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Abstract
Spiking neural P systems are a new candidate in spiking neural network models. By using

neuron division and budding, such systems can generate/produce exponential working

space in linear computational steps, thus provide a way to solve computational hard prob-

lems in feasible (linear or polynomial) time with a “time-space trade-off” strategy. In this

work, a new mechanism called neuron dissolution is introduced, by which redundant neu-

rons produced during the computation can be removed. As applications, uniform solutions

to two NP-hard problems: SAT problem and Subset Sum problem are constructed in linear

time, working in a deterministic way. The neuron dissolution strategy is used to eliminate

invalid solutions, and all answers to these two problems are encoded as indices of output

neurons. Our results improve the one obtained in Science China Information Sciences,
2011, 1596-1607 by Pan et al.

Introduction
Spiking neural P systems (in short, SN P systems) are a class of bio-inspired parallel computing
models, initiated by Ionescu, Păun and Yokomori in 2006 [1], which are inspired from infor-
mation processing strategy and communication strategy between neurons. A SN P system is
constructed by a group of neurons (a class of cells with only one membrane) communicating
by sending signals (spikes, represented by object a) to neighboring neurons through synapses.
Each neuron has a certain number of spikes and rules. Spikes can evolve through application of
rules. Since SN P systems were proposed, they become a rapid developing area of membrane
computing [2–15].

Researchers pay close attention to computational efficiency of SN P systems, especially the
judgement whether NP-complete problems have solutions or not in feasible time [16–26]. If a
NP-complete problem has a solution, the output neuron outputs a spike; otherwise, the output
neuron outputs nothing. However, we need to find out the solutions in many situations. For
instance, the register allocation problem is an application of SAT problem. This problem aims
to build a mapping relationship between the virtual registers and the physical registers, and
realize the rational utilization of physical register resources. In this case, we need to judge
whether a good solution exists, while searching the solution by distributing the physical register
resources according to the solution. In applications, many problems can be transformed into

PLOSONE | DOI:10.1371/journal.pone.0162882 September 14, 2016 1 / 27

a11111

OPEN ACCESS

Citation: Zhao Y, Liu X, Wang W (2016) Spiking
Neural P Systems with Neuron Division and
Dissolution. PLoS ONE 11(9): e0162882.
doi:10.1371/journal.pone.0162882

Editor: Andrew Adamatzky, University of the West of
England, UNITED KINGDOM

Received: May 5, 2016

Accepted: August 30, 2016

Published: September 14, 2016

Copyright: © 2016 Zhao et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This research was supported by National
Natural Science Foundation of China (http://www.
nsfc.gov.cn/) 61472231 to XL, 61170038 to XL,
61402187 (not applicable) and 61502283 (not
applicable). The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0162882&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.nsfc.gov.cn/
http://www.nsfc.gov.cn/


graph coloring problems, which is equivalent to SAT problems. To solve these problems, exact
solutions are also essential.

For this purpose, neuron dissolution, which is a basic biological phenomenon aiming to
remove unnecessary neurons, is introduced into SN P systems [27, 28], and a new class of SN P
systems, SN P systems with neuron division and dissolution (DDSN P systems, for short) is
proposed in this work. In DDSN P systems, division rules can generate exponent work space
(in terms of neurons) which can be used to enumerate all possible results (one result is con-
tained in one neuron), and dissolution rules can dissolve redundant neurons which can be
used to remove wrong results. Neurons which represent all possible results are set as output
neurons, and these output neurons with invalid results are dissolved in computational process.
When the computation halts, the remaining output neurons show all right results. Uniform
solutions to SAT problem and Subset Sum problem, which work in a deterministic way, are
constructed as examples in this work.

The contributions of this work focus on the following three aspects. 1. The computational
space efficiency is improved. If these redundant neurons are reserved, they will occupy huge
computational resources such as storage. The dissolution rule can reduce the computational
space needed and improve the computational space efficiency. 2. The system structure is
clearer. If the redundant neurons are reserved, the SN P system will become complicated, and
the useful neurons are not highlighted enough. By introducing the neuron dissolution mecha-
nism, redundant neurons are dissolved immediately, and each of the remaining neuron has its
function. 3. Exact solutions to NP-complete problems can be obtained in linear time. Invalid
solutions are eliminated during the computational process by neuron dissolution, and all solu-
tions are encoded as indices of specific output neurons at halting, which can provide more
valuable information for applications. Uniform solutions to SAT and Subset Sum problems are
solved as examples.

The paper is organized as follows. Section 1 defines the SN P systems with neuron division
and dissolution. Uniform solutions to SAT and Subset Sum problems in linear time using the
proposed SN P systems with neuron division and dissolution are presented in section 2 and
section 3. Conclusions are given in section 4.

1 SN P Systems with Neuron Division and Dissolution

1.1 Background
Biological systems, such as cells, tissues, and human brains, have deep computational intelli-
gence. Biologically inspired computing, or bio-inspired computing in short, focuses on regen-
erating computing architecture from biological systems to construct computing models and
algorithms. Membrane computing is a novel research branch of bio-inspired computing, initi-
ated by Gh. Păun in 2002, which seeks to discover new computational models from the study
of biological cells, particularly of the biological membranes [29, 30]. The obtained models are
distributed and parallel bio-inspired computing devices, usually called P systems. There are
three mainly investigated P systems, cell-like P systems, tissue P systems, and neural-like P sys-
tems (also known as spiking neural P systems). P systems, known as powerful computing mod-
els, are able to do what Turing machine can do, even solving computational hard problems
[31–37].

