
entropy

Article

A Correntropy-Based Proportionate Affine Projection
Algorithm for Estimating Sparse Channels with
Impulsive Noise

Zhengxiong Jiang 1, Yingsong Li 1,2,* and Xinqi Huang 1

1 College of Information and Communications Engineering, Harbin Engineering University, Harbin 150001,
China; jiangzhengxiong@hrbeu.edu.cn (Z.J.); huangxinqi@hrbeu.edu.cn (X.H.)

2 Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of
Sciences, Beijing 100190, China

* Correspondence: liyingsong@ieee.org

Received: 2 May 2019; Accepted: 31 May 2019; Published: 2 June 2019
����������
�������

Abstract: A novel robust proportionate affine projection (AP) algorithm is devised for estimating
sparse channels, which often occur in network echo and wireless communication channels. The
newly proposed algorithm is realized by using the maximum correntropy criterion (MCC) and the
data reusing scheme used in AP to overcome the identification performance degradation of the
traditional PAP algorithm in impulsive noise environments. The proposed algorithm is referred to as
the proportionate affine projection maximum correntropy criterion (PAPMCC) algorithm, which is
derived in the context of channel estimation framework. Many simulation results were obtained to
verify that the PAPMCC algorithm is superior to early reported AP algorithms with different input
signals under impulsive noise environments.

Keywords: sparse channel estimation; maximum correntropy criterion; proportionate affine
projection algorithm; impulsive noise environments

1. Introduction

A class of adaptive filtering (AF) algorithms are extensively considered in use in channel
estimation (CE), echo cancellation, noise elimination, etc. [1–10]. For example, the well-known
least mean square (LMS), normalized LMS (NLMS) and recursive least square (RLS) algorithms were
used in various systems. Although the LMS algorithm has a simple principle and a small amount
of computation in practice, it might converge slowly in low signal-to-noise ratio (SNR) scenes. In
contrast, the RLS converges faster than the basic LMS. However, it is proved to have high cost of
increased computational complexity, which will use more computing resources when the order of the
AF is large. In addition, if the input signal is a speech signal, the convergence speed for the basic LMS
algorithm becomes very slow as the eigenvalue distribution range for the input signal autocorrelation
matrix is large [11]. To enhance the identification behaviors of the RLS and NLMS algorithms in
practical engineering and to obtain high accuracy and fast convergence, the affine projection (AP)
algorithm is proposed by reusing latest input signals to improve the NLMS’s performance [12]. The
computation burden of the AP is between the LMS and RLS algorithms, and the AP algorithm has a
fast convergence, especially for colored or speech signal input signals [13].

In many engineerings, such as speech signal processing and real-time traffic predictions, noise
often exhibits strongly impulsive characteristics [14,15]. Traditional NLMS and AP algorithms, which
use the minimum-mean-square-error (MMSE) criterion to construct an expected cost function, will
suffer from performance degradation in those impulsive noise environments. To find the solution for
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handling these problems, the maximum correntropy criterion (MCC) and the minimum error entropy
criterion (MEEC) have been proposed to give resistance to the impulsive noise [16,17]. Although the
MEEC is a robust criterion, its computational complexity is very high, while the MCC algorithm whose
computational complexity is comparable to the LMS has been widely used to resist the impulsive
noise [18–21].

On the other hand, scholars found that the sparse characteristics are existing in a great number of
scenarios such as network echo channels and underwater acoustic communication channels [22–25].
However, classical LMS, AP and MCC algorithms cannot take advantage of the sparse structures
of these sparse channels. Then, the proportionate AF algorithms have been proposed to make use
of the sparse information in the mentioned channels [26]. For example, the proportionate NLMS
(PNLMS) combines the proportionate scheme into the NLMS to reassign the gains to each channel
coefficients [26]. Then, proportionate-type AF algorithms were widely realized and utilized for channel
estimation as well as the echo cancellation [27–30]. For the sake of comparison with the traditional
NLMS, the PNLMS suffers from slow convergence if the input signal is driven by colored or speech
signals, resulting in that steady-state error might be worse than that of the NLMS. Inspired by the
PNLMS, the proportionate AP (PAP) algorithm has been proposed by using the idea in PNLMS to
fully use the sparse structure-information of the echo channels [31] based on the data reusing principle.
Then, various proportionate-type AP algorithms have been proposed [32–37]. However, the PAP-type
algorithms have performance degradation in impulsive noise environments because of the MMSE
scheme. Thus, the sign algorithms, such as affine projection sign (APS) algorithm and proportionate
APS (PAPS) algorithm [38,39], are successfully used for dealing with impulsive noise. Additionally,
another kind of sparse-aware APs have been reported and analyzed by taking the consideration of the
compressed sensing (CS) theory [40]. With the help of the concept of the CS, a series of sparsity-aware
AF algorithms, such as zero-attracting LMS (ZA-LMS), reweighted ZA-LMS (RZA-LMS), ZA-AP, and
RZA-AP algorithms have been proposed within the AF [41–47].

