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IoT malware detection architecture 
using a novel channel boosted 
and squeezed CNN
Muhammad Asam1,2, Saddam Hussain Khan1,2,3, Altaf Akbar4, Sameena Bibi5, 
Tauseef Jamal6,7, Asifullah Khan1,2,6,7, Usman Ghafoor8,9* & Muhammad Raheel Bhutta10*

Interaction between devices, people, and the Internet has given birth to a new digital communication 
model, the internet of things (IoT). The integration of smart devices to constitute a network 
introduces many security challenges. These connected devices have created a security blind spot, 
where cybercriminals can easily launch attacks to compromise the devices using malware proliferation 
techniques. Therefore, malware detection is a lifeline for securing IoT devices against cyberattacks. 
This study addresses the challenge of malware detection in IoT devices by proposing a new CNN-based 
IoT malware detection architecture (iMDA). The proposed iMDA is modular in design that incorporates 
multiple feature learning schemes in blocks including (1) edge exploration and smoothing, (2) multi-
path dilated convolutional operations, and (3) channel squeezing and boosting in CNN to learn a 
diverse set of features. The local structural variations within malware classes are learned by Edge and 
smoothing operations implemented in the split-transform-merge (STM) block. The multi-path dilated 
convolutional operation is used to recognize the global structure of malware patterns. At the same 
time, channel squeezing and merging helped to regulate complexity and get diverse feature maps. 
The performance of the proposed iMDA is evaluated on a benchmark IoT dataset and compared with 
several state-of-the CNN architectures. The proposed iMDA shows promising malware detection 
capacity by achieving accuracy: 97.93%, F1-Score: 0.9394, precision: 0.9864, MCC: 0. 8796, recall: 
0.8873, AUC-PR: 0.9689 and AUC-ROC: 0.9938. The strong discrimination capacity suggests that iMDA 
may be extended for the android-based malware detection and IoT Elf files compositely in the future.

The concept of transforming real-world objects into virtual objects emerged as the Internet of Things (IoT). 
Under this concept, intelligent objects and devices can share data and resources according to the situation and 
environment1. This web of interconnected devices plays a vital role in our daily lives, ranging from health, smart 
homes, education, and, especially, industry. Masses are becoming familiar with the deployment of these devices 
in the field of agriculture, for soil condition monitoring2, healthcare and e-health applications3–5, and military 
domains6, as well. Deployments of these gadgets range from operational areas to critical infrastructure services. 
Industry 4.0 exploited this concept to build the link between the supply chain, industrial production, and end-
users7. The IoT ecosystem used in industry, Industrial IoT (IIoT), undoubtedly contributes to the productivity 
and the quality of the industrial infrastructures.

IoTs lack secure design rules; hence, these have become an accessible playground for cybercriminals8. 
IoT devices are resource-constrained. These devices are usually installed with a default username password. 
Due to the embedded nature of the IoT devices, they are not patched regularly9. Network vulnerabilities for 
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communicating with these devices can also be exploited easily at IoT touchpoints. The security protocol can-
not be uniformly implemented on all the devices. The manufacturing of the devices does not conform to some 
consistent standards. These security challenges are depicted in Fig. 1.

There are many heterogenic device structures and network protocols. They also possess a unique characteristic 
of processor heterogeneity10. So, the IoT industry lags unified security protocols for design and implementation. 
These weaknesses of IoT design enlarge the attack surface area and lead to security breaches. Cybercriminals 
utilize these attack surfaces for their illegal actions and exploit the vulnerabilities. Major cyber security con-
cerns are host and Network Intrusions, malware attacks, compromised nodes, botnets, rootkits, ransomware, 
and DDoS. Therefore, a robust mechanism for detecting such activities is needed to quickly detect and mitigate 
these digital security exploits.