SN P systems, as a new branch of membrane computing, are a shift from the cell-like archi-
tecture to the neural-like architecture. The topological structure of SN P systems is a directed
graph: neurons are placed in the vertices of the graph, and synapses act as edges. Each neuron
can have a certain number of objects a (spikes) and a certain number of firing rules and for-
getting rules. Through a firing rule, a neuron can send information to other neurons by
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emitting spikes to these neurons. Through a forgetting rule, a certain amount of spikes can be
removed from a neuron. Both the firing rules and the forgetting rules have conditions of
applied. If the number of spikes in a neuron is contained within in the number set of spikes
determined by a regular expression, a rule can have the possibility to be applied. At each time
step, one rule is non-deterministically chosen to be applied in each neuron. That is to say, rules
are applied in a sequential manner from the view of the neuron, and in parallel from the view
of the whole system.

Pan et al. introduced a novel idea to solve SAT problem in polynomial time by using neuron
division and budding [25], which uses the neuron division and budding rules to generate more
neurons according to the need in the computational process. Wang et al. proved that SN P sys-
tems with neuron division, not using neuron budding, can also solve SAT problem in polyno-
mial time [26]. The biological motivation of neuron division and budding comes from the
neural stem cells division. The neural stem cells have the ability to proliferate and differentiate
into neurons, astrocytes and oligodendrocytes, therefore, they can supply massive tissue cells.
In these SN P systems, neuron division rules and neuron budding rules are used to regenerate
the above biological phenomena.

In neurons, there is another biological phenomenon called neuron apoptosis, which has a
close relationship with neuron division and budding. Neuron apoptosis is a programmed neu-
ron death controlled by a series of activities controlled by genes, such as the activation, expres-
sion and regulation of genes. It is not a self damage phenomenon under the pathological
condition, but a actively death process. When unnecessary neurons or abnormal neurons occur
in the process of neuron development or under the influence of some factors, neuron apoptosis
can remove these neurons in multicellular organism to maintain a stable internal environment
and to adapt to the environment better. It plays an important role in the evolution of the organ-
ism, the stability of internal environment and the development of multiple systems.

For the above biological phenomena, the neuron apoptosis mechanism is introduced into
SN P systems, and neuron dissolution rule is designed. In this way, redundant neurons can be
eliminated immediately.

1.2 System description
A SN P system with neuron division and dissolution of degreem is a construct of the form

P ¼ ðO;H; syn; n1; n2; . . . ; nm;R; in; outÞ;
where:

1. O = {a} represents the singleton alphabet where a is the spike;

2. H represents the set of labels for neurons;

3. syn� H ×H represents a synapse dictionary (for each 1� i�m, (i, i) =2 syn);

4. ni � 0 represents the spike numbers in neuron σi in the initial state (1� i�m);

5. R represents the set of all developmental rules of the following four forms

• firing rule [E/ac! ap; d]i, where, i 2 H, E is a regular expression over a, c� 1, p� 1, c� p,
d� 0. If E = ac, the firing rule is simply written as [ac ! ap; d]i. If d = 0, the firing rule is
simply written as [E/ac ! ap]i. If E = ac and d = 0, the firing rule is simply written as
[ac ! ap]i;

• forgetting rule [E/as ! λ]i, where, i 2 H, E is a regular expression over a, s� 1. If E = as, the
forgetting rule is simply written as [as ! λ]i;
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• neuron division rule [E]i ! [ ]j || [ ]k, where, i, j, k 2H, E is a regular expression over a;

• neuron dissolution rule [E]i! δ, where, i 2 H, E is a regular expression over a, object δ rep-
resents that neuron σi is dissolved;

6. in, out� H represent the input and output neurons ofP, respectively.

The synapse dictionary syn shows the initial structure of the system and guides how to
establish new synapses when new neurons are established.

If neuron σi has h spikes, and a
h 2 L(E), h� c, the firing rule [E/ac! ap; d]i can be applied. c

spikes are consumed (h − c spikes remain in neuron σi.), and p spikes are emitted after d time
units (steps). If d = 0, p spikes are emitted immediately; if d = 1, p spikes are emitted at the next
step; if this firing rule is applied at step t and d� 1, p spikes are emitted at step t + d. Neuron σi is
closed at steps t, t + 1, t + 2, . . ., t + d − 1, which means no rule will be applied and no spike will
be received in this period. At step t + d, neuron σi becomes open again, and can receive new
spikes. Once these p spikes are emitted from neuron σi, they reach each neuron σjwhich has a syn-
apse going from neuron σi to neuron σj and is open. The spikes sent to a closed neuron are lost.

If neuron σi has h spikes, and a
h 2 L(E), h� s, the forgetting rule [E/as ! λ]i can be applied.

s spikes are consumed immediately.
If (1). neuron σi has h spikes, and a

h 2 L(E), and (2). no synapse (i, j), (j, i), (i, k), (k, i) exists
in the system, the neuron division rule [E]i ! [ ]j || [ ]k can be applied. All h spikes in neuron σi
are consumed and neuron σi is divided into two neurons σj and σk. No spike is in neurons σj
and σk at this moment. The labels of the two generated neurons can be different or the same,
and the labels of the two generated neurons can be different from or the same with the label of
their father neuron σi, too. The new generated neurons inherit the synapses of their father neu-
ron σi. That is to say, if there is a synapse (i, g) going from neuron σi to neuron σg, two synapses
(j, g) and (k, g) are established after the division rule is applied; if there is a synapse (g, i) going
from neuron σg to neuron σi, two synapses (g, j) and (g, k) are established after the division rule
is applied. In addition to inheritance of synapses, new generated neurons also have synapses
provided by the synapse dictionary syn. Synapses not existing in the synapse dictionary syn
may appear because of inheritance of synapses. The condition (2) avoids the situation that the
start and the end of a synapse are the same neuron. For example, if synapse (i, j) exists in the
system, synapses (j, j), (k, j) will appear which is not permitted.

