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Abstract

The ubiquitin-selective chaperone Cdc48, a member of the AAA (ATPase Associated with various cellular Activities) ATPase
superfamily, is involved in many processes, including endoplasmic reticulum-associated degradation (ERAD), ubiquitin- and
proteasome-mediated protein degradation, and mitosis. Although Cdc48 was originally isolated as a cell cycle mutant in the
budding yeast Saccharomyces cerevisiae, its cell cycle functions have not been well appreciated. We found that temperature-
sensitive cdc48-3 mutant is largely arrested at mitosis at 37uC, whereas the mutant is also delayed in G1 progression at
38.5uC. Reporter assays show that the promoter activity of G1 cyclin CLN1, but not CLN2, is reduced in cdc48-3 at 38.5uC. The
cofactor npl4-1 and ufd1-2 mutants also exhibit G1 delay and reduced CLN1 promoter activity at 38.5uC, suggesting that
Npl4-Ufd1 complex mediates the function of Cdc48 at G1. The G1 delay of cdc48-3 at 38.5uC is a consequence of cell wall
defect that over-activates Mpk1, a MAPK family member important for cell wall integrity in response to stress conditions
including heat shock. cdc48-3 is hypersensitive to cell wall perturbing agents and is synthetic-sick with mutations in the cell
wall integrity signaling pathway. Our results suggest that the cell wall defect in cdc48-3 is exacerbated by heat shock, which
sustains Mpk1 activity to block G1 progression. Thus, Cdc48-Npl4-Ufd1 is important for the maintenance of cell wall
integrity in order for normal cell growth and division.
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Introduction

Budding yeast Cdc48 and its metazoan homolog p97, also

named as valosin-containing protein (VCP), are abundant and

evolutionarily conserved proteins. Cdc48/p97 belongs to the AAA

ATPase superfamily and is involved in many aspects of cellular

activities, including homotypic membrane fusion of organelles [1],

ERAD [2], ubiquitin/proteasome-mediated protein degradation

[3], and cell cycle control [4].

The diverse functions of Cdc48/p97 are mediated by specific

cofactors. The binary complex Npl4-Ufd1 is associated with ER

membrane and required for degradation of ER proteins [5]. Npl4

contains NZF domain that binds polyubiquitin chain [6]. The N-

terminal domain of Ufd1 also has a higher affinity toward

polyubiquitin than monoubiquitin [7]. Cdc48 coupled with Npl4-

Ufd1 functions in retrograde translocation of proteins from ER for

degradation (ERAD) [8]. Cdc48/p97 also binds a family of

proteins containing a ubiquitin-related (UBX) domain that is

structurally similar to ubiquitin [9]. Ubx1, also known as Shp1

(Suppressor of high copy protein phosphatase 1) [10], Ubx2,

Ubx4, Ubx6, and Ubx7 serve as cofactors for Cdc48 in ubiquitin-

dependent protein degradation [11]. Cdc48-Shp1 is also impor-

tant for chromosome bi-orientation [12]. On the other hand, the

mammalian homolog of Shp1, p47, is involved in membrane

fusion [13].

Budding yeast Cdc48 was originally isolated as a cell cycle

mutant that arrested in mitosis at the restrictive temperature [4].

Cdc48/p97 appears to have multiple functions in the cell cycle. In

budding yeast, Cdc48 is required for passing Start, the cell cycle

commitment point in G1, by degrading the G1-cyclin-dependent

kinase inhibitor Far1 [14]. In fission yeast, Cdc48 is required for

the metaphase-to-anaphase transition by stabilizing Separase [15],

the enzyme that cleaves cohesin components to separate sister

chromatids. We have previously demonstrated that budding yeast

Cdc48 and its cofactor Shp1 promote chromosome bi-orientation

by balancing Aurora B activity [12]. In addition, Cdc48/p97

together with Npl4-Ufd1 has been shown to participate in spindle

disassembly during mitotic exit [16], although the result is

controversial [17]. p97 is also important for the formation of a

closed nuclear envelope and nuclear expansion following nuclear

envelope formation [18]. Cdc48/p97 itself is regulated in the cell

cycle. The protein is primarily associated with membranes of

organelles such as the ER and the Golgi [1]. In G1 phase, a

fraction of Cdc48 enters the nucleus in a phosphorylation-

dependent manner [19]. The change of Cdc48 localization during

the cell cycle likely reflects its multiple functions.

Cell cycle progression is mainly governed by cyclin-dependent

kinases (CDK). Coupled with G1 or mitotic cyclins, the CDK

activity drives G1/S transition or mitotic entry, respectively.

Budding yeast has three G1 cyclins encoded by CLN1, CLN2, and
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CLN3 [20]. These G1 cyclins share redundant functions, as cells

can live on just one of the cyclins [21]. The expression of these

genes is induced as cells traverse G1. The mRNA and protein of

CLN3 constantly exist during the cell cycle and are modestly

induced at late G1 [22]. On the other hand, Cln1 and Cln2 are

present at low levels at early G1 and transiently induced before

Start [20,22]. The induction of CLN1 and CLN2 is mediated

through the SCB and MCB sequences in their promoters that bind

transcription factors Swi4/Swi6 (SBF) and Swi4/Mbp1 (MBF)

complexes, respectively [23]. Activation of both SBF and MBF is

dependent on the kinase activity of Cln3-Cdc28 [23]. Cln3-Cdc28

also inactivates Whi5, the transcription suppressor that inactivates

SBF specifically by direct binding until G1 [24,25]. Thus, Cln

proteins promote their own expression through a positive feedback

loop [26,27,28].