Research on this security aspect of IoTs has attracted increased academic, industrial, and state-level atten-
tion. Several research efforts have discovered potential cyber threats and provided countermeasures against 
cyberattacks. Cyber security experts believe most cyber exploits are carried out through malware attacks. Many 
research studies in the literature have attempted this challenge of malware detection. Static, dynamic, hybrid, 
and image-based malware analysis comes under this challenge’s broad categories11.

Machine learning techniques have been extensively used for malware detection as they are more robust and 
give promising performance12–14. Anti-malware tools have achieved improved performance with the help of 
machine learning tools. Several machine learning algorithms have been employed for mining the vulnerabilities 
in the IoT firmware and IoT applications that can infect and corrupt the edge devices and the whole network of 
the connected devices. Recent machine learning advancements have proved their capabilities in detecting and 
classifying IoT malware15. Research studies for anti-malware applications have increased the inclination towards 
machine learning tools and techniques. Computational power improvement has also enhanced the performance 
of machine learning strategies for malware detection and classification. Application of the machine learning 
needs the features of the IoT malware to make their verdict.

As the malware databases are increased, deep learning techniques suited more pertinent for the detection and 
analysis. Recent research has been molded towards applying neural networks in the field of malware analysis. 
Neural networks, especially deep convolution neural networks (CNNs), have proven their competencies for 
feature extraction and feature identification in IoT malware. Deep CNNs build the malware detection systems by 
defining the discriminative features in IoT malware. Deep CNNs show enhanced performance as these models 
learn the complicated features of the IoT malware at different abstraction levels. Features learned in the lower lay-
ers are enriched in the upper lawyers. These features are extracted from the visual images of the problem domain.

The IoT Malware dataset exploited in the current study has not been addressed previously to the best of our 
knowledge. This study utilized the image representation of IoTs malware and benign files. It is observed that deep 
CNN has shown promising performance for the visual challenges16. We have proposed applying deep learning 
techniques for the malware detection challenge. The main contributions in the current study are described below:

•	 A novel IoT Malware detection architecture (iMDA), using squeezing and boosting dilated CNN, is proposed 
for IoT Malware analysis using a new benchmark dataset.

•	 The proposed iMDA incorporates the edge and smoothing, multi-path dilated convolutional, channel squeez-
ing, and boosting operations in CNN. Edge and smoothing operations are employed within split-transform-
merge (STM) blocks to extract local structure and minor contrast variation in the malware images.

•	 STM blocks performed multi-path dilated convolutional operations, which helped to recognize the global 
structure of malware patterns. Additionally, channel squeezing and boosting are applied at different granular 
levels to get the reduced but prominent and diverse feature maps for capturing texture variations.

•	 The proposed iMDA has shown significant performance compared with existing CNNs via TL in terms of 
standard performance metrics using MCC, F1-Score, AUC, accuracy, precision, and recall.
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Figure 1.   IoT security challenges.
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The rest of the paper is structured as follows: the next section specifies related work in IoT malware analysis. 
“Methodology” section explains the proposed novel malware detection methodology. “Experimental setup” sec-
tion describes the experimental setup.  “Results and discussion” section discusses the results of our work. The  
is described in “conclusion” section.

Related work
IoT Malware analysis is carried out using static, dynamic, and hybrid analysis techniques. Nataraj et al.17 were the 
first to perform the malware analysis based on greyscale images in 2011. Malware visual images are created by 
transcribing the eight-bit code value of the executable files to the corresponding greyscale value. Image texture 
features are extracted from these images18. The idea of texture-based analysis for IoT malware is emerging in 
context with deep learning. Evanson et al.19 proposed an approach for malware analysis using texture images of 
malware files and machine learning in IoTPOT20 for Bashlite and Mirai. They came up with the Haralick image 
texture features from the grey-level co-occurrence matrix and used machine learning classifiers. Carrilo et al.21 
explored the malware forensic and reverse engineering capabilities for malware characterization. They first used 
machine learning to detect Linux-based system malware of IoT. They also discovered new malware detection 
by using clustering techniques. They exploited the dataset provided by E. Cozzi et al.22. Ganesh et al.23 exploited 
machine learning capabilities to detect Mirai botnet attacks in IoTs. They applied ANN to evaluate their approach 
to the N-BaIoT dataset. Shudong Li et al.24 used ensemble learning for mining the malicious code in the cloud 
computing environment. Bendiab et al.25 applied deep learning for malware analysis traffic IoT. They applied 
ResNet50 for the experimental verification of their concept using a 1000 network (pcap) file.