A simple example shown in Fig 1 is used to show how division rules are applied. One spike
and two division rules are in neuron σ3. Considering the two conditions mentioned in the above
paragraph, 1). Neuron σ3 has one spike a and the regular expressions of both two division rules
are exactly {a}, where a 2 {a}. Therefore, both of these two division rules meet the condition (1).
2). For rule [a]3! [ ]2 || [ ]3, the label 3 of the father neuron σ3 corresponds to i in the normaliza-
tion rule, and the label 2 and 3 of the two new neurons σ2 and σ3 corresponds to j and k in the nor-
malization rule. Synapses (i, j), (j, i), (i, k), (k, i) cannot exist in the system. That is to say, (3, 2), (2,
3), (3, 3), (3, 3) cannot exist in this system. However, a synapse (2, 3) is in this system, therefore
rule [a]3! [ ]2 || [ ]3 cannot be applied. Only rule [a]3! [ ]3 || [ ]4 meet the two conditions. The
spike a in neuron σ3 is consumed, neuron σ3 is divided into two neurons σ3 and σ4, and two syn-
apses (2, 3), (2, 4) going from neuron σ2 to these two new neurons are established because there is
a synapse going from neuron σ2 to the father neuron σ3 of the two new neurons (the inheritance
of synapses). Because rules in this system are related to the labels of neurons, the new neuron σ3
contains these two rules. The system is changed to Fig 2 after applying rule [a]3! [ ]3 || [ ]4.

If neuron σi has h spikes, and a
h 2 L(E), the neuron dissolution rule [E]i ! δ can be applied.

All h spikes in neuron σi are consumed and neuron σi is dissolved. All synapses going from/to
neuron σi are dissolved, too.
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Fig 1. The SN P system before executing division rule.

doi:10.1371/journal.pone.0162882.g001
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A simple example shown in Fig 3 is used to show how dissolution rules are applied. Neuron
σ1 has one spike a and the regular expression of the dissolution rule is exactly {a}, where a 2
{a}. Then rule [a]1 ! δ is applied and the system is changed to Fig 4 (Neuron σ1 is dissolved,
and synapse (1, 2) connected with neuron σ1 is also dissolved.).

At each step, if only one rule in neuron σi can be applied, this rule must be applied; if two or
more rules in neuron σi can be applied, one of these rules is applied non-deterministically.
Rules are applied in a sequential manner in each neuron and in parallel between neurons.

The configuration of the system is described by the synapses connections, the spikes number
in each neuron, and the state of each neuron (open or closed). By applying rules, the

Fig 2. The SN P system after executing division rule.

doi:10.1371/journal.pone.0162882.g002
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Fig 3. The SN P system before executing dissolution rule.

doi:10.1371/journal.pone.0162882.g003
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configuration is transformed from one to the next one. The transition sequence starting from
the initial configuration is called a computation, and a computation halts if it reaches a configu-
ration where all neurons are open and no rule can be applied.

SN P systems can used to solve the decision problem IX,ΘX both in a semi-uniform way and
in a uniform way, where IX is a language over a finite alphabet andΘX is a total boolean function
over IX (The elements in IX are instances.). In the semi-uniform way, a specified SN P system is
constructed for each instance of a decision problem, in which the instance parameters are embed-
ded in the SN P system. In the uniform way, a SN P system is constructed for all instances of a
decision problem, in which the different instances parameters enter the SN P system as input
spikes. The uniform solutions are preferred because they only relate to the structure of a problem.

The input of a SN P system is a spike train ai1 � ai2 � ::: � air , where r� 1, ij � 0 for each 1� j
� r, which means ij spikes enter the system through input neuron σin at step j. Specially, ij = 0
means no spike enters the system at step j.

Fig 4. The SN P system after executing dissolution rule.

doi:10.1371/journal.pone.0162882.g004
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2 A Uniform Solution to SAT Problem
SAT (the satisfiability of conjunctive normal form expression) problem is one of the most typi-
cal NP-complete problems. For a Boolean variable set X = {x1, x2, . . ., xn}, a literal li is xi or ¬xi
for 1� i� n. A clause Ci is a disjunction of literals Ci = ln1 _ ln2 _ . . . _ lnr, 1� r� n. A con-
junctive normal form (CNF, for short) is a conjunction of clauses C1 ^ C2 ^ . . . ^ Cm. An
assignment is a mapping X! {0, 1} from each variable xi to its value (Value 1 represents true
and value 0 represents false.). For example, X = {x1, x2, x3}, the conjunctive normal form is (x1
_ ¬x2) ^ (x1 _ x3). The x1 _ ¬x2 and x1 _ x3 are the two clauses. The first clause contains two
literals x1 and ¬x2, and the second clause contains two literals x1 and x3. If an assignment of x1,
x2, . . ., xn can be found, which makes at least one literal true in each clause and then makes all
m clauses true, this SAT problem is satisfiable. Otherwise, this SAT problem is unsatisfiable
[38]. In the above example, let x1 = x2 = x3 = 1, the value of the conjunctive normal form is (1 _
0) ^ (1 _ 0) = 1 ^ 1 = 1. Therefore, the SAT problem is satisfiable.

