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Abstract

Background: Exposure of plants to herbivore-induced plant volatiles (HIPVs) alters their resistance to herbivores. However,
the whole-genome transcriptional responses of treated plants remain unknown, and the signal pathways that produce
HIPVs are also unclear.

Methodology/Principal Findings: Time course patterns of the gene expression of Arabidopsis thaliana exposed to Lima
bean volatiles were examined using Affymetrix ATH1 genome arrays. Results showed that A. thaliana received and
responded to leafminer-induced volatiles from Lima beans through up-regulation of genes related to the ethylene (ET) and
jasmonic acid pathways. Time course analysis revealed strong and partly qualitative differences in the responses between
exposure at 24 and that at 48 h. Further experiments using either A. thaliana ET mutant ein2-1 or A. thaliana jasmonic acid
mutant coi1-2 indicated that both pathways are involved in the volatile response process but that the ET pathway is
indispensable for detecting volatiles. Moreover, transcriptional comparisons showed that plant responses to larval feeding
do not merely magnify the volatile response process. Finally, (Z)-3-hexen-ol, ocimene, (3E)-4,8-dimethyl-1,3,7-nonatriene,
and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene triggered responses in A. thaliana similar to those induced by the entire
suite of Lima bean volatiles after 24 and 48 h.

Conclusions/Significance: This study shows that the transcriptional responses of plants to HIPVs become stronger as
treatment time increases and that ET signals are critical during this process.
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Introduction

A considerable amount of the carbon assimilated by plants is

released back to the atmosphere as volatile organic compounds

(VOCs), which often become even stronger after plants are

attacked by herbivores. These VOC emissions after herbivore

attack are often called herbivore-induced plant volatiles (HIPVs).

Plant volatiles can mediate many important ecological processes

[1], such as pollination, and indirect defenses in which natural

enemies of the herbivores are attracted [2]. HIPVs also mediate

plant–plant communication in the sense that plants attacked by

herbivores can warn their intact neighbors of danger by emitting

HIPVs [3].

Since the first reports on plant–plant communication in 1983

[3,4], this phenomenon has been questioned [5], thoroughly

investigated [6,7,8,9], and experimentally proven [10,11]. The

molecular mechanisms and ecological relevance of plant–plant

communication have attracted much interest from the research

community, especially during the last 10 years [10], as a result of

which its mechanisms have gradually emerged. Plant–plant

communication is a common phenomenon in nature. Research

has shown that volatiles can trigger the resistance of con-specific

neighbors for almost 20 kinds of plants, including model species

and economic crops [12,13,14], both in the laboratory [12,15,16]

and under natural conditions [4,6,17,18]. However, demonstra-

tions of communication between interspecies are rare, with only

three models having been reported to date [7,17,18,19].

Although plant–plant communication has been proven in many

systems, its molecular mechanisms, especially those of volatile

perception and whole-genome transcriptions of receivers treated

with volatiles from emitters [10], remain poorly understood.

Although the location of HIPV receptors has not been fully

identified yet, some studies have suggested that the jasmonic acid

(JA) and ethylene (ET) pathways are involved [13,20]. However,

whether these two pathways are equally effective in the induction

process is unknown. Knocking out certain biochemical pathways

in receiver plants appears to be a helpful approach [21]. The gene

transcript responses of receiver plants exposed to volatiles from

emitters have been tested using custom microarray approaches

covering part of the whole genome or that of hundreds of genes

related to plant defense [12,22], but the plant defense response is a

systematic process involving numerous pathways and genes.

Therefore, a time course study using a genome-wide microarray
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may provide more accurate information about the volatile

response process.

Previous research has attempted to determine the extent to

which volatile response and direct defense share similar gene

expression profiles or pathways. By investigating the expression

patterns of some defense genes, Kessler et al. [22] found that both

processes activated the same set of genes but that direct damage

induced much stronger responses in these genes. However,

whether this correlation holds at the whole-genome level and

exists in other model systems is yet to be seen. Other studies have

also attempted to identify effective volatile chemicals from emitter

plants. Although a significant body of evidence indicates that

HIPVs, as a mixture, are an effective signal, whether individual

compounds, mainly including green leaf volatiles and terenes, can

also serve the same function is unclear. Some green leaf volatiles

have been found to induce defense responses in several plants

[9,20,23,24], but whether these compounds can also act as an

inducer in other systems has yet to be investigated.