Kyushu et al.26 proposed a lightweight approach for IoT malware detection. They targeted the DDoS malware 
for their study and extracted the malware images from malware binaries in IoTPOT20. Their experimental setup 
showed performance for detecting the DDoS malware and good-ware. Ren et al.27 gave an end-to-end malware 
detection mechanism for Android IoT devices. They collected 8000 benign and 8000 malicious APK files from 
the Google Play store and VirusShare, respectively. They used the significance of deep learning for the evalua-
tion of their concept. Hussain et al.28 used application intent along with a supervised learning-based approach 
for the intelligent identification of Android-based malware. Naeem et al.29 detected the malware in Industrial 
IoT by proposing deep CNN-based traffic, behavior, and log databases analysis. They utilized the color images 
of the targeted malware for detection in the Leopard Mobile dataset.

Shafiq et al.30 used the Bot-IoT dataset for the correct malware feature selection and showed that their pro-
posed method reached the accuracy of 965 for accurate detection of IoT malware over the network. They used 
the bijective soft set selection approach31 for the effective ML algorithm selection for the Bot-IoT network traffic 
dataset. They also used wrapper-based feature filtering and selection techniques32.

However, the evaluation of the reported work is presented in Accuracy and Precision. Practically, malware 
datasets are imbalanced. Therefore, other evaluation metrics must be considered. In this regard, our proposed 
research work exploited the benchmark Kaggle IoT dataset. Performance evaluation metrics F1-Score, MCC, 
AUC-PR, and AUC-ROC are also evaluated, along with Accuracy and Precision. The comprehensive workflow 
is presented in Fig. 2.

Methodology
Data augmentation.  CNN models give better generalization upon large labeled data. Sometimes, the data 
points for the model training are not adequate. The data augmentation technique produces the artificial sample 
points by applying image transformation operations33–35. These operation includes rotation (0–360 degree), scal-
ing (0.5–1), shearing (− 0.5, + 0.5) and reflection (in left and right direction). The augmentation process helped 
improve generalization and made the dataset more robust for detecting IoT malware.

Proposed IoT malware detection architecture (iMDA).  This study proposes a novel image-based IoT 
malware detection architecture, iMDA. The suggested architecture discriminates the malware image sample 
from benign images. Spit-Transform-Merge (STM) is the main building block of this architecture. Three STM-
based blocks concept is systematically implemented using region and edge detection operations.

IoT Malware Images FinalPredic�onData
Augmenta�on

Implementa�on of Customized 
Exis�ng CNN

Proposed STM Based Channel 
Boos�ng Framework

Figure 2.   A brief overview of the proposed framework.
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The concept of channel boosting is imparted for high precision, improving the detection rate. Implementation 
details of the proposed architecture are highlighted in Fig. 3A. The performance of the proposed architecture is 
compared with the existing CNN models using TL-based implementation, as shown in Fig. 3B.

Proposed channel squeezing and boosting blocks.  Deep CNN models are powerful and robust for 
their texture feature mining abilities. These models use convolutional operations for exploiting structural infor-
mation in the image data. These operations are used to extract the dataset’s features according to the target 
domain. This innovative feature of the deep CNN is utilized in the current architecture for IoT malware detec-
tion. This architecture is tailored by proposing a concatenated STM-based channel boosting approach36, Fig. 4A.