The formal definition of SAT problem is as follows.
Problem 1. NAME: SAT.

• INSTANCE: a set of clauses C = {C1, C2, . . ., Cm}, which is built on a Boolean variable set X =
{x1, x2, . . ., xn}.

• QUESTION: is there an assignment of Boolean variables x1, x2, . . ., xn that can make the
value of all clauses true?

SAT(n,m) denotes the set of all instances of the SAT problem having n variables andm
clauses. In this section, a uniform solution working in a deterministic way is constructed by
DDSN P system, which can solve all SAT(n,m) problems in linear time.

The instance parameters need to enter a SN P system, therefore the clauses need to be
encoded as spikes form. Each clause contains either xj, or ¬xj, or none of these two. Different
numbers of spikes are introduced into the system to distinguish these three situations.

ai;j ¼
a; if xj occurs in Ci;

a2; if :xj occurs in Ci;

a0; otherwise:

8><
>:

A clause is represented by αi,1 � αi,2 � . . . � αi,n in this way. For instance, a clause ¬x1
W
x2
W
x3

is represented by a2 � a � a.
In order to generate the necessary workspace before computing, a spike train (a0 �)2n is

introduced into the front of each spike train.
The formal definition of DDSN P systems for SAT(n,m) problems (shown in Fig 5) is as fol-

lows.

Pn;m ¼ ðO;H; syn; n1; n2; . . . ; n3nþ5;R; in; outÞ;

where:

1. O = {a};

2. H = {0, 1, 2, 3, d, inxi, Cxi1, Cxi0, ot1, t2, . . ., tn}(i, t1, t2, . . ., tn = 1,2);

3. syn = {(3, 2), (2, 1), (1, 2), (1, 0), (3, d)}S
{(d, inxi)|i = 1, 2, . . ., n}

S
{(inxi, Cxi1), (inxi, Cxi0)|i = 1, 2, . . ., n}S

{(Cx11, o1), (Cxi1, ot1, t(i − 1)1)|i = 2, 3, . . ., n}S
{(Cx10, o0), (Cxi0, ot1, t(i − 1)0)|i = 2, 3, . . ., n};

Spiking Neural P Systems with Neuron Division and Dissolution

PLOS ONE | DOI:10.1371/journal.pone.0162882 September 14, 2016 9 / 27



4. n0 = 1, n2 = 1, n3 = 1, nd = 2m, the number of spikes in other neurons is zero;

5. in = σinxi, out = σot1, t2, . . ., tn(i, t1, t2, . . ., tn = 0, 1);

6. firing rule:
[a! a]i, i = 1, 2
[a! a; 2n − 1]3
[a(a2)+/a2 ! a]d
[a! a]inxi, i = 1, 2, . . ., n
[a2 ! a2]inxi, i = 1, 2, . . ., n
[a3 ! a3]inxi, i = 1, 2, . . ., n
[a! a]Cxi1, i = 1, 2, . . ., n
[a3 ! a]Cxi1, i = 1, 2, . . ., n
[a! a]Cxi0, i = 1, 2, . . ., n
[a2 ! a]Cxi0, i = 1, 2, . . ., n
forgetting rule:
[a2 ! λ]2

Fig 5. The initial systemΠn,m.

doi:10.1371/journal.pone.0162882.g005
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[a2 ! λ]Cxi1, i = 1, 2, . . ., n
[a3 ! λ]Cxi0, i = 1, 2, . . ., n
[a! λ]ot1 t2. . .tn, t1, t2, . . ., tn = 0, 1
[a2 ! λ]ot1 t2. . .tn, t1, t2, . . ., tn = 0, 1
. . .

[an −1 ! λ]ot1 t2. . .tn, t1, t2, . . ., tn = 0, 1
neuron division rule:
[a]0 ! [ ]o1 || [ ]o0
[a]ot1 ! [ ]ot11 || [ ]ot10, t1 = 0, 1
[a]ot1 t2 ! [ ]ot1 t21 || [ ]ot1 t20, t1, t2 = 0, 1
. . .

[a]ot1 t2. . .tn−1 ! [ ]ot1 t2. . .tn−11 || [ ]ot1 t2. . .tn−10, t1, t2, . . ., tn−1 = 0, 1
neuron dissolution rule:
[an]ot1 t2. . .tn ! δ, t1, t2, . . ., tn = 0, 1.

Computation starts when spike trains enter the system through input neurons σinx1, σinx2, . . .,
σinxn, respectively. Neuron σ0 and its children neurons need 2n steps to generate 2n neurons
(workspace) to enumerate all assignments of variables by applying neuron division rules (One
neuron represents one assignment of variables.), therefore (a0 �)2n are added to the front of
each spike train.

Generation Stage: At step one, neuron σ0 has one spike, the division rule [a]0 ! [ ]o1 || [ ]o0 is
applied to generate neurons σo1 and σo0, which means an assignment in regard to x1 has two
choices: 1 or 0. Synapses (1, o1) and (1, o0) are established through the inheritance of synapse (1,
0), and synapses (Cx11, o1) and (Cx10, o0) are established through synapse dictionary syn. Syn-
apse (Cx11, o1) establishes a channel between the input and the assignment including x1 = 1;
synapse (Cx10, o0) establishes a channel between the input and the assignment including x1 = 0.
At the same time, auxiliary neuron σ2 has one spike, rule a! a is applied and one spike is emit-
ted to neuron σ1; auxiliary neuron σ3 has one spike, rule a! a; 2n − 1 is applied and one spike
will be emitted to neurons σ2 and σd at step 2n. The system after step one is shown in Fig 6.