The Start commitment point in G1 phase of budding yeast is

controlled by nutrient availability, cell size, and the presence of

mating pheromone [29]. In addition, heat shock transiently

Figure 1. cdc48-3 is delayed in G1 progression at high temperature. (A) CDC48 and cdc48-3 cells were grown at 37uC or 38.5uC for 4 hr and
then analyzed by FACS. (B) CDC48 and cdc48-3 cells were first arrested at G1 with a-factor. The cells were shifted to 38.5uC during the last 30 min of
the arrest, and then released into the cell cycle at 38.5uC. Samples were taken at the indicated times after the release for FACS analysis. (C) Cells were
grown as described in (B) and their budding index at the indicated times during the cell cycle entry were determined. Filled diamond, no bud; open
circle, small bud; filled triangle, medium/large bud.
doi:10.1371/journal.pone.0018988.g001
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inhibits Start [30]. Heat shock generates misfolded or aggregated

proteins that trigger heat shock response pathway featuring the

induced synthesis of a set of evolutionarily conserved heat shock

proteins [31]. Many of the heat shock proteins are chaperones that

help protein folding [31]. The induction of heat shock proteins are

primarily mediated by heat shock factor (HSF) and transcription

factors Msn2 and Msn4 that bind to heat shock elements (HSE)

and stress response element (STRE), respectively, in the promoter

of many heat-inducible genes [32]. In addition, heat shock

activates the MAP kinase homolog Mpk1 that maintains cell wall

integrity and prevents cell lysis when cells are grown at elevated

temperature [33]. Mpk1 is downstream of Pkc1 that regulates a

protein kinase cascade in which Bck1 (MEK kinase) activates

Mkk1 and Mkk2 (MAP kinase-kinase) that in turn activate Mpk1

[34]. This cell wall integrity pathway senses the cell surface defects

through cell surface proteins Wsc1 [35] and Mid2 [36]. Mpk1

phosphorylates and activates transcription factor Rlm1 that

regulates the expression of many genes involved in the cell wall

biogenesis [37]. Mpk1 is also important for the heat shock-induced

transcription through the HSE and STRE elements [33]. In

addition, the SBF transcription factor is a target of Mpk1 [38],

providing a link between heat stress and cell cycle control.

In this study, we examine the cell cycle function of Cdc48 and

show that Cdc48 and the cofactor Npl4-Ufd1 complex are

important for maintaining the cell wall integrity during heat stress

to allow G1 progression.

Results

G1 delay of cdc48-3 at high temperature
In order to understand the cell cycle function of Cdc48, we

have examined the phenotypes of the temperature-sensitive

cdc48-3 mutant. The mutant was largely arrested at mitosis with

2N DNA content at 37uC as determined by fluorescence-

activated cell sorter (FACS) analysis (Fig. 1A). Interestingly, a

small fraction of cells contained 1N DNA at 38.5uC, indicating

that G1 progression was perturbed. To analyze the cell cycle

progression, we first arrested the cells at G1 with a-factor and

then released the arrest at 38.5uC. FACS analysis showed that

most of the wild-type cells completed DNA replication by

100 min after the release (Fig. 1B). However, less than 50%

cdc48-3 cells completed DNA replication by 100 min and some

cells still contained 1N DNA even at 140 min (Fig. 1B).

Examination of the cell morphology showed that more than

50% of wild-type cells have budded by 80 min after release from

a-factor arrest and more than 80% of the cells have become

large-budded after 140 min (Fig. 1C). However, only ,50% of

cdc48-3 cells have budded with only 20% large-budded cells at

140 min (Fig. 1C). These results show that cdc48-3 mutant was

delayed at G1/S transition at 38.5uC.

Reduced expression of G1 cyclin
G1 progression is controlled by the accumulation of G1 cyclins

encoded by CLN1, CLN2, and CLN3. Because CLN1 and CLN2

are transiently induced before G1/S transition, we measured the

promoter activities of CLN1 and CLN2 during a synchronous cell

cycle by reporter assays. Figure 2 shows that the luciferase activity

driven by the CLN1 promoter increased about 20 folds at

120 min after release from G1 arrest in the wild-type cells at

38.5uC, whereas the activity increased only 5 folds in cdc48-3.

CLN1 promoter activity was slightly lower in cdc48-3 than that in

the wild-type cells at 37uC during 100 min after release from G1

arrest (Fig. 2). The rise of the activity after 100 min in the wild-

type cells likely reflected the second cell cycle. cdc48-3 cells did

Figure 2. CLN1 promoter activity is reduced in cdc48-3 at high temperature. Wild-type and cdc48-3 cells carry Renilla reniformis and
Pyrophorus plagiophthalamus luciferases under the control of CLN1 and CLN2 promoters, respectively. Cells were first arrested at G1 with a-factor, and
then released into the cell cycle at 38.5uC or 37uC. Luciferase activities were measured in triplicates at the indicated times after the release. The
activities were normalized to that at time 0. The plot shows the average activities in fold increase and the standard deviation.
doi:10.1371/journal.pone.0018988.g002
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not show further increase of CLN1 promoter activity after

100 min, because the mutant was arrested at mitosis at 37uC
[12]. Unlike CLN1 promoter, CLN2 promoter-driven luciferase

activities were comparable in the wild-type and cdc48-3 cells at

both 38.5uC and 37uC (Fig. 2). This result suggests that CLN1,

but not CLN2, promoter activity was affected in cdc48-3 at

38.5uC.

The reduced CLN1 promoter activity in cdc48-3 at 38.5uC
suggests that the G1 delay may result from reduced levels of G1

cyclins. To test this possibility, we expressed CLN1 or CLN2

through the MET3 promoter in cdc48-3. The cells were released

from G1 arrest in methionine-free medium to induce CLN1 or

CLN2 expression. Without additional CLN1 or CLN2, cdc48-3 cells

in methionine-free medium traversed G1 slowly at 38.5uC, with

only 20% of the cells budded at 2.5 hr after release from the G1

arrest (Fig. 3A). Upon expression of CLN1 through MET3

promoter, more than 60% of cdc48-3 cells budded at 1.5 hr after

G1 release (Fig. 3A). The expression of CLN2 in cdc48-3 also

expedited G1 progression, with ,35% of the cells budded at

1.5 hr after G1 release (Fig. 3A). Western blots showed that the

ectopically expressed Cln1 and Cln2 proteins can be detected by

30 min after induction (Fig. 3B). These results show that

overexpression of either Cln1 or Cln2 protein can partially rescue

the G1 delay of cdc48-3 at high temperature and that Cln1 is more

effective in driving G1 progression than Cln2 is under this

condition.