In this study, a system including two model species was

developed to investigate the communication dynamics between

different plant species. Lima bean plants, a model species in plant–

plant communication studies [10,25,26] and from which HIPVs

can be effectively induced by leafminer feeding [27], were chosen

as emitters. Arabidopsis thaliana plants, representing a well-

established model with many mutants, were selected as receivers.

Affymetrix ATH1 genome arrays were used to examine the gene

expression patterns of HIPV-exposed A. thaliana, with the results

showing that the responses of the receivers were positively

correlated with treatment duration. Using A. thaliana mutants, we

subsequently found that the ET pathway in the receiver plants is

indispensable to communication. Furthermore, the volatile

treatment-activated functional pathways were compared with

those activated by direct feeding. Finally, we found that only

several C6 compounds and terpenes of Lima bean volatiles can

elicit similar genomic changes in A. thaliana.

Results

Communication between Lima bean and A. thaliana
To confirm whether communication occurs between Lima bean

and A. thaliana, we examined the gene expression profiles of the

receiver plants (A. thaliana) using the full-genome Affymetrix ATH1

microarray. qPCR tests were used to validate the reliability of this

microarray (Figure S1). Treatment with volatiles from leafminer-

damaged Lima bean plants lasted for 24 or 48 h; the 4-week-old

unattached A. thaliana receivers were thus treated with the volatiles

at two time intervals, whereas the control plants were treated with

volatiles from healthy Lima bean plants. Results confirmed that, at

the transcriptional level, A. thaliana responded to the volatiles from

Lima bean plants infested with second instar larvae of leafminers;

in addition, more genes were mobilized in the 48 h treatment than

in the 24 h treatment (Figure 1A). Cluster analysis clearly showed

that the gene expression patterns differed among the control, 24 h

treatment, and 48 h treatment plants, suggesting that different sets

of genes were affected by the treatments.

Enrichment analysis of Gene Ontology (GO) terms indicated

that only a few gene groups were enriched in the 24 h treatment

(Figure 1B). These genes were related to defense responses, such as

response to stress, immune reaction, as well as biotic and chemical

stimuli. However, more genes related to metabolic processes and

other biological regulation processes were down-regulated. In

contrast, after 48 h of treatment, a significant number of genes

associated with both defense and metabolism pathways were up-

regulated with greater amplification compared with the 24 h

treatment. The defense pathways included genes responding to

multiple organisms, stress, as well as external and chemical stimuli.

The metabolism pathways involved genes related to alcohol

metabolic processes, transport, cell communication, aging, cata-

bolic processes, and secondary metabolic processes. Fewer genes

were down-regulated after 48 h of treatment compared with the

up-regulated ones, and these genes were associated with stimuli

and biological regulation processes.

We focused more on the genes up-regulated by volatiles at the

24 h time point. Although only a few genes were up-regulated

after 24 h of treatment, they were mostly related to defense

responses, and these genes were continuously up-regulated after

48 h. Thus, the up-regulated genes may be related to the signal

transduction that senses volatiles from neighbors. Analysis of the

up-regulated genes by EasyGO (see Materials and Methods)

showed that the genes related to the immune response pathway

were up-regulated (Figure 2, left panel). Of the six up-regulated

immune response genes, three were related to ET response and

one was related to JA response (Figure 2l, right pane).

ET and JA pathways underlie the detection of HIPVs
Based on the results shown in Figure 2, we hypothesized that the

ET and JA pathways were involved in the communication

between Lima bean and A. thaliana. To confirm this, we used

two A. thaliana mutants as receiver plants, namely, coi1-2 (a JA

response-deficient mutant) and ein2-1 (a mutant insensitive to ET).