At step two, neuron σ1 has one spike, the firing rule a! a is applied, and one spike is emit-
ted to neurons σ2, σo1 and σo0.

At step three, each of neurons σo1 and σo0 has one spike, the division rule [a]ot1 ! [ ]ot11 || [
]ot10(t1 = 1, 0) is applied to generate neurons σo11, σo10, σo01 and σo00, which means an assignment
in regard to x1 and x2 has four choices: 11, 10, 01, 00. Synapses (1, o11), (1, o10), (1, o01) and (1,
o00) are established through the inheritance of synapses (1, o1), (1, o0); synapses (Cx11, o11),
(Cx11, o10), (Cx10, o01) and (Cx11, o00) are established through the inheritance of synapses
(Cx11, o1), (Cx10, o0); synapses (Cx21, o11), (Cx21, o01), S(Cx20, o10) and (Cx20, o00) are estab-
lished through synapse dictionary syn. Synapses (Cx11, o11) and (Cx11, o10) establish channels
between the input and the assignments including x1 = 1; synapses (Cx10, o01) and (Cx10, o00)
establish channels between the input and the assignments including x1 = 0; synapses (Cx21,
o11) and (Cx21, o01) establish channels between the input and the assignments including x2 = 1;
synapses (Cx20, o10) and (Cx20, o00) establish channels between the input and the assignments
including x2 = 0. At the same time, auxiliary neuron σ2 has one spike, rule a! a is applied and
one spike is emitted to neuron σ1. The system after step three is shown in Fig 7.

Similar process repeats. At step 2n − 1, 2n neurons labeled ot1 t2. . .tn(t1, t2, . . ., tn = 0, 1) are
generated. The system after step 2n − 1 is shown in Fig 8.

At step 2n, each neuron σot1 t2. . .tn receives one spike emitted from neuron σ1 which will be
deleted at the next step by the forgetting rule [a! λ]ot1 t2. . .tn. Neuron σ2 receives two spikes
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(One is emitted from neuron σ1, and another one is emitted from σ3), the forgetting rule a
2 !

λ is applied at step 2n + 1, and no spike will be emitted to neuron σ1 later. At the same time,
neuron σd receives one spike emitted from σ3. The system after step 2n is shown in Fig 9.

Input Stage: At step 2n + 1, the first clause of the conjunctive normal form expression enters
the system through input neurons σinxi, i = 1, 2, . . ., n. The literal in regard to x1 enters neuron
σinx1; the literal in regard to x2 enters neuron σinx2; . . . the literal in regard to xn enters neuron
σinxn. At the same time, one spike is emitted to neuron σinxi from neuron σd.

At step 2n + 2, the spikes in neuron σinxi are replicated, and are emitted to neurons σCxi1 and
σCxi0.

At step 2n + 3, different rules are applied according to the number of spikes in neurons σCxi1
and σCxi0.

For neuron σCxi1:

Fig 6. The systemΠn,m after step one.

doi:10.1371/journal.pone.0162882.g006
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• If one spike is in neuron σCxi1, which means neither xi nor ¬xi is in the clause, rule a! a is
applied. One spike is emitted to neurons having synapses going from neuron σCxi1 to them. It
aims to show that xi = 1 makes no contribution to let the clause true.

• If two spikes are in neuron σCxi1, which means xi is in the clause, rule a2 ! λ is applied.
These two spikes are deleted. It aims to show that xi = 1 makes contribution to let the clause
true.

• If three spikes are in neuron σCxi1, which means ¬xi is in the clause, rule a3 ! a is applied.
One spike is emitted to neurons having synapses going from neuron σCxi1 to them. It aims to
show that xi = 1 makes no contribution to let the clause true.

For neuron σCxi0:

• If one spike is in neuron σCxi0, which means neither xi nor ¬xi is in the clause, rule a! a is
applied. One spike is emitted to neurons having synapses going from neuron σCxi0 to them. It
aims to show that xi = 0 makes no contribution to let the clause true.

Fig 7. The systemΠn,m after step three.

doi:10.1371/journal.pone.0162882.g007
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• If two spikes are in neuron σCxi0, which means xi is in the clause, rule a2 ! a is applied. One
spike is emitted to neurons having synapses going from neuron σCxi0 to them. It aims to show
that xi = 0 makes no contribution to let the clause true.

• If three spikes are in neuron σCxi0, which means ¬xi is in the clause, rule a3 ! λ is applied.
These three spikes are deleted. It aims to show that xi = 0 makes contribution to let the clause
true.

Satisfiability Stage: Each neuron σot1 t2. . .tn(t1, t2, . . ., tn = 0, 1) receives zero or more spikes at
step 2n + 3. If one neuron σot1 t2. . .tn receives n spikes which means the clause contains n literals
that make no contribution to let the clause true, the dissolution rule [an]ot1 t2. . .tn ! δ is applied
at step 2n + 4 to dissolve this neuron (The value of the first clause is false, therefore this assign-
ment is not the answer to this SAT problem.). Otherwise, at least one literal is true in this
assignment and this assignment is reserved to check the next clause.

Due tom clauses are in a SAT problem, the satisfiability checking stage lasts form + 3 steps.
If some neurons σot1 t2. . .tn are still in the system at step 2n +m + 3, the labels of these neurons
σot1 t2. . .tn are all solutions to this SAT problem, i.e., this SAT problem is satisfiable. Otherwise,
this SAT problem is unsatisfiable.