Prolonged activation of Mpk1 in cdc48-3
Heat shock is known to transiently arrest yeast cells in G1,

raising the possibility that the G1 delay of cdc48-3 at 38.5uC may

be a consequence of heat stress. We thus examined Mpk1, a

MAPK family member and a component of the cell wall

integrity pathway that is activated by phosphorylation in

response to perturbation of the cell wall from various stress

conditions including heat shock. We monitored phosphorylated

Mpk1 with a phospho-MAPK antibody that recognizes several

phosphorylated MAPK members. In wild-type cells arrested at

G1 with a-factor, Mpk1 phosphorylation increased when the

growth temperature was shifted from 25uC to 38.5uC (Fig. 4, top

panel, compare lanes 1 and 2). After release from the arrest at

38.5uC, the phosphorylation remained for 20 min and gradually

declined afterwards (Fig. 4, top panel). Phosphorylation of Mpk1

in cdc48-3 was enhanced both at 25uC and upon temperature

up-shift in comparison with that in the wild-type cells, and it

sustained for at least 2 hr after release from a-factor arrest (Fig. 4,

top panel). The level of Mpk1 phosphorylation declined faster at

37uC than that at 38.5uC (Fig. 4, middle panel). At 37uC, Mpk1

in cdc48-3 was still phosphorylated to a higher degree than that

in the wild-type cells (Fig. 4, middle panel). At 25uC, Mpk1

phosphorylation disappeared shortly after release from a-factor

arrest in both wild-type and cdc48-3 cells (Fig. 4, bottom panel).

The anti-phospho-MAPK antibody also recognized phosphory-

lated Fus3, a mating-specific MAPK member that arrests the cell

cycle through transcriptional repression of CLN1 and CLN2 and

through posttranscriptional inhibition of Cln3 [39]. Fus3

phosphorylation was present in cells arrested with a-factor and

quickly disappeared upon release from the arrest in both wild-

type and cdc48-3 cells at all temperatures tested (Fig. 4). The

enhanced phosphorylation of Mpk1 in cdc48-3 at high temper-

ature suggests that the heat stress may be exacerbated in cdc48-3

mutant.

Because Mpk1 is a component of the cell wall integrity pathway,

the enhanced phosphorylation of Mpk1 in cdc48-3 indicates a

defect in the cell wall at high temperature. We tested this

possibility by including 1 M sorbitol in the medium to increase the

osmolarity which is known to protect the cell wall and prevent cell

lysis in mutants defective in the cell wall integrity pathway.

Without sorbitol addition less than 40% of cdc48-3 cells were

budded at 120 min after release from G1 arrest, whereas more

than 90% of the cells were budded in the presence of sorbitol

(Fig. 5A). Sorbitol addition also accelerated DNA replication in

cdc48-3 at 38.5uC, with a small lag compared to the wild-type cells

(Fig. 5A). In addition, reporter assays showed that sorbitol

treatment increased the CLN1 promoter activity in cdc48-3 at

38.5uC, although the activity was still slightly lower than that in

the wild-type cells (Fig. 5B). On the other hand, CLN2 promoter

activity at 38.5uC was not affected by sorbitol addition (Fig. 5B).

These results show that high osmolarity can rescue the G1 delay of

cdc48-3, which implies that cdc48-3 was defective in maintaining

the cell wall integrity during heat shock.

Figure 3. Ectopic expression of either Cln1 or Cln2 promotes
G1 progression in cdc48-3. (A) CDC48, cdc48-3, and cdc48-3
expressing 2myc-Cln1 or 2myc-Cln2 from MET3 promoter were first
arrested at G1 with a-factor in synthetic medium containing
methionine. The cells were shifted to 38.5uC during the last 30 min of
arrest, and then released from the arrest in methionine-free medium to
induce the expression of 2myc-Cln1 or 2myc-Cln2. Budding index was
determined at the indicated times after the release. Filled diamond, no
bud; open circle, small bud; filled triangle, medium/large bud. (B) Cells
from the above experiment were taken at the indicated times for
Western blots with anti-myc antibody to detect 2myc-Cln1 and 2myc-
Cln2. Mad2 blot serves as a loading control.
doi:10.1371/journal.pone.0018988.g003
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Npl4 and Ufd1 are involved in G1 progression
Because Cdc48 executes its diverse functions through specific

cofactors, we searched for the cofactors of Cdc48 involved in G1

progression. The known Cdc48 cofactors include Npl4-Ufd1

complex and a family of UBX domain-containing proteins. The

deletion mutants of the UBX family proteins did not display specific

G1 delay at high temperature (data not shown), whereas the

temperature-sensitive npl4-1 and ufd1-2 mutants were much delayed

in both budding and DNA replication upon release from a-factor

arrest at 38.5uC (Fig. 6A). Similar to cdc48-3, the promoter activity

of CLN1, but not CLN2, was reduced in npl4-1 and ufd1-2 at 38.5uC,

but not at 37uC (Fig. 6B). These results indicate that Npl4-Ufd1

complex mediates the function of Cdc48 in G1.

Cells grown at high temperature may accumulate denatured

proteins that need to be folded by chaperones or be degraded by

the ubiquitin-proteasome system. Because Cdc48 and Npl4-Ufd1

complex are important for ERAD, the G1 delay of cdc48-3, npl4-

1, and ufd1-2 cells at 38.5uC may be related to their ERAD

function. We thus examined the deletion of two other

components of the ERAD system, the ubiquitin-conjugation

enzyme UBC7 and the ubiquitin-protein ligase HRD1 [40].