According to the response magnitude of the microarray results, 37

genes were selected to examine the induction effects of Lima bean

volatiles on these mutants (Supporting Methods S1; Table S2).

Table S1 shows the primers (full and short names). After 24 and

28 h of HIPV treatment, the coi1-2 mutant could still respond to

the HIPVs, although the magnitude of change was much lower

than that observed in the wild-type plants (Figure 3A–D).

Furthermore, ein2-1 was nearly ‘‘deaf’’ to HIPVs, and the genes

showed much lower responses than the coi1-2 mutant even after

48 h (Figure 3E and F). These results suggest that both ET and JA

pathways are involved in detecting HIPVs and that ET is

indispensable to the communication between Lima bean and A.

thaliana.

Gene expression profiles of A. thaliana in response to
leafminer feeding and induction volatiles

Although the gene expression patterns of A. thaliana in response

to Lima bean HIPV treatment have been characterized, little is

known about how these patterns are related to those caused by

direct insect feeding. Response to larval feeding in A. thaliana was

tested using the same GeneChip as for the volatile exposure

experiment. Unsurprisingly, the gene expression profiles of

leafminer-infected tissue significantly differed from those of the

control tissue. Approximately 3096 genes were regulated, of which

1695 were up-regulated and 1401 were down-regulated, with a

threshold of more than twofold change. GO enrichment analysis

indicated that feeding induced significant modifications in the

genes mainly associated with stimulus-response and metabolic

processes (Figure S2). Up-regulated genes were found in many

processes related to responses to biological and organic chemical

stimuli, and processes involved in immune and defense responses.

The metabolic up-regulation by leafminer feeding was related to

amending mechanisms, such as processes involved in cell wall

macromolecule metabolism and catabolism. The down-regulated

genes, on the other hand, were related to pigment biosynthetic

processes, carbohydrate metabolic processes, and response to

radiation. These results suggest that upon direct damage plants

may devote more resources to deal with tissue wounds and reduce

Plant-Plant Communication
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Figure 1. Transcriptional responses of A. thaliana to Lima bean volatiles after 24 h and 48 h of treatment. (A) Cluster analysis of the
regulated genes in A. thaliana primed by volatiles from second instar larvae-damaged Lima beans. (B) GO enrichment analysis showing the
differential expression of genes in A. thaliana (p,0.01). Values higher than zero on the y-axis refer to up-regulated genes, whereas those lower than
zero refer to down-regulated ones. The GO terms were chosen at the third level.
doi:10.1371/journal.pone.0035867.g001

Figure 2. EasyGO analysis of the genes up-regulated in A. thaliana after 24 h of volatile treatment. The right panel lists gene information
for the six innate immune response genes evaluated. Red, response to ET; blue, response to JA.
doi:10.1371/journal.pone.0035867.g002
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their energy consumption in basic metabolic and stimulus-

response processes not related to defense.

To further characterize the genes related to the exposure

process, we compared the gene expression profiles obtained from

the 48 h treatment with Lima bean volatiles and insect feeding

experiments (Figure 4). Cluster analysis was achieved using the

identified ‘‘differentially expressed genes’’ of the volatile exposure

experiment and leafminer infestation treatment (Figure 4). More-

over, cluster analysis of gene expression profiles showed a clear

separation between the patterns caused by direct feeding and those

caused by volatile induction, suggesting that the transcriptional

response to feeding is not a simple augmentation of the activities of

the genes that were primed by volatiles. Instead, new sets of genes

were activated as a result of feeding damage. A significant number

of genes involved in stress response and resistance to harsh

environmental conditions were up-regulated by leafminer feeding

but not triggered by volatile induction, suggesting that leafminer

feeding is a stress factor and can activate the defense pathways

(Figure 4, cluster A). On the other hand, some genes involved in

the secondary metabolism and cell communication were up-

regulated by volatile induction but down-regulated by feeding,

whereas some other genes involved in response to abscisic acid and

cold environment were up-regulated by feeding but down-

regulated by volatile induction (Figure 4, clusters B and E).