Fig 8. The systemΠn,m after step 2n − 1.

doi:10.1371/journal.pone.0162882.g008
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It can be seen that any SAT(n,m) problem can be solved in linear time, and all solutions can
be obtained through this system.

Some steps comparison results between our solution and other solutions, which use the neu-
ron division to solve the NP-complete problems, are shown in Table 1.

Considering a SAT problem SAT (3, 3): (x1
W

x2)
V

(¬x2
W

x3)
V

(¬x1
W

x2
W

x3), the
DDSN P systemP3,3 is used to solve it. After 12 computational steps, neurons σo111, σo101 and
σo011 are remaining which shows that {x1 = true, x2 = true, x3 = true}, {x1 = true, x2 = false, x3 =
true} and {x1 = false, x2 = true, x3 = true} are all solutions to this SAT problem.

The SN P system with neuron division and budding and the SN P system with neuron divi-
sion need 21 steps and 26 steps to judge this problem has solutions, respectively, while our
DDSN P system need only 12 steps.

SAT problems with different sizes (1� n,m� 50) are solved using the three systems in
Table 1 and the computational steps of each system are shown in Figs 10, 11 and 12 by
MATLAB R2014a. As can be seen from these figures, the computational steps of DDSN P sys-
tem are stable and much fewer, especially when the problem size is larger.

Fig 9. The systemΠn,m after step 2n.

doi:10.1371/journal.pone.0162882.g009
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3 A Uniform Solution to Subset Sum Problem
Subset Sum problem is one of the most typical NP-complete problems. The formal definition
of it is as follows [38].

Problem 2. NAME: SUBSET SUM.

• INSTANCE: a set of positive integers X = {x1, x2, . . ., xn} and a positive integer S.

• QUESTION: is there a subset B� X that
X
b2B

b ¼ S?

Subset Sum problem (n) denotes the set of all instances of the Subset Sum problem having n
integers. In this section, a uniform solution working in a deterministic way is constructed by
DDSN P system, which can solve all Subset Sum problem (n) problems in linear time.

An integer is represented by corresponding number of spikes. In order to generate necessary
workspace before computing, a spike train (a0 �)2n is introduced into the front of each spike
train.

Table 1. Steps comparison results of some uniform solutions to SAT problem.

solution step complexity (steps) determinism or nondeterminism

SN P systems with neuron division and budding [25] 2n +mn + 6 determinism

SN P systems with neuron division [26] 4n +mn + 5 determinism

DDSN P systems 2n +m + 3 determinism

doi:10.1371/journal.pone.0162882.t001

Fig 10. The computational steps of SN P systemwith neuron division and budding solving SAT problem.

doi:10.1371/journal.pone.0162882.g010
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The formal definition of DDSN P Systems for Subset Sum problem (n) (shown in Fig 13) is
as follows.

Pn ¼ ðO;H; syn; n1; n2; . . . ; n3nþ6;R; in; outÞ;

where:

1. O = {a};

2. H = {0, 1, 2, 3, 4, s, ini, di1, di2}(i = 1, 2, . . ., n);

3. syn = {(3, 2), (2, 1), (1, 2), (1, 0), (4, s), (s, 0)}S
{(ini, di1), (ini, di2), (di1, 4)|i = 1, 2, . . ., n}S
{(d1,2, o1)}

S
{(di2, ot1, . . ., t(i − 1)1)|i = 2, 3, . . ., n};

4. n0 = 1, n2 = 1, n3 = 1, the number of spikes in other neurons is zero;

5. in = σini, σs, out = σot1, t2, . . ., tn(i, t1, t2, . . ., tn = 0, 1);

6. firing rule:
[a! a]i, i = 1, 2
[a! a; 2n − 1]3
[a3(a3)+/a3 ! a3]ini, i = 1, 2, . . ., n
[a3 ! a]ini, i = 1, 2, . . ., n
[a! a]di1, i = 1, 2, . . ., n
[a3 ! a3]di2, i = 1, 2, . . ., n
[an ! a]4

Fig 11. The computational steps of SN P systemwith neuron division solving SAT problem.

doi:10.1371/journal.pone.0162882.g011
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[a(a2)+/a2 ! a2]s
[a! a]s
forgetting rule:
[a2 ! λ]2
[a3 ! λ]di1, i = 1, 2, . . ., n
[a! λ]di2, i = 1, 2, . . ., n
[a2(a3)+/a5 ! λ]ot1 t2. . .tn, t1, t2, . . ., tn = 0, 1
[a! λ]ot1 t2. . .tn, t1, t2, . . ., tn = 0, 1
neuron division rule:
[a]0 ! [ ]o1 || [ ]o0
[a]ot1 ! [ ]ot11 || [ ]ot10, t1 = 0, 1
[a]ot1 t2 ! [ ]ot1 t21 || [ ]ot1 t20, t1, t2 = 0, 1
. . .

[a]ot1 t2. . .tn−1 ! [ ]ot1 t2. . .tn−11 || [ ]ot1 t2. . .tn−10, t1, t2, . . ., tn−1 = 0, 1
neuron dissolution rule:
[a(a3)+]ot1 t2. . .tn ! δ, t1, t2, . . ., tn = 0, 1
[a2]ot1 t2. . .tn ! δ, t1, t2, . . ., tn = 0, 1.

Computation starts when spike trains enter the system thrgouth input neurons σin1, σin2, . . .,
σinn and σs, respectively. Neuron σ0 and its children neurons need 2n steps to generate 2n neu-
rons (workspace) to enumerate all subsets of x1, x2, . . ., xn by applying neuron division rules
(One neuron represents one subset.), therefore (a0 �)2n are added to the front of each spike train.