The proposed STM block comprises a stack of four blocks, as shown in Fig. 4B. Details of the operations 
performed in each block are shown in Fig. 4C. Block B and Block C employ the same convolutions, batch nor-
malization, and Relu operation with max and average pooling operation. Two convolution operations employed 
in each block are used to extract the feature information at the detailed and abstract levels, respectively. Block D 
and Block E employ the three-convolution operation. Two operations are used for the detailed features extrac-
tion, while one is used for the abstract level feature information extraction.

The STM block splits the input IoT malware image data into four branches to feed the four blocks of the 
STM. These blocks learn the region and edge-based informative features at a different level of abstraction from 
the input dataset. This learning helps to gather the highly discriminating features of the IoT malware at a high 
and detailed level. This info is imparted into different channels from each block. Information infused in other 
channels is concatenated at the exit of the STM block. This channel-boosted feature space is rich in diverse levels 
of textural feature information about the malware.

Equation (1) shows the convolution operation of filter f and input channel x of size p × q and A × B, respec-
tively. The dimensions of the convolved output range from 1 to A − p + 1 and B—q + 1, respectively. ‘s’ denotes 
the dimension for average and max-pooling operations, shown in Eq. (2) and Eq. (3). In Eq. (4), CB, CC, CD, 
and CE show the channels extracted in the Block-B, -C, -D, and -E, respectively. The ‘merge’ function is used for 
concatenating these extracted channels. ud shows the number of neurons in Eq. (5).
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Implementation of customized existing CNNs.  CNN architectures AlexNet, VGG16, inceptionv3, 
VGG19, Resnet50, Shufflenet, DenseNet201, Xception, and GoolgeNet are selected for a fair comparison with 
the proposed architecture. To achieve substantial performance, these models are initially trained on the Ima-
geNet. These trained models are fine-tuned according to the target IoT malware dataset. Then these models are 
trained and tested using the target dataset using an 80-20 train-test split.

Experimental setup
Dataset.  Linux operating system (OS) is becoming the dominant for IoT devices37. Hence, this operating 
system has become a prospecting target for the malware developer community. Linux uses ELF file format for 
the deployment of applications or firmware. ELF files are cross plate form in nature and come in two binary for-
mats, packed and unpacked binaries38. The IOT_Malware dataset used in this study is the image representation 
of unpacked ELF binary files for malware and benign applications39. This dataset is a standard Kaggle benchmark 
dataset for IoT malware detection challenges. There are 14,733 greyscale images of malware application ELF 
binaries and 2486 greyscale images of legitimate application ELF binaries. Visualization of benign and malicious 
files is shown in Fig. 5.

Implementation details.  The implementation of the proposed iMDA is simulated using MATLAB-2021a 
on Nvidia® GTX 1060-T, GPU-enabled Dell Core I i5-7500. It took ~ 1–2 h to train a model on the said settings. 
One epoch took 7–10 min on Nvidia-Tesla K-80, while a single IoT malware image took approximately 2 s for 
detection.

Performance evaluation metrics.  In the current study, we have employed performance evaluation met-
rics Accuracy, Precision, Recall, F1-Score, and MCC, as shown in Eqs. (6–10). The details of these performance 
metrics are described in Table  1. AUC-PR and AUC-ROC is also formulated for the proposed model. True 
Positive (TP), False Positive (FP), True Negative (TN), and False Negative (TN) are also calculated for the per-
formance comparison.

Several statistical measures are used as performance metrics for binary classification using four quadrants 
confusion matrix, i.e., TP, TN, FP, and FN. These metrics are selected according to the problem under investiga-
tion. There is no agreed-upon performance metrics for two or multi-class problem. The severity of the problem 
gives direction toward the selection of performance metrics. For an imbalanced dataset, some performance 
metrics show over-optimistic results. The Matthews correlation coefficient (MCC) is considered an attested 
statistical measure. It gives a high score for prediction only if all four quadrants are proportionally high for both 
positive and negative classes40.

