsis is a presumably harmful disease that hap-
pens when the body’s immune system attacks its own tissues in response 
to an infection), along with that it can be an valuable recipient for the 
treatment of children with sepsis since it smears prohibited effects on 
inflammatory responses and apoptosis through assaulting TRADD 
(Tumor necrosis factor receptor type 1-associated DEATH domain pro-
tein) [116]. As well as hsa-mir-1976 has been termed as a non-invasive 
diagnostic object and therapeutic focus for sick sinus syndrome that is 
accompanying shortness of breath with opportunities to come across 
standpoints for mutually noticeable pathogenesis [117]. Both 
hsa-mir-2052 and hsa-mir-410–5p interact with RA, hsa-mir-676–3p 
and hsa-mir-4693–3p interact with SLE and T1D have been symbolized 
as common miRNAs that target multiple viral proteins, notably the Spike 
protein in SARS-CoV-2. Even so, by assimilating with ACE2, they help 
out with viral attachment and host cell entry [118]. The presumed 
SARS-CoV-2 affecting miRNAs (hsa-mir-1273g-3p, hsa-mir-1273e, 
hsa-mir-6511a-5p, hsa-mir-196a-5p engaged with IBD, hsa-mir-1184 
engaged with RA, hsa-mir-1976 engaged with SLE and 
hsa-mir-4701–3p, hsa-mir-1270, hsa-mir-138-2-3p, hsa-mir-6736–5p, 
hsa-mir-4262, hsa-mir-1275, hsa-mir-1299 engaged with T1D) in 
human lung epithelial cells or respiratory epithelial cells might provide 
insights into cellular resistance against viral infection and proliferation 
in the long run [106]. hsa-mir-125a-5p and hsa-mir-15a-5p miRNAs in 
IBD, hsa-mir-34a-5p and hsa-mir-449a miRNAs in RA from the other 
directions were noted as host miRNAs influencing SARS-CoV-2 genes, 
that could be make use of certifying the antiviral function and 
composing miRNA-based therapeutics against SARS-CoV-2 [119]. Based 
upon the study of mirNAs in SARS-CoV-2 genomes [120], it was hy-
pothesized that SARS-CoV-2 pathogenic VeroE6 cell line was caught up 
in hsa-mir-8066, hsa-mir-1307–3p responding with IBD and 
hsa-mir-3691–3p with RA. In order to sort potential targets of human 
miRNAs in SARS-CoV-2 towards RNA-based drug discovery [121], 

authors found that SARS-CoV-2 interacted heavily with hsa-mir-149–3p 
and hsa-mir-1307–3p associated miRNAs of IBD, both of which were 
found in a variety of respiratory epithelial and immune cell types 
including macrophages, that are elemental in COVID-19 pathogenesis. 

Drug repurposing is a powerful approach for getting new intuitions 
from an existing drug, which contributes to the emergence of a new drug 
at a lesser rate and with a shorter development period. COVID-19 pa-
tients with hypertension are treated with therapeutically validated cal-
cium channel blockers, that are contained in the Vero-6 cell line, and 
have a heightened chance of increasing SARS-CoV-2 infection. The 
addition of chlorine to the calcium channel blocker has been shown to be 
significantly effective in relieving SARS-CoV-2, including amlodipine 
besylate therapy, which was associated with reduced case mortality 
without having any strong cytotoxic effects; Researchers have suggested 
that amlodipine besylate could be an effective drug for COVID-19 pa-
tients with hypertension [122]. On the other hand, substantial inflam-
matory consequences have been tied to severe COVID-19, and 
researchers believe that antiviral effectiveness along with CCB to 
attenuate the inflammatory response might perform in an integrated 
manner [123]. The catecholamines contained in the neurotransmitter 
norepinephrine are also associated with COVID-19 because they played 
a major role in creating the conceivably disastrous cytokine storm. The 
neurotransmitter norepinephrine sedative vorinostat may also be used 
in the treatment of COVID-19 as recommended in Ref. [124]. Again, 
vorinostat has been reported to be useful in treating cancer since it is a 
broad-spectrum histone deacetylase inhibitor [125]. Patients with se-
vere COVID-19 pneumonia who obtained low-dose methylprednisolone 
before having medication for acute respiratory distress syndrome re-
ported improved treatment benefits [126]. Surprisingly, the authors in 
Ref. [127] revealed that high doses of methylprednisolone for COVID-19 
patients with pneumonia showed a rapid and significant improvement 
after tocilizumab had failed to work. The authors in Ref. [128] studied a 

Table 3 
Repurposed drug list for SARS-CoV-2 and AD; The drugs marked by yellow color was met the repuroisung criteria and chosen 
for further investigation. 
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clinical trial with methylprednisolone for critically ill hospitalized pa-
tients with confirmed COVID-19 in the early pulmonary stage of the 
disease in Iran; based on their findings, they concluded that methyl-
prednisolone pulse could be an efficacious remedy for patients with 
COVID-19 at the pulmonary stage. Experimental treatment with meth-
ylprednisolone enhanced the number of ventilator-free days and the 
likelihood of airway management in severe COVID-19 patients who 
required mechanical ventilation; however, the substantial difference in 
mortality was overlooked [129]. Early intake of methylprednisolone at 
low or medium doses has resulted in favorable benefits in COVID-19 
individuals under the age of 65, as well as an overactive immunolog-
ical response [130]. Disulfiram has been found to significantly suppress 
COVID-19-related behaviors in those who receive it for alcoholism 
[131]. Glimepiride, a medication to decrease glucose was observed to be 
beneficial in boosting cytokine profiles and immune response in 
COVID-19 individuals with type 2 diabetes mellitus [132]. Previous 
research has indicated that males are more than twice as likely as 
women to be contaminated with Covid-1 and to be transferred to the 
ICU. The majority of males infected with SARS-CoV-2 have androgenic 
alopecia, which is typically treated with androgens, and the authors 
suggest that finasteride may be more beneficial in this instance [133]. 
Regarding that, a short term of finasteride medication enhanced O2 
sufficiency but had no effect on other outcomes in male patients over the 
age of 50, demanding a large-scale study with extended follow-up to 
elucidate the finasteride strategy [134]. Considering the common 
pathogenesis shared between AD and SARS-CoV-2, it was speculated 
that remedies for AD could be used as a possible treatment to prevent 
SARS-CoV-2, which in turn would alleviate COVID-19 outbreaks [3]. 

5. Conclusion 

The current study deployed a bioinformatics and systems biology 
approach to ascertain the genetic effects of SARS-CoV-2 and AD from 
their transcriptomics datasets. We have identified ontological and 
pathway enrichment terminologies, built gene-disease association net-
works, identified regulatory transcription factors and protein-protein 
interaction sub-networks of SARS-CoV-2 and AD. The following find-
ings showed biological associations between SARS-CoV-2 and AD at the 
molecular and cellular level and may possibly play a fundamental role in 
the progression of AD. Our substantiated insights would be highly 
valuable for more precisely predicting and diagnosing SARS-CoV-2 
illness development in AD following gene-based evidence and traces. 
Furthermore, repurposed drugs uncovered from drug repurposing 
assessment, as well as their acclaimed affiliations, may conceivably give 
support to current vaccination and therapeutic development efforts for 
SARS-CoV-2 as a result of new perceptiveness into the underlying 
pathophysiology mechanisms connecting SARS-CoV-2 and AD. 
Adequate and necessary analysis with large-scale datasets in the future is 
needed to find out the further effectiveness of this study. 
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