FACS analysis showed that ubc7D and hrd1D mutants had only a

small delay in DNA replication during a synchronized cell cycle

at 38.5uC (Fig. 7A). This result suggests that defects in ERAD

do not impact on G1 progression during heat shock and that the

G1 delay of cdc48-3, npl4-1, and ufd1-2 mutants at 38.5uC is

Figure 4. Mpk1 phosphorylation is prolonged in cdc48-3 at high temperature. CDC48 and cdc48-3 cells were first arrested at G1 with a-
factor at 25uC. The cells were then shifted to the temperature indicated on the left during the last 30 min of the arrest (lanes 1 and 9, immediately
before temperature shift), and then released into the cell cycle at the same temperature. Samples were taken at the indicated times after the release
for Western blot with anti-phospho-MAPK antibody that recognizes both phosphorylated Mpk1 and Fus3. The migration of molecular size standard is
indicated on the left. Mad2 blot serves as a loading control.
doi:10.1371/journal.pone.0018988.g004
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probably independent of their functions in ERAD. To determine

if the G1 delay involves other aspects of protein degradation, we

examined the deletion of DOA1, a ubiquitin-binding protein that

bridges Cdc48 to its substrates for protein degradation [41].

FACS analysis showed that doa1D behaved essentially the same

as the wild-type cells at 38.5uC (Fig. 7A). In addition, cdc48-3,

npl4-1, and ufd1-2 cells at 38.5uC contained more ubiquitin-

cojugated proteins than did wild-type cells, whereas ubc7D,

hrd1D, and doa1D cells did not (Fig. 7B). We also analyzed

additional ERAD components, including ubiquitin ligase

Doa10 [40], the cytosolic Hsp70 chaperone Ssa1 involved in

ERAD of a membrane protein [42], and Ubx2 that recruits

Cdc48 to ERAD ubiquitin ligase [40]. Because ubx2D deletion

mutant grew very slowly in our strain background, we

conditionally controlled the expression of UBX2 with a

galactose-inducible promoter that can be suppressed with

glucose. Similar to ubc7D and hrd1D cells, doa10D, ssa1D, and

Ubx2-depleted cells did not accumulate ubiquitin conjugates

(Fig. S1). Furthermore, additional mutations in the ERAD

system did not abolish the ubiquitin conjugates in cdc48-3 (Fig.

S1), indicating that the proteins were ubiquitylated by an

ERAD-independent mechanism.

The accumulation of ubiquitylated proteins may lead to Mpk1

activation and G1 arrest in cdc48-3. To test this possibility, we

examined the effect of adding 1 M sorbitol to the medium during

temperature shift to 38.5uC, which suppressed G1 delay and

enhanced CLN1 promoter in cdc48-3 (Fig. 5). Figure 7C shows that

addition of sorbitol greatly reduced the level of phosphorylated

Mpk1 in both wild-type and cdc48-3 cells without an obvious effect

on the level of ubiquitin conjugates in cdc48-3 cells. Therefore,

accumulation of ubiquitylated proteins per se does not cause Mpk1

activation and G1 arrest in cdc48-3.

Our results of sorbitol treatment suggest that a cell wall defect is

likely the direct cause of Mpk1 phosphorylation and G1 delay in

cdc48-3. Thus, we tested the sensitivity of cdc48-3 to two cell wall

perturbing agents, Calcofluor white and Congo red. Figure 8A

shows that, unlike wild-type cells, cdc48-3 cells were unable to grow

on YPD plates containing either Calcofluor white or Congo red

even at 25uC or 30uC. This result suggests that the cell wall is

defective in cdc48-3.

To further link cdc48-3 to cell wall defect, we examined genetic

interaction between cdc48-3 and components of the cell wall

integrity pathway, including Mpk1, Pkc1 (the upstream kinase of

Mpk1), Rho1 (a G-protein and a regulator for Pkc1), and Rom2

(GDP/GTP exchange factor for Rho1). The single mutants of

these components were growth-defective at elevated temperatures,

which can be suppressed by the addition of 1 M sorbitol in the

medium up to 35uC (Fig. 8B and data not shown). Their double

mutants with cdc48-3 showed more severe growth phenotype than

did the single mutants (Fig. 8B). In the presence of sorbitol the

double mutants can grow at 30uC but behaved as cdc48-3 alone at

32uC (Fig. 8B). The synthetic phenotype in the double mutants

and its suppression by sorbitol suggest that failure to activate the

cell wall integrity pathway in cdc48-3 compromises cell viability

and that cdc48-3 normally activates this signaling pathway to

repair its cell wall defect.

Discussion

Mild heat shock is known to transiently arrest yeast cells at G1 [30].

Herein we report that mutations in Cdc48 and its cofactors Npl4 and

Ufd1 prolong the G1 delay in the budding yeast Saccharomyces cerevisiae

at 38.5uC. This delay is due to a low CLN1, but not CLN2, promoter

activity. Several lines of evidence support that the G1 delay of cdc48-3

at 38.5uC is a consequence of cell wall defect. First, phosphorylation

of Mpk1, a MAPK family member important for the cell wall

integrity pathway, is increased in cdc48-3 at 38.5uC. Second, the

CLN1 promoter activity and the G1 delay in cdc48-3 are rescued by

an increase of osmolarity in the medium to protect the cell wall.

Furthermore, cdc48-3 is hypersensitive to cell wall perturbing agents

and is synthetic-sick with mutations in the cell wall integrity signaling

pathway. Our study suggests that Cdc48 is important for cell wall

integrity. The cell wall defect in cdc48-3 is probably exacerbated at

high temperature (38.5uC) to a degree that over-activates the cell wall

integrity pathway and delays G1 progression.