Fig 12. The computational steps of DDSN P system solving SAT problem.

doi:10.1371/journal.pone.0162882.g012
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Generation Stage: At step one, neuron σ0 has one spike, the division rule [a]0 ! [ ]o1 || [ ]o0 is
applied to generate neurons σo1 and σo0, which means one subset in regard to x1 has two
choices: x1 is included in this subset (represent by 1) and x1 is not included in this subset (rep-
resent by 0). Synapses (1, o1) and (1, o0) are established through the inheritance of synapse (1,
0); synapses (s, o1) and (s, o0) are established through the inheritance of synapse (s, 0); the syn-
apse (d12, o1) is established through synapse dictionary syn. The synapse between neurons d12
and o1 establishes a channel between the input and the subset having x1. At the same time, aux-
iliary neuron σ2 has one spike, rule a! a is applied and one spike is emitted to neuron σ1; aux-
iliary neuron σ3 has one spike, rulea! a; 2n − 1 is applied and one spike will be emitted to
neurons σ2 at step 2n. The system after step one is shown in Fig 14.

At step two, neuron σ1 has one spike, the firing rule a! a is applied, and one spike is emit-
ted to neurons σ2, σo1 and σo0.

At step three, each of neurons σo1 and σo0 has one spike, the division rule [a]ot1 ! [ ]ot11 || [
]ot10(t1 = 1, 0) is applied to generate neurons σo11, σo10, σo01 and σo00, which means one subset in
regard to x1 and x2 has four choices: x1x2 are included in this subset (represent by 11), x1 is
included in this subset and x2 is not included in this subset (represent by 10), x1 is not included
in this subset and x2 is included in this subset (represent by 01), and x1x2 are not included in
this subset (represent by 00). Synapses (1, o11), (1, o10), (1, o01), (1, o00), (s, o11), (s, o10), (s, o01),
(s, o00), (d12, o11) and (d12, o10) are established through the inheritance of synapse (1, o1), (1,
o0), (s, o1), (s, o0) and (d12, o1); synapses (d22, o11) and (d22, o01) are established through synapse
dictionary syn. Synapses (d12, o11) and (d12, o10) establish channels between the input and the

Fig 13. The initial systemΠn.

doi:10.1371/journal.pone.0162882.g013
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subsets having x1; synapses (d22, o11) and (d22, o01) establish channels between the input and
the subsets having x2. At the same time, auxiliary neuron σ2 has one spike, rule a! a is applied
and one spike is emitted to neuron σ1. The system after step three is shown in Fig 15.

Similar process repeats. At step 2n − 1, 2n neurons labeled ot1 t2. . .tn(t1, t2, . . ., tn = 1, 2, . . .,
n) are generated. The system after step 2n − 1 is shown in Fig 16.

At step 2n, each neuron σot1 t2. . .tn receives one spike emitted from neuron σ1 which will be
deleted at the next step by the forgetting rule [a! λ]ot1 t2. . .tn. Neuron σ2 receives two spikes
(One is emitted from neuron σ1, and another one is emitted from neuron σ3.), the forgetting
rule a2! λ is applied at step 2n + 1, and no spike will be emitted to neuron σ1 later. The system
after step 2n is shown in Fig 17.

Input Stage: At step 2n + 1, x1, x2, . . ., xn enter the system through input neurons σini(i = 1,
2, . . ., n). 3x1 + 3 spikes (a3x1+3) enter neuron σin1; 3x2 + 3 spikes (a3x2+3) enter neuron σin2;. . .
3xn + 3 spikes (a3xn+3) enter neuron σinn.

At step 2n + 2, the firing rule a3(a3)+/a3 ! a3 is applied, and three spikes are replicated and
are emitted to neurons σdi1 and σdi2. Spikes in neuron σdi1 are forgotten, and spikes in neuron σdi2
are emitted to these σot1 t2. . .,tn having synapses going from neuron σdi2 to them (These neurons
represent the subsets having the integer xi.) at step 2n + 3. This process repeats until only 3
spikes are in neuron σini.

Fig 14. The systemΠn after step one.

doi:10.1371/journal.pone.0162882.g014
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At step 2n + xi + 2, the firing rule a3 ! a is applied, and one spike is replicated and is emit-
ted to neurons σdi1 and σdi2.

At step 2n + xi + 3, the spike in neuron σdi1 is emitted to neuron σ4 showing that all spikes in
neuron σini have been passed to neurons σot1 t2. . .,tn having synapses going from neuron σdi2 to
them. The spike in neuron σdi2 is forgotten. Up to this step, 3xi spikes are emitted to neurons
σot1 t2. . .,tn which represent the subsets having the integer xi.

When all input spikes in neurons σini are passed to neurons σot1 t2. . .tn at step 2n + xmax + 3
(xmax represents the maximum integer of all n integers.), neuron σ4 receives n spikes, and one
spike is emitted to neuron σs at step 2n + xmax + 4. Up to this step, the number of spikes in neu-

rons σot1 t2. . .,tn is 3
X
b2B

b.

Checking Stage: At step 2n + xmax + 5, 2s + 1 spikes are in neuron σs, the firing rule a(a
2) +/

a2 ! a2 is applied, two spikes are emitted to neurons σot1 t2. . .tn. This process lasts for S circles.
At step 2n + xmax + s + 4, only one spike is in neuron s, and this spike is emitted to neurons

σot1 t2. . .tn.
There are three rule execution situations in neurons σot1 t2. . .tn.