In this paper, the AP scheme and MCC are considered together to construct a new cost function to
enhance the PAP algorithm in impulsive noise environments, which is denoted as proportionate affine
projection maximum correntropy criterion (PAPMCC) algorithm. The proposed PAPMCC algorithm is
investigated by using α-stable distribution as the impulsive noise model. Experimental results verify
that the PAPMCC provides a lower steady state error than AP, ZA-AP, RZA-AP, and PAP algorithms
with different inputs.

2. Review of the PAP Algorithm

In the range of AF, the implementation schematic diagram for CE is presented in Figure 1. Assume
that the input signal x(m) = [x(m), x(m− 1), · · · , x(m−K + 1)]T is used in this paper, and the channel
impulse response (CIR) is modeled as w(m) = [w0(m), · · · , wK−1(m)]T , where K denotes as the total
length and m denotes the time slot. Then, the received signal d(m) is

d(m) = xT(m)w(m) + r(m), (1)

in which r(m) represents the additive impulsive noise that is usually independent of
x(m), and T represents the transposed operation. The gotten CIR is given as ŵ(m) =

[ŵ0(m), ŵ1(m), · · · , ŵK−1(m)]T , resulting in

y(m) = xT(m)ŵ(m). (2)

The estimation error at m is expressed as

e(m) = d(m)− y(m). (3)
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Figure 1. Typical CE schematic diagram.

2.1. AP Algorithm

To the best of our knowledge, the AP algorithm reuses the current and previous input signal
information, which achieves faster convergence compared with the NLMS when the input signal is
colored. The input matrix for the AP algorithm is

X(m) = [x(m), x(m− 1), · · · , x(m−M + 1)]. (4)

where M is a projection order. Due to the reuse of data, y(m) and the estimated error e(m) are
expressed as

y(m) = XT(m)ŵ(m), (5)

d(m) = [d(m), d(m− 1), · · · , d(m−M + 1)]T , (6)

e(m) = d(m)− y(m). (7)

The iteration equation for the standard AP algorithm is given by

ŵ(m + 1) = ŵ(m) + µAPX(m)
(

XT(m)X(m) + δAPIM

)−1
e(m), (8)

in which µAP denotes the step size, δAP > 0 is to prevent the matrix to be inverted to singular, and IM
is a M-order identity matrix.

2.2. PAP Algorithm

From the inspiration of the well-known PNLMS algorithm, the PAP algorithm integrates the
proportionate idea into the AP algorithm to modify the gain allocation method, and realizes a dynamic
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step size (STS) based on the magnitudes of the channel coefficients that are included in the unknown
channels. The iteration equation of the PAP is modified to be

ŵ(m + 1) = ŵ(m) + µPAPG(m)X(m)
(

XT(m)G(m)X(m) + δPAPIM

)−1
e(m), (9)

where µPAP is still used as a STS, δPAP denotes the regularization factor in the PAP, and G(m) acts as
the gain controlling matrix, which is written as

G(m) = diag { g0(m), g1(m), . . . , gK−1(m)} , (10)

where

gk(m) =
ϕk(m)

K−1
∑

i=0
ϕi(m)

, (11)

and
ϕk = max {pmax { q, |ŵ0| , |ŵk| , · · · , |ŵK−1|} , |ŵk|} . (12)

In Equation (12), parameters p > 0 and q > 0 are used to prevent the update process from stalling.
In practice, p = 5

K is usually chosen [26].

3. Proposed PAPMCC Algorithm

The PAP can provide amazing convergence performance in Gaussian noise environments, but
the performance will degrade under the impulsive noise environments. To take full use of the sparse
characteristics of the CIRs, a robust PAP algorithm is realized by combining the proportionate idea
with the basic AP and MCC together to construct the PAPMCC algorithm. As a result, the proposed
PAPMCC algorithm solves the minimization problem given by

‖ŵ(m + 1)− ŵ(m)‖2
G−1(m) subject to ^e(m) =

[
1M − ξ exp

(
−e(m)� e(m)

2σ2

)]
� e(m), (13)

where ^e(m) = d(m)− XT(m)ŵ(m + 1), σ denotes the kernel width, and 1M is a column vector whose
elements are ones. e(m)� e(m) denotes the Hadamard product between two estimated error vectors
e(m). According to the Lagrange multiplier method (LMM) with multiple constraints, the cost function
is presented as

J(ŵ(m + 1)) = ‖ŵ(m + 1)− ŵ(m)‖2
G−1(m) + λ

{
^e(m)−

[
1M − ξ exp

(
− e(m)�e(m)