We show that G1 cyclins CLN1 and CLN2 are differentially

regulated in cdc48-3 at 38.5uC. The activity of CLN1 promoter is

lower in cdc48-3 mutant at 38.5uC than that in the wild-type cells,

whereas the CLN2 promoter activities are comparable in both

strains. Both CLN1 and CLN2 promoters are activated by Swi4/

Swi6 (SBF) and Mbp1/Swi6 (MBF) complexes that recognize

multiple SCB and MCB sequences, respectively, in the upstream

regions of CLN1 and CLN2 [43]. Thus, CLN1 and CLN2 are known

to be regulated similarly during the cell cycle. Our study provides a

rare example that these genes can be regulated differently. Heat

stress is known to induce the transcription repressor Xbp1 that

shares homology with Swi4 and Mbp1 in the DNA-binding

domain [44]. Despite the structural similarity, the DNA

recognition sequence of Xbp1 is distinct from Swi4/Swi6 and

Mbp1/Swi6 binding sites. The binding motif for Xbp1 is present

in CLN1 promoter, and overexpression of Xbp1 can repress the

expression of G1 cyclins and lengthen G1. We have found that

deletion of XBP1 gene in cdc48-3 promoted budding at 38.5uC,

compared to cdc48-3 alone (Fig. S2), suggesting that Xbp1

contributes to the suppression of CLN1 promoter in cdc48-3.

How heat stress may control the activity of Xbp1 remains to be

determined. Furthermore, the levels of Swi4 and Swi6 proteins are

similar in wild-type and cdc48-3 cells at 38.5uC (Fig. S3). However,

we cannot exclude the possibility that these transcription activators

are modified differently in response to heat stress in cdc48-3 cells

and that CLN1 promoter may be more sensitive to the small

alteration of these proteins.

A role for Cdc48 in G1 has been suggested previously [14]. By

using a temperature-sensitive degron-tagged cdc48-td mutant, it has

been shown that Cdc48 is required for the execution of Start

commitment point in Saccharomyces cerevisiae by degrading the G1-

cyclin-dependent kinase inhibitor Far1 [45]. In cdc48-3 mutant

Far1 is still degraded with kinetics similar to that in the wild-type

cells at 38.5uC (Fig. S3), indicating that the G1 delay of cdc48-3 is

not due to a defect in the degradation of Far1. Together, studies

with different cdc48 mutant alleles reveal that Cdc48 is important

for G1 progression during a normal cell cycle and under heat stress

through different mechanisms.

Figure 5. High osmolarity rescues G1 defects of cdc48-3. (A) CDC48 and cdc48-3 cells were first arrested at G1 with a-factor. The cells were
shifted to 38.5uC during the last 30 min of the arrest in YPD or YPD containing 1 M sorbitol. The cells were then released in the same medium at
38.5uC, and samples were taken for budding index determination and FACS analysis. (B) CDC48 and cdc48-3 cells carrying luciferases under the
control of CLN1 and CLN2 promoters were grown as described above and samples were taken at the indicated times for the measurement of
luciferase activities. The plot shows the average of three measurements in fold increase and the standard deviation.
doi:10.1371/journal.pone.0018988.g005
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Figure 6. G1 progression is delayed in npl4-1 and ufd1-2 at high temperature. (A) Wild-type, npl4-1, and ufd1-2 cells were released from G1
arrest at 38.5uC as described in Figure 1B. Budding index and FACS were analyzed after the lease. Filled diamond, no bud; open circle, small bud; filled
triangle, medium/large bud. (B) Wild-type, npl4-1, and ufd1-2 cells carrying luciferases under CLN1 and CLN2 promoters were released from G1 arrest
at 38.5uC or 37uC as described in Figure 1B. Samples were taken at the indicated times after the release for the measurement of luciferase activities.
The plot shows the average of three measurements in fold increase and the standard deviation.
doi:10.1371/journal.pone.0018988.g006
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Heat shock is known to transiently arrest cells before Start by

repressing transcription of CLN1 and CLN2 [46]. Deletion of any

G1 cyclin genes has no significant effect on the transient arrest

from heat shock at 37uC [46]. In our study we found that G1

progression is further delayed in cdc48-3 at 38.5uC, even though

CLN2 expression is similar to that of wild-type cells. It is probable

that cells require more G1 cyclin activity to recover from the heat

stress incurred at a higher temperature.

Cdc48 is best known for its function in ERAD that is one of the

protein quality control systems [47]. Secretory and membrane

proteins are normally synthesized and folded in the ER. Misfolded

or unassembled proteins are retained in the ER and subsequently

degraded via ERAD. Heat shock may cause accumulation of

misfolded or aggregated proteins in the ER that need to be removed

through the ERAD pathway. Indeed, we found that cdc48-3, npl4-1,

and ufd1-2 mutants accumulated higher levels of ubiquitin

conjugates than did the wild-type cells at 38.5uC (Fig. 7B).

Subcellular fractionation shows that the ubiquitin conjugates were

enriched in the ER fractions (Fig. S4). Interestingly, mutations in

other ERAD components did not abolish the accumulation of

ubiquitylated proteins in cdc48-3 (Fig. S1). Thus, Cdc48-Npl4-Ufd1

is also required for degradation of ER proteins that are

ubiquitylated by ERAD-independent pathway. Furthermore,

deletion of ERAD components UBC7 and HRD1 has no significant

effect on the G1 progression at 38.5uC, suggesting that a defect in

ERAD system does not cause G1 arrest in response to heat stress.

Therefore, the G1 delay of cdc48-3, npl4-1, and ufd1-2 mutants at

38.5uC is independent of their ERAD function. However, we

cannot exclude the possibility that there may be other unknown or

redundant ERAD components that function together with Cdc48-

Npl4-Ufd1 to remove the ubiquitylated proteins from the ER.

We observe enhanced phosphorylation of Mpk1, a MAPK

family member downstream of Pkc1, in cdc48-3 mutant at 38.5uC.