Furthermore, feeding down-regulated the expression of some

genes related to such environmental factors as temperature,

radiation, and photosynthesis; however, these genes were not

affected by the induction process (Figure 4, cluster D). On the

contrary, some genes showed changes specific to volatile induction

(not affected by feeding), which included pathways related to

processing inorganic substance and drug transport (Figure 4,

cluster F). Finally, we also found that both feeding and volatile

induction processes up-regulated a set of genes participating in

response to biotic factors (fungi and other organisms) and to

wounding, defense, and the amine metabolic process. Conversely,

feeding and volatile induction both down-regulated plant response

to auxin stimulus, which is an important regulatory hormone of

plant growth [28].

Effects of individual compounds and Lima bean volatiles
on A. thaliana

To analyze the induction effects of individual compounds, we

selected two green leaf volatiles [(Z)-3-hexen-ol and (Z)-3-hexenyl

acetate] and four terpenes [linalool, ocimene, (3E)-4,8-dimethyl-

1,3,7-nonatriene (DMNT), and (3E,7E)-4,8,12-trimethyl-1,3,7,11-

tridecatetraene (TMTT)], which comprise nearly 95% of all

VOCs detected in the headspace of leafminer-damaged Lima

beans (Figure S3; Supporting Methods S1). The genes tested here

— a total of 37 genes that reacted to the 24 and/or 48 h volatile

induction treatments — were the same as those evaluated in part 2

(Table S1). In comparing the responses of A. thaliana induced by

the testing compounds with those induced by the volatiles from

Lima beans infested with leafminers (see Materials and Methods),

we found that ocimene, DMNT, TMTT, and (Z)-3-hexen-ol were

similarly effective as the Lima bean volatiles both in the 24 h

treatment (Figure 5, blue area) and in the 48 h treatment (pink

area). Linalool and (Z)-3-hexenyl acetate, on the other hand, were

Figure 3. Responses of wild-type as well as coi1-2 and ein2-1 mutant A. thaliana to the volatiles. Expression patterns of 37 selected genes
in the wild-type as well as coi1-2 and ein2-1 mutant A. thaliana plants after 24 or 48 h of treatment with volatiles from leafminer-infested Lima beans
are shown. (A) Response of wild-type A. thaliana after 24 h of treatment with volatiles from leafminer-infested Lima beans. (B) Response of wild-type
A. thaliana after 48 h of treatment with volatiles from leafminer-infested Lima beans. (C) Response of coi1-2 A. thaliana after 24 h of treatment with
volatiles from leafminer-infested Lima beans. (D) Response of coi1-2 A. thaliana after 48 h of treatment with volatiles from leafminer-infested Lima
beans. (E) Response of ein2-1 A. thaliana after 24 h of treatment with volatiles from leafminer-infested Lima beans. (F) Response of ein2-1 A. thaliana
after 48 h of treatment with volatiles from leafminer-infested Lima beans.
doi:10.1371/journal.pone.0035867.g003
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clustered into a different group. Four genes related to metabolism

were down-regulated after being treated with ocimene, DMNT,

TMTT, (Z)-3-hexen-ol, and the Lima bean volatiles for 24 or

48 h, but only slightly regulated by Linalool and (Z)-3-hexenyl

acetate (Figure 5, gene cluster A), suggesting that Linalool and (Z)-

3-hexenyl acetate have minimal influence on plant metabolism

and development.

Genomic responses induced by ocimene, DMNT, TMTT, and

(Z)-3-hexen-ol also showed time dependence. Some genes

(Figure 5, cluster D) were markedly up-regulated after 24 or

48 h of treatment, and half of them were ET response factors.

These findings suggest that the ET signal pathway may play a

crucial role in the early recognition and continuous processing of

induction volatiles. Several JA pathway-related genes (Figure 5,

gene cluster F) were down-regulated after 24 h but up-regulated

after 48 h, suggesting that the JA pathway may participate in

processing volatiles after the recognition phase. Furthermore,

some defense-related genes (Figure 5, clusters C and E) were

slightly regulated after 24 h but significantly up-regulated after

48 h of treatment, indicating a time-dependent defense response in

these plants. Several stress response and transcript regulation

genes (Figure 5, cluster B) did not exhibit a clear expression

pattern over time.