2σ2

)]
� e(m)

}
, (14)

where λ = [λ1, λ2, ..., λM]. Then, let

∂J(ŵ(m + 1))
∂ŵ(m + 1)

=0 and
∂J(ŵ(m + 1))

∂λ
= 0. (15)

After performing algebraic operations, we get

ŵ(m + 1) = ŵ(m) +
1
2

G(m)X(m)λT , (16)

and

d(m) = XT(m)ŵ(m + 1) +
[

1M − ξ exp
(
−e(m)� e(m)

2σ2

)]
� e(m). (17)
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Solving Equations (16) and (17), the Lagrange multiplier vector is given by

λT = 2ξ[XT(m)G(m)X(m)]−1 exp
(
−e(m)� e(m)

2σ2

)
� e(m). (18)

Substituting Equation (18) into Equation (16), the iteration of the PAPMCC is expressed as

ŵ(m + 1) = ŵ(m) + ξG(m)X(m)[XT(m)G(m)X(m)]−1 exp
(
−e(m)� e(m)

2σ2

)
� e(m). (19)

In practice, Equation (19) can be corrected to

ŵ(m + 1) = ŵ(m) + µG(m)X(m)[XT(m)G(m)X(m) + IMδPAPMCC]
−1 exp

(
− e(m)�e(m)

2σ2

)
� e(m), (20)

where µ = ξ acts as the step size, δPAPMCC denotes the regularization factor, and G(m) is the weight
assignment matrix that is defined in Equations (10)–(12).

The computation complexity of the devised PAPMCC algorithm is compared with the AP,
ZA-AP, RZA-AP and PAP algorithms with respect to the total number of additions, multiplications,
and divisions in each iteration. The comparison is presented in Table 1. It is clear to see that
the computational complexity of the proposed PAPMCC algorithm is comparable to that of the
PAP algorithm.

Table 1. Computational complexity in each iteration.

Algorithm Addition Multiplication Division

AP (2M2 + M)K (2M2 + 3M)K + M2 0
ZA-AP (2M2 + M + 1)K (2M2 + 3M + 1)K + M2 0
RZA-AP (2M2 + M + 2)K (2M2 + 3M + 2)K + M2 K
PAP 2MK2 + (2M2 −M + 1)K− 1 2MK2 + (2M2 + 3M + 1)K + M2 K
PAPMCC 2MK2 + (2M2 −M + 1)K− 1 2MK2 + (2M2 + 3M + 1)K + M2 + 2M K + M

4. Experimental Results

Several experiments were constructed to give an analysis on the performance of the PAPMCC
algorithm for implementing the sparse CE. Since the α-stable distribution can well construct the
non-Gaussian phenomenon, which is ubiquitous in practice, it was chosen to model the impulsive
noise in the simulations. The α-stable distribution function is defined as

f (t) = exp
{

jχt− γ|t|α [1 + jβsgn(t)S(t, α)]
}

, (21)

where

S(t, α) =

{
tan απ

2 if α 6= 1
2
π log |t| if α = 1,

(22)

in which α ∈ (0, 2] represents the characteristic index, which controls the behavior of the impulsive
distribution. When parameter α is smaller, the impulsive intensity becomes larger. β ∈ [−1, 1] is the
symmetric parameter, χ denotes positional parameter, and γ > 0 represents the dispersion parameter.
Furthermore, the α-stable distribution is given by Vα−stable(α, β, γ, χ). Herein, Vα−stable(1.5, 0, 0.2, 0) is
chosen to implement the impulsive noise. In all simulation experiments, K = 1024, and σ = 1 were
selected, and the input signal power was 1. The network echo channel used for the experiments, which
is classical sparse channel presented in Figure 2, whose active coefficients distributed in [257, 272], was
considered to evaluate the proposed PAPMCC algorithm. The related parameters were set to be δAP =

δZA−AP = δRZA−AP = 0.01 and δPAP = δPAPMCC = 1
K δAP [48]. The performance for all used algorithms

was evaluated by normalized misalignment (NM), which is written as 10log10(‖w− ŵ‖2
2 / ‖w‖2

2).
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Figure 2. The impulse response used in simulation below.

4.1. Performance of the PAPMCC Algorithm with Various Projection Orders M, Step-Sizes µ and Kernel
Width σ

Firstly, the effects of the projection order M on the convergence for the PAPMCC algorithm was
investigated. The colored noise, which was obtained from white Gaussian noise (WGN) filtering
through an autoregressive with a pole at 0.8, was used as the input signal. Herein, µ = 0.05. The results
given in Figure 3 point out that increasing the projection order M could speed up the convergence,
while the steady-state misalignment was increased. Therefore, a trade-off between the convergence
speed and steady-state misalignment should be taken into consideration.
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Figure 3. The effects of the projection orders on PAPMCC algorithm.