This pathway is activated by hypotonic shock or by heat stress

[48], and the activation is sustained during growth at a high

temperature [33]. Because Pkc1-regulated signaling pathway is

known to detect and respond to weakness in the cell wall, the

sustained phosphorylation of Mpk1 in cdc48-3 suggests that the

defect in the cell wall or the plasma membrane is not repaired.

That the addition of sorbitol restores cell growth without affecting

the overall ubiquitylation level (Figs. 5 and 7C) indicates that the

G1 defect of cdc48-3 is caused by cell wall defect, rather than the

accumulation of denatured proteins per se. The sensitivity of

cdc48-3 to cell wall perturbing agents at permissive temperature

indicates a cell wall defect that is likely exacerbated at high

temperature. In addition, Mpk1 phosphorylation is also increased

in the cold-sensitive cdc48-1 mutant at 14uC compared to that in

the wild-type cells (Fig. S5A), which is consistent with the notion

that Cdc48 is required for cells wall integrity. Mpk1 is increasingly

phosphorylated with elevated temperatures and the levels are

similar between the wild-type and cdc48-1 cells (Fig. S5A), showing

that the cold-sensitive cdc48-1 mutant has normal response to heat

shock. On the other hand, Mpk1 is phosphorylated to a higher

degree in cdc48-3 than in the wild-type cells at both 37u and

38.5uC (Fig. 4 and S5B). We believe that the heat-induced Mpk1

activation in wild-type cells elicits cell wall repair and transient G1

arrest, whereas overactivation of Mpk1 in cdc48-3 caused by failure

to repair the cell wall prolongs G1 arrest.

Heat shock is known to create cell wall stress that activates the cell

wall integrity pathway, leading to phosphorylation and activation of

transcription factor Rlm1 by Mpk1 [37]. Rlm1 induces expression

of many genes implicated in cell wall biogenesis [49]. Mutants in this

pathway are deficient in cell wall construction, leading to cell lysis at

elevated temperatures. The enzymes for cell wall biogenesis mostly

reside in the plasma membrane or the cell wall [50] and are

synthesized and modified in ER. It has been shown that proteins

synthesized during heat shock are prone to denaturation and are

rapidly degraded through Cdc48-Npl4-Ufd1, independently of

ERAD [51]. The accumulation of ubiquitylated proteins in the ER

of cdc48-3 cells (Fig. S4) suggests a possibility that some of the newly

synthesized enzymes for cell wall biogenesis may be denatured and

ubiquitylated in the ER during heat shock. Inability to efficiently

degrade these proteins in cdc48-3 cells may perturb repair of the cell

wall and sustain cell wall integrity pathway, leading to G1 arrest.

This effect is specific to certain targets of Cdc48, rather than a

general inhibition of protein degradation, because the level of Mpk1

Figure 7. G1 defect of cdc48-3 is independent of its ERAD
function. (A) Wild-type, ubc7D, hrd1D, and doa1D cells were released
from G1 arrest at 38.5uC as described in Figure 1B. Samples were taken
at the indicated times for FACS analysis. (B) Wild-type or the indicated
mutant cells were grown at 38.5uC for 3 hr. Cell lysates were prepared
for Western blots with anti-ubiquitin (Ub) and anti-Mad2 antibodies.
Mad2 serves as a loading control. (C) Wild-type (lanes 1 and 3) and
cdc48-3 (lanes 2 and 4) cells were shifted to 38.5uC for 3 hr in the
presence (lanes 3 and 4) or absence (lanes 1 and 2) of 1 M sorbitol. Cell
lysates were prepared for Western blots with anti-ubiquitin (Ub), anti-
phospho-MAPK (p-Mpk1), and anti-Mad2 antibodies.
doi:10.1371/journal.pone.0018988.g007
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phosphorylation in the proteasome mutants rpt2RF and rpt5S is

comparable to that in the wild type at 38.5uC (Fig. S5C). In

addition, these proteasome mutants are not sensitive to chemicals

that perturb the cell wall (data not shown). These results suggest that

defects in proteasomal degradation and accumulation of poly-

ubiquitylated protein per se do not cause cell wall defect or Mpk1

overactivation. It is probable that these proteasome mutants do not

accumulate polyubiquitylated proteins in the ER to perturb the

synthesis or maturation of cell wall repair enzymes. The direct

targets of Cdc48 in the cell wall biogenesis pathway remain to be

determined in the future.

Materials and Methods

Growth of yeast
YEPD medium contained 1% yeast extract, 2% bacto-peptone,

and 2% glucose. Complete synthetic medium contained 0.67%

yeast nitrogen base without amino acids (YNB), 16 complete

supplement mixture (CSM) (Bio 101), and 2% glucose. For

induction from the MET3 promoter, 16CSM was replaced by 16
CSM without methionine. To arrest cells at G1, a-factor (Sigma)

was added at 1 mg/ml from a 10 mg/ml stock in DMSO and the

cells were grown at 25uC for 3 hr. Cells were then shifted to the

indicated temperature for 30 min. To release from G1 arrest, the

cells were washed 3 times with warm water and then resuspended

in pre-warmed medium at the indicated temperature.