1.
X
b2B

b ¼ S

3
X
b2B

b spikes are in neuron σot1 t2. . .tn initially. 2 spikes are emitted to this neuron from

Fig 15. The systemΠn after step three.

doi:10.1371/journal.pone.0162882.g015
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neuron σS, then forgetting rule a2(a3)+/a5 ! λ can be applied with 5 spikes consumed. The

number of spikes decreases to 3ð
X
b2B

b� 1Þ. This process repeats S times, and all spikes in

neuron σot1 t2. . .tn are consumed. At this step, the last one spike is emitted to this neuron from
neuron σS, forgetting rule a! λ can be applied to consume this spike.

2.
X
b2B

b < S

3
X
b2B

b spikes are in neuron σot1 t2. . .tn initially. 2 spikes are emitted to this neuron from neu-

ron σS, then forgetting rule a2(a3)+/a5 ! λ can be applied with 5 spikes consumed. The

number of spikes decreases to 3ð
X
b2B

b� 1Þ. This process repeats
X
b2B

b times, and all spikes

in neuron σot1 t2. . .tn are consumed. At this step, two spikes are emitted to this neuron from
neuron σS, and neuron dissolution rule [a2]ot1 t2. . .tn ! δ(t1 t2. . .tn = 1, 2, . . ., n) is applied to
dissolve this neuron.

3.
X
b2B

b > S

3
X
b2B

b spikes are in neuron σot1 t2. . .tn initially. 2 spikes are emitted to this neuron from neu-

ron σS, then forgetting rule a2(a3)+/a5 ! λ can be applied with 5 spikes consumed. The

Fig 16. The systemΠn after step 2n − 1.

doi:10.1371/journal.pone.0162882.g016
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number of spikes decreases to 3ð
X
b2B

b� 1Þ. This process repeats S times, and 3ð
X
b2B

b� SÞ

spikes are remaining. At the next step, the last one spike in neuron σS is emitted to this neu-
ron, and dissolution rule [a(a3)+]ot1 t2. . .tn ! δ(t1 t2. . .tn = 1, 2, . . ., n) is applied to dissolve
this neuron.

If some neurons σot1 t2. . .tn are still in the system after step 2n + xmax + s + 5, the labels of these
neurons σot1 t2. . .tn are all solutions to this Subset Sum problem.

It can be seen that any Subset Sum problem (n) can be solved in linear time, and all solutions
can be obtained through this system.

Some steps comparison results between our solution and other solutions, which use the
non-deterministic method to solve the NP-complete problems, are shown in Table 2, where, k
means that all x1, . . ., xn, S can be transformed into k-bit binary numbers.

Fig 17. The systemΠn after step 2n.

doi:10.1371/journal.pone.0162882.g017

Table 2. Steps comparison results of some uniform solutions to Subset Sum problem.

solution step complexity (steps) determinism or nondeterminism

SN P systems [19] 3k + 2 nondeterminism

SN P systems [20] 3Sn
i¼1xi þ 6 nondeterminism

SNPSP systems [22] 2Sn
i¼1xi þ 6 nondeterminism

time-free SN P systems [23] 3Sn
i¼1xi þ 2 nondeterminism

DDSN P systems 2n + xmax + s + 5 determinism

doi:10.1371/journal.pone.0162882.t002
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The conventional methods use the nondeterminism of SN P systems to solve Subset Sum
problem, which means that whether a random combination of integers is one of the solutions
or not can be checked by one computational process. These SN P systems can only judge
whether a certain subset is the answer or not, but cannot search all solution space to judge
whether a Subset Sum problem has solutions. Even if we let all combinations be traversed artifi-
cially to determine whether a Subset Sum problem has solutions or not, (2n − 1)-times compu-
tations should be processed. Although the time complexity of each computation is a constant,
the whole time complexity cannot be a polynomial of n. The proposed DDSN P system can
solve the Subset Sum problem in a linear time, which improves the computational efficiency.

Considering a Subset Sum problem Subset Sum problem (4): X = {1, 2, 3, 4}, S = 5, the
DDSN P systemP4 is used to solve it. After 22 computational steps, neurons σo0110 and σo1001 are
remaining which shows that {2, 3} and {1, 4} are all solutions to this Subset Sum problem.
Methods proposed in [19, 20, 23] need 165 steps, 330 steps and 270 steps, respectively to judge
this problem.

A series of Subset Sum problems: X = {1, 2, . . ., n}, S = 5 are solved using the five systems in
Table 2 and the computational steps of these systems are shown in Fig 18 by MATLAB
R2014a. The computational steps of DDSN P system are much fewer, especially when the prob-
lem size is larger.

4 Conclusions
The new mechanism called neuron dissolution is introduced into the framework of SN P sys-
tems in this work. By this mechanism, redundant neurons can be dissolved immediately. The

Fig 18. The computational steps of five types of SN P system solving Subset Sum problem.

doi:10.1371/journal.pone.0162882.g018
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computational resources can be saved, which means more work can be done using the same
resources, or the same work can be done using less resources. We also proved that this new var-
iant of SN P system can obtain all solutions to NP-complete problems (Invalid solutions are
eliminated by neuron dissolution.), such as SAT problem and the Subset Sum problem, in lin-
ear time, which enhances the application fields of SN P systems such as the register allocation
problem.

This work provides a new thought of storing information in SN P systems, which can be
used to store other information. The dissolution rule can be used to many situations to decrease
the space complexity of a SN P system. This variant of SN P system can be used to solve other
NP-complete problems and application problems. It is also an attractive direction to introduce
other biological phenomena into SN P systems to reduce computational resources and enhance
computational space efficiency.
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