Discussion

The arms race between plants and herbivorous insects has

driven diverse defense strategies in plants over time. The ability of

receiver plants to detect volatiles released from neighboring plants

under herbivore attack and subsequently adjust their alert levels

(i.e., plant–plant communication) seems to be an adaptive

mechanism [11]. Our results showed that communication can

Figure 4. Comparison of the genomic responses in A. thaliana after treatment with HIPVs and leafminer feeding.
doi:10.1371/journal.pone.0035867.g004
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indeed take place between plants of different species, consistent

with previous reports [22].

We used Affymetrix microarrays (Arabidopsis ATH1 genome

array) containing nearly all the genes to test the effects of plant–

plant communication on receivers. Although much research has

shown that VOCs can induce the expression of some crucial

defense genes, the system response of receivers remains unclear

[12]. Some studies have used microarrays [22], but the detection

of the number of genes was restrained in these researches. Thus,

use of a full-genome microarray is essential for monitoring a large

fraction of the transcriptome and grasps the real responses of

plants [29]. Our research holistically depicts the effects of

communication on receivers. With 24 h of communication, the

immune responses mainly related to ET and JA were regulated,

but the SA-related signal was restricted, which are in congruence

with the results of previous studies showing that SA and JA signals

are in conflict under many conditions [30]. When the treatment

time was increased to 48 h, the defense genes were significantly

regulated, containing nearly all stimulus-response conditions and

some secondary materials. However, the response to auxin was

slightly restricted (Figure S4), which many suggest to be a tradeoff

between defense and growth [31].

As the ET and JA signal pathways serve as initial communi-

cation response signals, we used mutants of these two signals to

detect the possible receptor signals of the chemicals from

neighbors. Results indicated that the ET response signal is crucial

to chemical response in plant–plant communication. The JA

mutant has a weaker response to chemicals. Accordingly, Ruther

and Kleier [20] demonstrated that ET can synergize volatile

emission in maize induced by exposure to (Z)-3-hexen-1-ol. The

consanguineous relationship between ET and JA signals has been

thoroughly characterized [32,33]: they can either function

together or act independently, and different mutants in the

pathways have different phenotypes [34]. The ET response signal

is perhaps a receptor of the chemicals from the neighbors, with the

response subsequently mobilizing ET and JA downstream defense

genes through the interaction of the two plant hormones.

The receiver’s speed of response to volatiles from its neighbors

may be crucial for plants to cope with herbivore attack. Our results

showed that the immune responses related to the ET pathways can

be up-regulated after 24 h of exposure and that defense genes,

including those responsible for nearly all stimulus-induced

responses and for the production of some secondary substances

also important for plant defense, were significantly up-regulated

after 48 h of exposure (Figure 1B). Although plants can respond to

direct damage within a couple of hours [35], they seem to take 2–3

days to initiate response and fully develop their cellular defense

mechanisms against volatiles. The necessity of such dual-reaction

systems is likely related to a growth-defense tradeoff [36,37].

The speed–accuracy tradeoff is another dimension of the

volatile response process. A complex blend of HIPVs may

accurately encode the damage incurred by a plant, but it may

require more resources and a longer time for a receiver plant to

decode. Therefore, the identification of active single volatiles is

essential. Most studies that identified volatiles acting in plant–plant

communication focused on green leaf volatiles or termenes

separately [14,23]. The present study carried out a relatively

comprehensive analysis of each member from one kind of emitter.

Active volatiles are apparently correlated with their emission

rhythms. Our results showed that some single compounds can be

functionally similar to the entire set of Lima bean volatiles in A.

thaliana induction. An ability to respond to emitters’ signals all day

long would be beneficial to plants. We have previously found in

our study on the Lima bean–leafminer system that (Z)-3-hexen-ol

is mainly released at night, whereas terpenes are abundantly

released during the day [38]. Therefore, a plant that can be

primed by both molecules, such as A. thaliana, would have better

chances of rapidly preparing itself for a real attack because it may

pick up signals anytime. However, the effective volatiles may vary

for different plants, as (Z)-3-hexenyl acetate can elicit defense

responses in maize, Lima bean, and hybrid poplar [9,24,25].