Secondly, the effects of kernel width σ on the convergence for the PAPMCC algorithm was
analyzed and discussed. Herein, M = 4 was selected. From Equation (20), the parameter σ affects
the estimation behaviors of the PAPMCC algorithm, while σ is an important parameter for Gaussian
kernel to suppress noise interference. Given the diversity and complexity of the target signal and
noise, it is not easy to get the optimal solution of the kernel width σ from the theoretical derivation.
Therefore, the simulation experiments were used to determine the appropriate value σ. The results
given in Figure 4 point out that the steady-state error of the PAPMCC algorithm increased with the
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increment of σ. The PAPMCC algorithm had high estimation error when σ took a larger value since
MCC behaved similar LMS when the value of σ was very large.
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Figure 4. The effects of the kernel width σ on PAPMCC algorithm.

Thirdly, the effects of µ on the convergence for the PAPMCC algorithm was investigated using
colored noise as the input signal. From the above simulation results, σ = 1.0 was selected, and
other parameters were the same as the first experiments, and the results are presented in Figure 5.
Parameter µ controls the convergence speed of the PAPMCC. With the increment of µ, the normalized
misalignment was decreased, while the convergence rate became fast. Consequently, the parameters µ

and σ are supposed to be reasonably selected in practical application.
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4.2. Performance Comparisons of the Proposed PAPMCC Algorithm under Different Input Signals

According to the analysis presented above, we found that the devised PAPMCC algorithm had a
lower steady-state MSE when σ and µ were selected. Herein, the estimation behaviors of the PAPMCC
was compared with the AP, RZA-AP,ZA-AP, and PAP algorithms. All algorithms were investigated
by using WGN, colored noise, and speech signal as input signals, and the sampling frequency for
the speech signal was 8 kHz. The used speech signal in this simulation is presented in Figure 6. The
performance comparisons of the PAPMCC algorithm with various inputs for network echo channel
are presented in Figures 7–9, respectively. The PAPMCC algorithm achieved the lowest NM for the
sake of comparison with the ZA-AP, AP and RZA-AP algorithms. The PAPMCC algorithm had lower
steady-state error while its convergence speed was similar to that of the PAP algorithm. When the
input signal was speech signal, the proposed PAPMCC was still better than the related algorithms by
considering the convergence and estimation error.
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Figure 6. The actual speech signal which is used to estimate the network echo channel.
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Figure 7. Performance comparisons of the proposed PAPMCC algorithm. Input signal: WGN.
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Figure 8. Performance comparisons of the proposed PAPMCC algorithm. Input signal: colored.
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Figure 9. Performance comparisons of the proposed PAPMCC algorithm. Input signal: speech signal.

4.3. SNR vs. Normalized Misalignment (NM) of the PAPMCC Algorithm

NM versus SNR was used to analyze the performance of the devised PAPMCC under colored
input for estimating network echo channel. The performance results of the PAPMCC with various
SNRs are presented in Figure 10, which shows that the estimation error decreased as the SNR increased



Entropy 2019, 21, 555 10 of 13

from 0 to 20 dB. Clearly, the steady-state performance of the PAPMCC was significantly better than the
related algorithms in low SNR environments.
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Figure 10. Effects of SNR on the PAPMCC algorithm.

4.4. Performance Comparisons of the Proposed PAPMCC Algorithm with the Conventional Robust
AP Algorithms

Two conventional robust algorithms were taken into account for comparison to deal with
impulsive noise, namely, APS and PAPS algorithms. Herein, the step sizes of the APS and PAPS
algorithms were set to 0.005, while the step sizes for the PAP and improved PAP (IPAP) algorithm [49]
were set to 0.5, and the bound of set-membership PAP (SM-PAP) algorithm [34] was set to

√
2σ2

r
where σ2

r represents the power of the noise. The other parameters were consistent with the previous
simulations. The results presented in Figure 11 indicate that the proposed PAPMCC algorithm could
still achieve the lowest steady-state error.
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Figure 11. Performance comparisons of the proposed PAPMCC algorithm with the conventional robust
AP algorithms. Input signal: colored.
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5. Conclusions

In this paper, the proportionate affine projection maximum correntropy criterion (PAPMCC) has
been put forward by the combination of the proportionate and affine projection schemes with the MCC
to get a new cost function from the concept of the PAP. The proposed PAPMCC algorithm is carefully
derived and investigated via the simulation from various experiments. The results indicate that the
PAPMCC algorithm clearly improves the ability of the traditional PAP algorithm under impulsive
noise environments. Moreover, compared with the AP, PAP, ZA-AP, RZA-AP, IPAP, APS, PAPS and
SM-AP algorithms, the proposed PAPMCC algorithm achieves the lowest NM under three different
input signals for estimating network echo channels.
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