Construction of plasmids and yeast strains
Table 1 lists the yeast strains used in this work. All strains are

derivatives of W303, except cdc48-1 [1], rpt2RF, and rpt5S [52] that

were used in Figure S5. npl4-1, ufd1-2, and rho1-104 mutants were

backcrossed four times to W303. Gene deletions, epitope tagging,

and introduction of pGAL to UBX2 were generated by PCR-

mediated integration [53]. For the reporter constructs, the promoter

Figure 8. The cell wall is defective in cdc48-3. (A) Wild-type and cdc48-3 cells were spotted in 10-fold serial dilutions from left to right on YPD
(top), YPD containing 25 mg/ml Calcofluor white (middle) or 100 mg/ml Congo red (bottom). Plates were incubated at 25uC or 30uC and
photographed after 1–3 days. (B) Wild-type and the indicated mutant strains were spotted in 10-fold serial dilutions from left to right on YPD (upper)
or YPD containing 1 M sorbitol (lower). Plates were incubated at temperatures indicated on the top.
doi:10.1371/journal.pone.0018988.g008
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regions (1000 bp upstream of the start codon) of CLN1 and CLN2

were amplified by PCR from yeast genomic DNA and cloned at SacI

and XbaI sites upstream of Renilla reniformis (RLUC) and Pyrophorus

plagiophthalamus (spLUC) Luciferase, respectively, in pRS416. pCLN1-

RLUC and pCLN2-spLUC regions were then removed with SacI and

SmaI and cloned into the cognate sites in vectors pRS404 and

pRS405, respectively. pRS404-pCLN1-RLUC and pRS405-pCLN2-

spLUC were linearlized with Bsu36I and XcmI, respectively, to

integrate into yeast genome at the selection markers.

Western blot
1.5 ml of yeast culture at OD600 ,1 was collected and washed

once with cold TE (10 mM Tris [pH 8.0], 1 mM EDTA). Cell

pellets were frozen at 280uC if not used immediately. Proteins were

extracted by bead-beating the cell pellet in 60–80 ml lysis buffer

(10 mM potassium phosphate [pH 7.2], 1 mM EDTA, 5 mM

EGTA, 50 mM b-glycerophosphate, 1 mM sodium vanadate,

10 mM MgCl2, 0.5% Triton X-100, 0.1% sodium deoxycholate,

0.1% SDS, 1 mM PMSF, 0.5 mM DTT, 10 mg/ml each of

leupeptin, pepstatin and chymostatin) with Zirconia beads at 4uC
for 1 min. Samples were then centrifuged at 14,000 rpm for 5 min

at 4uC, and the supernatants were taken as yeast cell lysates. For

Western blot with anti-ubiquitin antibody, the cell pellets were

bead-beat in RIPA (10 mM Tris [pH 7.2], 150 mM NaCl, 1%

sodium deoxycholate, 1% Triton X-100, 0.1% SDS, 1 mM sodium

vanadate) containing 10 mM N-Ethylmaleimide, 10 mg/ml each of

leupeptin, pepstatin and chymostatin, 1 mM PMSF, and 16
protease inhibitor cocktail (Roche). Protein concentration was

determined with DC protein assay kit (Biorad), and then normalized

with lysis or RIPA buffer. Proteins were resolved by SDS-PAGE

and transferred to nitrocellulose membrane. The membrane was

first pre-blocked with blocking solution (PBS containing 2% BSA,

0.2% Tween-20, 0.05% sodium azide) for 1 hr at room temper-

ature, followed by incubation with antibodies in blocking solution

for 2 hr at room temperature. Antibody dilution: anti-myc (9E10,

Covance, 1:500), anti-HA (16B12, Covance, 1:500), anti-Mad2

(1:2000) [54], anti-phospho-MAPK (9101, Cell Signaling, 1:1000),

anti-ubiquitin (P4D1, Covance, 1:500), anti-Pma1 (1:5000), and

anti-Sec61 (1:5000). The latter two antibodies were provided by Dr.

Chao-Wen Wang (IPMS, Academia Sinica).

FACS analysis
1 ml of yeast cells were pelleted and resuspended in ice-cold fix

solution (40% ethanol, 0.1 M sorbitol, 5 mM EDTA, 5 mM

sodium azide). Samples were temporarily frozen at 280uC. Cells

were then washed with PBS plus 0.5% Triton X-100, and

incubated with 100 mg/ml of RNaseA in 50 mM Tris-Cl (pH 8.0)

overnight at 37uC. Cells were then resuspended in 100–200 ml of

Sytox Green (Invitrogen, 1:400 in 38 mM sodium citrate) and

briefly sonicated. Samples were diluted in 1 ml PBS and analyzed

by FACSCalibur flow cytometer (BD Biosciences).

Luciferase assay
Yeast cells carrying pCLN1-RLUC and pCLN2-spLUC were

grown to mid-log phase and arrested at G1 stage by a-factor. The

cells were shifted to 37uC or 38.5uC for 30 min before release from

the arrest at the same temperature. At each time point, OD600 of

the culture was measured and another 1.5 ml of yeast cells were

collected. The cells were washed with cold PBS and frozen at

280uC until use. Cell pellets were resuspended to 65 ml in PBS,

and 20 ml of the sample was used for each luminescence

measurement with Vector3 luminometer plus autoinjector (Perkin

Elmer). Through the autoinjector, 100 ml of 1 mM coelenterazine

(Promega) and D-Luciferin (Sigma) was added to the sample for R.

Luciferase and sp Luciferase, respectively, with 5-sec equilibration

and 10-sec integration time for the measurement of luminescence.

The results were normalized with OD600.

Subcellular fractionation
Subcellular fractionation was performed as described [55]. Briefly,

80 OD600 of cells were disrupted by bead-beating in STE buffer

(10 mM Tris-HCl [pH 7.6], 10 mM EDTA, 10% [wt/wt] sucrose,

protease inhibitor cocktail [Roche], 1 mM PMSF, 10 mM N-

Table 1. Yeast strains used in this study.