Results and discussion
Performance analysis of the proposed iMDA.  The performance of the proposed iMDA is assessed on 
a standard IoT Malware dataset. F1-Score and MCC are considered standards for performance evaluation for an 
imbalanced dataset. F1-Score and MCC are used for assigning weightage to both the precision and sensitivity. 
The proposed architecture converged smoothly and reached the optimal value quickly, as shown in the train-
ing plots of the model. Misclassification occurred due to the intrinsic code similarity between the malicious 

(3)(xmax)a,b = max
i=1,...s,j=1,...s

xa+i−1,b+j−1

(4)CBoost = merge(CB||CC ||CD||CE)

(5)x =
D
∑

d=1

C
∑

c=1

udxc

(6)Acc =
Predicted malware samples + predicted benign samples

Total samples
× 100

(7)MCC =
(TP ∗ TN)− (FP ∗ FN)

√
(TP+ FP) ∗ (FP+ FN) ∗ (TN+ FP) ∗ (TN+ FN)

(8)P =
Predicted malware samples

Predicted malware samples+ Incorrectly predicted Malware samples
× 100

(9)R =
Predicted malware samples

Total malware samples
× 100

(10)F1− Score = 2×
P× R
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and benign files. This similarity refers to the identical attack pattern in the malware images. This phenomenon 
occurred substantially with the implementation of other CNN models for malware detection. The iMDA is 
carried out using data augmentation techniques that improve the generalization and robustness of the trained 
model during testing.

a) Visual representation of malware binaries 

b) Visual representation of benign file binaries 

Figure 5.   Image visualization of (a) malware and (b) benign files.

Table 1.   Details of performance metrics.

Metric symbol Description

Acc Shows Accuracy as % of the total number of Malware detection

R Shows Recall, which is the proportion of correctly identified malware samples and benign samples

P Shows Precision, a ratio of correctly detected malware samples to the total malware sample

F1-Score F1-Score is the harmonic mean of P and R

AUC-PR Quantifies the area under Precision and Recall Curve

AUC-ROC Quantifies the area under Receiver Operating Characteristic curve

MCC Mathews Correlation Coefficient

TP Correctly Identified Malware Files

TN Correctly Identified Benign Files

FP Incorrectly Identified Malware Files

FN Incorrectly Identified Benign Files
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Performance comparison with existing CNNs.  The performance of the IoT malware detection archi-
tecture, iMDA, is also compared with existing models, AlexNet, VGG16, inceptionv3, VGG19, Resnet50, Shuf-
flenet, DenseNet201, Xception, and GoolgeNet. Improved performance is shown in Table 2.

CNN models seek to find the identifiable textures and patterns in the image dataset. Our proposed malware 
detection architecture, iMDA, better explored textural variation in the malware images by systematically using 
region and boundary information through the Avg and Max-pooling operations. Channel split-transform-merge 
technique helped to extract the features at different granularity. Incorporating the concepts mentioned earlier 
in CNN improved the performance of the proposed architecture over the existing models. This study reported 
the significance of performance using deep learning architecture and quantified it using MCC, F1-Score, AUC-
ROC, Accuracy, Precision, and Recall.

Detection capability of the proposed iMDA.  The effectiveness of a malware detection framework is 
mainly assessed through precision rate and detection rate. Accurately detecting infused malware in a system is 
the first parameter to secure and control the spread. False alarms may be increased if only the precision of the 
proposed detection technique is improved. Decreasing the false alarm may degrade the detection rate. Keeping 
in mind this intuition, the proposed model leveraged the difference by comparing F1-Score, the harmonic mean 
of both parameters. Minimum and maximum performance gains against the existing CNN models are shown 
in Fig. 6. Results of the proposed iMDA are summarized in Table 3. A comparison of detection performance of 
our proposed model using F1-Score, Accuracy, and MCC with the existing model is shown in Fig. 7. In contrast, 
customized existing CNNs are compared and found that few models showed considerably good precision with 
poor recall.