Furthermore, the effects of linalool differ between receiver plants,

with the likely reason being that linalool is commonly released by

Figure 5. Comparison of primer effects between synthetic
chemicals and Lima bean volatiles. Hierarchical clustering of the
expression patterns of selected genes in A. thaliana treated with
synthetic chemicals and Lima bean volatiles (24 or 48 h). The blue area
represents the cluster of genes similarly affected by the 24 h treatment
with Lima bean volatiles; pink area, cluster of genes similarly affected by
the 48 h treatment; green, cluster of Lima bean volatiles; gray, cluster of
healthy control plants. The clustering results along the y-axis of the
color matrix reveal six categories of genes (A–F) showing similar
reactions among the variety of treatments.
doi:10.1371/journal.pone.0035867.g005
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volatiles from flowers, thereby restricting its accuracy as a signal of

insect damage [39,40].

In comparing genomic responses to volatiles and those to

feeding damage, we found that the feeding-induced response in A.

thaliana was not a simple augmentation of the gene activation

caused by volatile exposure and that new sets of genes were

recruited (Figure 4). Direct feeding and volatile treatment both

regulated a considerable number of biotic and abiotic defense

genes, but direct feeding activated more genes and induced greater

gene expression fold change. These indicate that a greater extent

of plant defense is initialized after herbivore feeding. Feeding

damage down-regulated many basic metabolic genes and up-

regulated defense genes, suggesting that there may be a tradeoff

between growth and defense, such that plants devote more

resources to defense when severe damage occurs.

In summary, our data show that HIPVs can prime receiver

plants, a process that is distinct from the defense response caused

by direct feeding. The induction process starts with up-regulation

of immune pathways (after 24 h of treatment), followed by

significant enhancement of cellular pathways underlying responses

to biotic and abiotic stimuli (after 48 h of treatment). Only some

single compounds are as effective as the whole set of Lima bean

volatiles in inducing A. thaliana. Feeding damage, on the other

hand, activates new sets of genes with greater fold changes. The

ET and JA pathways are involved in the induction process in

different degrees, with the ET pathway specifically necessary for

sensing the induction signal in the early phase of induction.

Plant–plant communication is being increasingly appreciated

[41]. Our data provide a genomic basis for this phenomenon, and

this study has identified many biochemical pathways linked to

gene expression patterns. However, further investigation is needed

to clarify the physiological function of induction responses in

receivers upon herbivore attack.

Materials and Methods

Plants and insects
Lima bean (Phaseolus lunatus L. cv Sieva) was individually seeded

in plastic pots (12 cm diameter) with peat/vermiculite (3:1)

medium in an environmental chamber. Bean plants with two

fully developed primary leaves were used in all experiments.

The wild-type and mutant A. thaliana plants used in this study

were in the Col-0 background. The coi1-2 and ein2-1 mutants have

been previously described by Xu et al. [42] and Roman et al. [43],

respectively. The seeds were surface sterilized for 15 min in 10%

bleach, washed five times with sterile water, and plated on half-

strength Murashige–Skoog medium [44]. Plants were stratified at

4uC for 2 days in the dark and then transferred to an

environmental chamber set at 22uC with a 16 h light/8 h dark

cycle (light intensity, 120 mmol m22 s21). After 2 to 3 weeks,

seedlings were also potted in peat/vermiculite (1:2) medium and

then placed in a growth room at 22uC with a 16 h light/8 h dark

cycle (light intensity, 120 mmol m22 s21). Four-week-old A.

thaliana plants were specifically used in our experiments. Pea

leafminer (Liriomyza huidobrensis) was cultured under laboratory

conditions for 3 years. Lima bean was used as the host plant of L.

huidobrensis for rearing.