Strains Genotype

W303 ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1
ura3-1 bar1D MATa

RHC677 cdc48-3::HIS3

RHC2078 pCLN1-R-Luc::TRP1 pCLN2-sp-Luc::LEU2

RHC2079 pCLN1-R-Luc::TRP1 pCLN2-sp-Luc::LEU2 cdc48-3::HIS3

RHC1445 pMET3-2myc-CLN1::LEU2

RHC1446 pMET3-2myc-CLN1::LEU2 cdc48-3::HIS3

RHC1553 pMET3-2myc-CLN2:: LEU2

RHC1554 pMET3-2myc-CLN2::LEU2 cdc48-3:: HIS3

RHC1122 ufd1-2

RHC1126 npl4-1

RHC2080 pCLN1-R-Luc::TRP1 pCLN2-sp-Luc::LEU2 npl4-1

RHC2081 pCLN1-R-Luc::TRP1 pCLN2-sp-Luc::LEU2 ufd1-2

RHC1764 rom2D::URA3

RHC1767 rom2D::URA3 cdc48-3::HIS3

RHC1760 rho1-104

RHC1762 rho1-104 cdc48-3::HIS3

RHC1769 pkc1-2[Ycp50] pkc1D::LEU2

RHC1772 pkc1-2[Ycp50] pkc1D::LEU2 cdc48-3::HIS3

RHC2210 mpk1D::HYG

RHC2211 mpk1D::HYG cdc48-3::HIS3

RHC1740 SWI4-3HA::TRP1

RHC1741 SWI4-3HA::TRP1 cdc48-3::HIS3

RHC1742 SWI6-3HA::TRP1

RHC1743 SWI6-3HA::TRP1 cdc48-3::HIS3

RHC1746 FAR1-3HA::KanMX6

RHC1747 FAR1-3HA::KanMX6 cdc48-3::HIS3

RHC1801 CLN1-3HA::KanMX6 xbp1D::TRP1

RHC1802 CLN1-3HA::KanMX6 xbp1D::TRP1 cdc48-3::HIS3

RHC1726 ubc7D::KanMX6

RHC1729 ubc7D::KanMX6 cdc48-3::HIS3

RHC1727 hrd1D:: KanMX6

RHC1730 hrd1D:: KanMX6 cdc48-3::HIS3

RHC1728 doa1D:: KanMX6

RHC2118 doa10D::HYG

RHC2119 doa10D::HYG cdc48-3::HIS3

RHC2120 ssa1D::HYG

RHC2121 ssa1D::HYG cdc48-3::HIS3

RHC1531 pGAL-UBX2::TRP1

RHC1834 pGAL-UBX2::TRP1 cdc48-3::HIS3

doi:10.1371/journal.pone.0018988.t001
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Ethylmaleimide, 10 mg/ml each of leupeptin, pepstatin and

chymostatin). Unbroken cells were pelleted by centrifugation at

3006g for 2 min at 4uC. Total lysate from the supernatant was then

subjected to centrifugation at 100,0006g for 60 min at 4uC (TLS55

rotor, Beckman, Optima Max centrifuge). The resulting supernatant

and pellet represent cytosol and membrane fractions, respectively.

The membrane pellet was then resuspended in STE buffer and

layered on top of a continuous gradient composed of 20–60% (wt/

wt) sucrose in 5 ml of TE buffer (10 mM Tris-HCl [pH 7.6],

10 mM EDTA). After centrifugation at 100,0006g for 18 hr at 4uC
(MLS50.1 rotor, Beckman, Optima Max centrifuge), fractions of

356 ml were manually collected from top to bottom of the gradient.

Proteins were resolved by SDS-PAGE for Western blot analysis.

Supporting Information

Figure S1 Accumulation of ubiquitin conjugates in
cdc48-3 is independent of ERAD components. Wild-type

and the indicated mutant strains were grown to mid-log phase and

shifted to 38.5uC for 3 hr. pGAL-UBX2 and pGAL-UBX2 cdc48-3

were first grown in YEP containing galactose to mid-log phase and

then changed to YPD to suppress Ubx2 expression for 2 hr before

shifting to 38.5uC for 3 hr. Cell lysates were prepared for Western

blots with anti-ubiquitin (Ub) and anti-Mad2 antibodies. Mad2

serves as a loading control.

(TIF)

Figure S2 Deletion of XBP1 partially rescues budding
defect of cdc48-3 at 38.56C. Wild type, cdc48-3, xbp1D, and

xbp1D cdc48-3 cells were grown as described in Figure 1B and their

budding index at the indicated times during the cell cycle entry

were determined. Filled diamond, no bud; open circle, small bud;

filled triangle, medium/large bud.

(TIF)

Figure S3 The protein levels of Swi4, Swi6, and Far1 are
unaffected by temperature up-shift in cdc48-3. Swi4, Swi6,

and Far1 were tagged at the carboxyl-terminus with 3HA at the

chromosomal loci in CDC48 and cdc48-3 cells. The cells were

arrested at G1 with a-factor and released into the cell cycle at

38.5uC as described in Figure 1B. Samples were taken at the

indicated times after the release for Western blot with anti-HA

antibody. Asterisks denote cross-reacting proteins. The migration

of molecular size standard is indicated on the left.

(TIF)

Figure S4 Ubiquitin conjugates are enriched in the ER
fraction of cdc48-3. CDC48 and cdc48-3 cells were grown to

mid-log phase and shifted to 38.5uC for 3 hr. Total cell lysates

(lanes 1 and 2) were prepared and then separated into cytosol

(lanes 3 and 4) and membrane (lanes 5 and 6) fractions. The

membrane fractions were further fractionated by continuous 20-

60% (wt/wt) sucrose gradient (lanes 7-20, CDC48; lanes 21-34,

cdc48-3). The fraction numbers from top to bottom of the gradient

are indicated. Equivalent to 1/500 of the total lysate, cytosol, and

membrane fractions as well as 1/100 of each fraction from the

sucrose gradient were subjected to Western blot analysis with

antibodies against ubiquitin (Ub), ER protein Sec61, and plasma

membrane protein Pma1.

(TIF)

Figure S5 Phosphorylation of Mpk1 is enhanced in
cdc48 mutants, but not in proteasome mutants. Cells of

indicated genotypes were first grown at 25uC and then shifted to

14uC for 2 days or other indicated temperatures for 3 hr. Cell

lysates were prepared for Western blots with anti-phospho-Mpk1

and anti-Mad2 antibodies. Mad2 serves as a loading control.

(TIF)
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