Table 2.   Comparison of proposed framework with the existing CNN models.

Models Accuracy % F1-score Precision MCC Recall AUC-PR AUC-ROC

AlexNet 92.86 0.6807 0.9960 0.5874 0.5171 0.9041 0.9685

VGG16 94.72 0.9146 0.9552 0.839 0.8772 0.9321 0.9816

Inceptionv3 94.89 0.8055 0.9920 0.7091 0.6780 0.8972 0.9860

VGG19 95.38 0.8353 0.9902 0.7429 0.7223 0.9088 0.9739

Resnet50 95.62 0.8282 0.9971 0.7379 0.7082 0.9432 0.9848

Shufflenet 95.93 0.8491 0.9949 0.7621 0.7404 0.9541 0.9901

DenseNet201 96.17 0.8685 0.9917 0.7856 0.7726 0.9471 0.9884

Xception 96.57 0.9342 0.9737 0.8651 0.9074 0.9527 0.9882

GoolgeNet 96.72 0.8934 0.9917 0.8195 0.8128 0.9469 0.9881

Proposed iMDA 97.93 0.9394 0.9864 0.8796 0.8873 0.9731 0.9938
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Figure 6.   Minimum and maximum performance gain of proposed framework.
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Feature space‑based analsis of the proposed iMDA.  The decision-making of the proposed archi-
tecture is better analyzed with the help of feature space visualization. Better discrimination factor of the model 
is associated with the prominent visual features. This distinction helps to improve the learning and lower the 
variance of the model. The feature space visualization for the principal components of our proposed iMDA is 
shown in Fig. 8. Channel squeezing and channel boosting used in STM blocks helped to capture the discrimi-
native features of the IoT malware images at a multi-level. Additionally, STM extended the reduced prominent 
feature with the help of channel concatenation. The feature space visualization for the proposed iMDA showed 
an improvement in identifying the distinct and diverse features, hence improving the detection of the IoT mal-
ware files.

Auc‑roc and auc‑pr based analysis.  The optimal performance of the model is also best understood by 
the ROC and PR plots, Fig. 9. These plots show the bifurcation capability of the models at an optimal threshold 
value. Our proposed iMDA showed high sensitivity along with a decreased false positive rate.

Conclusion
Analysis of malware in IoT is an early line of defense in securing this world of connected devices from cyberat-
tacks. Malware analysis help to identify and designate the malicious code segments hidden in the legitimate 
files. This malicious code snippet is present according to the malware signature or obfuscated otherwise. The 
obfuscation techniques hide the malicious code lines from pattern/signature matching. These lines may be 
distributed or intermixed with the legitimate line over the complete file. The IoT-specific malicious patterns are 
detected in this study by developing iMDA, new CNN architecture: iMDA based on the ideas of dilated convo-
lutional operations, channel squeezing, and boosting. The proposed architecture discriminates the malware from 
benign based on textural, contrast, and pattern variations. The proposed iMDA outperformed existing CNN 
and achieved the best result for Accuracy (97.33%), MCC (0.8796), F1-Score (93.94), AUC-ROC (0.9938), and 
AUC-PR (0.9689). In the future, the proposed iMDA may be extended for the android-based malware detection 
and IoT Elf files compositely.

Table 3.   Performance of the proposed model.

Performance metric Proposed iMDA

Accuracy % 97.93

F1-Score 0.9394

Precision 0.9864

MCC 0.8796

Recall 0.8873

AUC-PR 0.9689

AUC-ROC 0.9938
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Figure 7.   F1-score, accuracy, and MCC comparison.
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Figure 8.   Feature space-based performance comparisons.

Figure 9.   Detection rate analysis of the proposed iMDA in comparison with existing CNN.
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Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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