Induction effect of leafminer-induced Lima bean volatiles
Two-week-old Lima bean plants containing more than

50 second instar leafminer larvae were used as emitters, whereas

4-week-old unattached A. thaliana plants served as receivers. For

the volatile transportation system, compressed air (Beijing Gas

Main Plant, Beijing, China) was pushed through three glass bottles

(500 ml) containing molecular sieve (0.5 nm; Beijing Chemical

Company, Beijing, China), freshly activated charcoal (Beijing

Chemical Company), and distilled water, respectively. The filtered

and moisturized air was pushed into a glass jar with a shape similar

to that of a desiccator (15 l). The air was absorbed with Porapak Q

(80–100 mesh size; Supelco, USA) and tested with an Agilent gas

chromatographer (GC) (6890N) coupled with a mass spectrometry

(MS) system (5973 MSD; Agilent Technologies, Inc., USA); air

clarity was ensured to avoid the interference of pollution [45]. The

emitter plants (more than three Lima beans in each pot) were

placed at the bottom of the jar, whereas the receiver plants were

placed on a stainless steel shelf, such that the receivers were above

the emitters and immersed in the headspace of the Lima bean

plants. At the end of the system was a membrane pump (Beijing

Institute of Labour Instruments, China). The compressed air was

released at low speed (50 ml/min) by the pump. The low air speed

ensured that the volatiles from the emitters would remain in the jar

at a relatively high concentration for a long duration. By using this

positive/negative pressure system, we ensured that no ambient air

was sucked into the jar, although the plants could get fresh air,

thus avoiding the normal restrictions of a closed system [21]. The

control receiver samples were treated with healthy Lima bean

plants. After 24 or 48 h, the receivers were frozen in liquid

nitrogen. Each repeat contained tissue from at least eight plants,

and more than two repeats were prepared.

Leafminer feeding experiment
More than 200 mated L. huidobrensis adults were released onto 4-

week-old A. thaliana leaves for oviposition and then removed within

4 h. After the leafminers grew to the second instar (96 h after

oviposition), leaves damaged by leafminer larvae were selected as

the leafminer-infected samples (at least 50 larvae were found in the

Lima bean leaves). Three separate samples containing tissue from

at least eight plants were prepared from the leafminer-infected

leaves. Three control samples were also prepared from the leaves

of healthy plants of the same age.

Induction effect of synthetic chemicals
Arabidopsis thaliana plants were placed in the same jar (15 l) used

in the plant–plant communication setup, and 5 ml of 0.5 mM

synthetic chemicals in dichloromethane was injected onto a cotton

ball (4 mm diameter). The cotton ball was bound to the steel shelf

in the jar. The same amount of dichloromethane was used as

control. Finally, the A. thaliana plants were frozen in liquid

nitrogen. Each sample contained tissue from at least eight plants,

with four replicates.

Two green leaf volatiles [(Z)-3-hexen-ol and (Z)-3-hexenyl

acetate] and four terpenes (linalool, ocimene, DMNT, and

TMTT), which comprise nearly 95% of all VOCs detected in

the headspace of leafminer-damaged Lima beans, were selected to

analyze the induction effects of individual compounds. Most of the

compounds used in this experiment were purchased commercially:

(Z)-3-hexen-ol ($95% pure) and linalool (97% pure) were

obtained from Sigma-Aldrich (St. Louis, MO); (Z)-3-hexenyl

acetate (99% pure) was obtained from Tokyo Kasei Kogyo Co.

(Tokyo, Japan); and ocimene ($75% pure) was obtained from

Fluka (Buchs, Switzerland). DMNT and TMTT were kindly

provided by Dr. W. Boland of the Max Planck Institute for

Chemical Ecology (Jena, Germany).

Preparation of cDNA sample
Total RNAs were isolated using an RNeasyH Plant Mini Kit

(Qiagen, Valencia, CA, USA). Each sample for RNA extraction

contained tissue from at least eight Arabidopsis plants. cDNA was
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prepared following the manufacturer’s instructions (www.

affymetrix.com/support/technical/manual/expression_manual.

affx).

Microarray hybridization and data analysis
Affymetrix microarrays (Arabidopsis ATH1 genome array)

containing 22,810 probe sets were used in our experiments.

Labeling and hybridization on the ATH1 microarrays (one sample

per chip) were performed according to the manufacturer’s

instructions (www.affymetrix.com/support/technical/manual/

expression_manual.affx). Global analysis of temporal gene expres-

sion was performed by subjecting the absolute expression values

for scaling using Affymetrix MAS5.0. The probe arrays were

further analyzed with GENESPRING Version 5.0 (Silicon

Genetics). Normalization of every gene and chip was performed

to allow comparisons of two or three independent replicates

performed for each set of experiment. SAM analysis (Significance

Analysis of Microarrays software package) was conducted for A.

thaliana triplicate samples between treatment and control plants

using a q value #0.05 and a fold change cutoff $2 to identify the

genes differentially expressed in the treatments [46]. We searched

GO enrichment information for the differently expressed probe

sets using EasyGO (http://bioinformatics.cau.edu.cn/easygo/

category_treeBrowse.html). We applied x2 analysis for the

biological process search, and the cutoff for false discovery rate

(FDR) was adjusted using a p value of 0.0001. Cluster 3.0 and

TreeView were used (http://rana.Stanford.EDU/software/) to

group and display genes with similar expression profiles [47]. We

used the default options of hierarchical clustering with uncentered

correlation similarity metrics. All GeneChip data sets are available

in a MIAME-compliant format through GEO (accession

no. GSE33505).

Real-time PCR
PCR was performed in 20 ml of reaction volume containing

10 ml of 26 SYBRH Premix EX TaqTM Master Mix (TaKaRa,

Kyoto, Japan), 5 mM concentration each of gene-specific primers

(Table S1), and 1 ml cDNA templates. Reactions were carried out

on an Mx 3000P detection system (Stratagene, La Jolla, CA,

USA). The following thermal cycler parameters were used to

produce the melting curves, which were in turn used to assess the

specificity of the PCR products: 2 min at 95uC; 40 cycles of 5 s at

95uC, 20 s at 58uC, and 20 s at 72uC; and 1 cycle of 30 s at 95uC,

30 s at 58uC, and 30 s at 95uC. b-Actin was used as the

housekeeping gene. A standard curve was derived from the serial

dilutions of plasmid containing the target DNA segment to

quantify the copy numbers of target mRNAs. The amount of each

gene was then normalized to the abundance of b-actin.

Subsequently, the normalized values of each gene in the stressed

samples were divided by those in the untreated controls, and the

folds were used as the relative levels of each gene.

Supporting Information

Figure S1 Validation of microarray data by qPCR.
Scatter plot showing a positive correlation of gene expression

patterns between qPCR and microarray hybridization. The x-axis

represents microarray hybridization, whereas the y-axis represents

qPCR.

(EPS)

Figure S2 GO enrichment analysis of genes regulated
by leafminer feeding in A. thaliana (p,0.01). The GO

terms were chosen at the third level.

(EPS)

Figure S3 Absolute amount volatiles from emitters.
Absolute amount of detected volatiles emitted from second instar

leafminer-infested Lima bean plants at different times of the day.

(EPS)

Figure S4 GO enrichment of down-regulated genes in A.
thaliana after 24 h of treatment. The graph displays term

enrichment levels along with the GO term hierarchy within the

biological process branch, and the analysis was performed using

EasyGO. The classification terms and their serial numbers are

shown as rectangles. The numbers in brackets represent the total

number of genes that may be involved in the corresponding

biological processes. The graph displays the classification term

enrichment status and term hierarchy. The color scale shows the p

value cutoff levels for each biological process. The darker colors

represent the more significant biological processes in the putative

stigma pathway.

(EPS)

Table S1 Primers used for qPCR.
(XLS)

Table S2 Five most significantly enriched GOs in A.
thaliana up-regulated by 48 h of volatile treatment.
(XLS)

Methods S1 Selection principle of tested genes, and
method for lima bean volatile collections, identification,
and quantification.
(DOC)
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